Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Harnessing extracellular vesicle heterogeneity for diagnostic and therapeutic applications

Abstract

Extracellular vesicles (EVs) are diverse nanoparticles with large heterogeneity in size and molecular composition. Although this heterogeneity provides high diagnostic value for liquid biopsy and confers many exploitable functions for therapeutic applications in cancer detection, wound healing and neurodegenerative and cardiovascular diseases, it has also impeded their clinical translation—hence heterogeneity acts as a double-edged sword. Here we review the impact of subpopulation heterogeneity on EV function and identify key cornerstones for addressing heterogeneity in the context of modern analytical platforms with single-particle resolution. We outline concrete steps towards the identification of key active biomolecules that determine EV mechanisms of action across different EV subtypes. We describe how such knowledge could accelerate EV-based therapies and engineering approaches for mimetic artificial nanovesicle formulations. This approach blunts one edge of the sword, leaving only a single razor-sharp edge on which EV heterogeneity can be exploited for therapeutic applications across many diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: EVs exhibit major heterogeneity that currently limits their effective application in drug delivery.
Fig. 2: Generalized experimental workflow for determining the EV MOA in the context of single-vesicle heterogeneity.
Fig. 3: Engineering ANVs to address long-standing challenges that are associated with EVs.

Similar content being viewed by others

References

  1. Yáñez-Mó, M. et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 4, 27066 (2015).

    PubMed  Google Scholar 

  2. Midekessa, G. et al. Zeta potential of extracellular vesicles: toward understanding the attributes that determine colloidal stability. ACS Omega 5, 16701–16710 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Zhu, X. et al. Comprehensive toxicity and immunogenicity studies reveal minimal effects in mice following sustained dosing of extracellular vesicles derived from HEK293T cells. J. Extracell. Vesicles 6, 1324730 (2017).

    PubMed  PubMed Central  Google Scholar 

  4. Elsharkasy, O. M. et al. Extracellular vesicles as drug delivery systems: why and how? Adv. Drug Deliv. Rev. 159, 332–343 (2020).

    PubMed  CAS  Google Scholar 

  5. Parada, N., Romero-Trujillo, A., Georges, N. & Alcayaga-Miranda, F. Camouflage strategies for therapeutic exosomes evasion from phagocytosis. J. Adv. Res. 31, 61–74 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Hoshino, A. et al. Tumour exosome integrins determine organotropic metastasis. Nature 527, 329–335 (2015). This study provides direct evidence that EVs from tumour cells exhibit specific tropism towards target organs, which is one of the most promising features of EVs compared with synthetic nanocarriers intended for clinical applications.

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Choi, H. et al. Biodistribution of exosomes and engineering strategies for targeted delivery of therapeutic exosomes. Tissue Eng. Regener. Med. https://doi.org/10.1007/s13770-021-00361-0 (2021).

  8. Wiklander, O. P. B. et al. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J. Extracell. Vesicles https://doi.org/10.3402/jev.v4.26316 (2015).

  9. Sung, B. H. & Weaver, A. M. Exosome secretion promotes chemotaxis of cancer cells. Cell Adhes. Migr. 11, 187–195 (2017).

    CAS  Google Scholar 

  10. Kriebel, P. W. et al. Extracellular vesicles direct migration by synthesizing and releasing chemotactic signals. J. Cell Biol. 217, 2891–2910 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Hosseini, R. et al. The roles of tumor-derived exosomes in altered differentiation, maturation and function of dendritic cells. Mol. Cancer 20, 83 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Yuan, P. et al. Neural stem cell-derived exosomes regulate neural stem cell differentiation through miR-9-Hes1 axis. Front. Cell Dev. Biol. https://doi.org/10.3389/fcell.2021.601600 (2021).

  13. Huang, J., Ding, Z., Luo, Q. & Xu, W. Cancer cell-derived exosomes promote cell proliferation and inhibit cell apoptosis of both normal lung fibroblasts and non-small cell lung cancer cell through delivering alpha-smooth muscle actin. Am. J. Transl. Res. 11, 1711–1723 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Matsumoto, Y. et al. Tumor‐derived exosomes influence the cell cycle and cell migration of human esophageal cancer cell lines. Cancer Sci. 111, 4348–4358 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Harmati, M. et al. Small extracellular vesicles convey the stress-induced adaptive responses of melanoma cells. Sci. Rep. 9, 15329 (2019).

    PubMed  PubMed Central  Google Scholar 

  16. Mathieu, M., Martin-Jaular, L., Lavieu, G. & Théry, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 21, 9–17 (2019).

    PubMed  CAS  Google Scholar 

  17. Bonsergent, E. et al. Quantitative characterization of extracellular vesicle uptake and content delivery within mammalian cells. Nat. Commun. 12, 1864 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Walker, S. et al. Extracellular vesicle-based drug delivery systems for cancer treatment. Theranostics 9, 8001–8017 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Shi, Y., van der Meel, R., Chen, X. & Lammers, T. The EPR effect and beyond: strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics 10, 7921–7924 (2020).

    PubMed  PubMed Central  Google Scholar 

  20. Jakubec, M. et al. Plasma-derived exosome-like vesicles are enriched in lyso-phospholipids and pass the blood–brain barrier. PLoS ONE 15, e0232442 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Morad, G. et al. Tumor-derived extracellular vesicles breach the intact blood–brain barrier via transcytosis. ACS Nano 13, 13853–13865 (2019). This research provides a precise description of how tumour-derived EVs manage to breach the formidable BBB, revealing the role of transcytosis and the endothelial recycling endocytic pathway during the process.

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Saint-Pol, J., Gosselet, F., Duban-Deweer, S., Pottiez, G. & Karamanos, Y. Targeting and brossing the blood–brain barrier with extracellular vesicles. Cells 9, 851 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Whiteside, T. L. Exosomes carrying immunoinhibitory proteins and their role in cancer. Clin. Exp. Immunol. 189, 259–267 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Yang, E. et al. Exosome-mediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression. Signal Transduction Targeted Ther. 5, 242 (2020).

    Google Scholar 

  25. Kuriyama, N., Yoshioka, Y., Kikuchi, S., Azuma, N. & Ochiya, T. Extracellular vesicles are key regulators of tumor neovasculature. Front. Cell Dev. Biol. https://doi.org/10.3389/fcell.2020.611039 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Richter, M., Vader, P. & Fuhrmann, G. Approaches to surface engineering of extracellular vesicles. Adv. Drug Deliv. Rev. 173, 416–426 (2021).

    PubMed  CAS  Google Scholar 

  27. Kim, H. et al. Engineered extracellular vesicles and their mimetics for clinical translation. Methods 177, 80–94 (2020).

    PubMed  CAS  Google Scholar 

  28. Lener, T. et al. Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. J. Extracell. Vesicles 4, 30087 (2015).

    PubMed  Google Scholar 

  29. Nguyen, V. V. T., Witwer, K. W., Verhaar, M. C., Strunk, D. & Balkom, B. W. M. Functional assays to assess the therapeutic potential of extracellular vesicles. J. Extracell. Vesicles 10, e12033 (2020). This study addresses the urgent need for standardized and predictive assays to gauge the therapeutic potential of EVs, ensuring consistent therapeutic efficacy and batch-to-batch reproducibility.

    PubMed  PubMed Central  Google Scholar 

  30. Liang, X. et al. Extracellular vesicles engineered to bind albumin demonstrate extended circulation time and lymph node accumulation in mouse models. J. Extracell. Vesicles 11, e12248 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Xu, M. et al. Size-dependent in vivo transport of nanoparticles: implications for delivery, targeting, and clearance. ACS Nano 17, 20825–20849 (2023).

    PubMed  Google Scholar 

  32. Sharma, S., LeClaire, M., Wohlschlegel, J. & Gimzewski, J. Impact of isolation methods on the biophysical heterogeneity of single extracellular vesicles. Sci. Rep. 10, 13327 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Caponnetto, F. et al. Size-dependent cellular uptake of exosomes. Nanomedicine 13, 1011–1020 (2017).

    PubMed  CAS  Google Scholar 

  34. Bobrie, A., Colombo, M., Krumeich, S., Raposo, G. & Théry, C. Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. J. Extracell. Vesicles 1, 18397 (2012).

    CAS  Google Scholar 

  35. Mazouzi, Y. et al. Biosensing extracellular vesicle subpopulations in neurodegenerative disease conditions. ACS Sens. 7, 1657–1665 (2022).

    PubMed  CAS  Google Scholar 

  36. Mitchell, M. I. et al. Extracellular Vesicle Capture by AnTibody of CHoice and Enzymatic Release (EV‐CATCHER): a customizable purification assay designed for small‐RNA biomarker identification and evaluation of circulating small‐EVs. J. Extracell. Vesicles 10, e12110 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Kang, Y. et al. Isolation and profiling of circulating tumor‐associated exosomes using extracellular vesicular lipid–protein binding affinity based microfluidic device. Small 15, 1903600 (2019).

    CAS  Google Scholar 

  38. Zhang, H. et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat. Cell Biol. 20, 332–343 (2018). This study underscores the heterogeneity of EV populations, introduces the creative use of AF4, two distinct EV sizes and the previously unreported ‘exomeres’.

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Kowal, J. et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl Acad. Sci. USA 113, E968–E977 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Lázaro-Ibáñez, E. et al. DNA analysis of low- and high-density fractions defines heterogeneous subpopulations of small extracellular vesicles based on their DNA cargo and topology. J. Extracell. Vesicles 8, 1656993 (2019).

    PubMed  PubMed Central  Google Scholar 

  41. Lee, S.-S. et al. A novel population of extracellular vesicles smaller than exosomes promotes cell proliferation. Cell Commun. Signal. 17, 95 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Emelyanov, A. et al. Cryo-electron microscopy of extracellular vesicles from cerebrospinal fluid. PLoS ONE 15, e0227949 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Arraud, N. et al. Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. J. Thromb. Haemost. 12, 614–627 (2014).

    PubMed  CAS  Google Scholar 

  44. van der Pol, E., Welsh, J. A. & Nieuwland, R. Minimum information to report about a flow cytometry experiment on extracellular vesicles: communication from the ISTH SSC subcommittee on vascular biology. J. Thromb. Haemost. 20, 245–251 (2022).

    PubMed  Google Scholar 

  45. Jeppesen, D. K. et al. Reassessment of exosome composition. Cell https://doi.org/10.1016/j.cell.2019.02.029 (2019).

  46. Pfrieger, F. W. & Vitale, N. Cholesterol and the journey of extracellular vesicles. J. Lipid Res. 59, 2255–2261 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Mathieu, M. et al. Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9. Nat. Commun. 12, 4389 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Zendrini, A. et al. On the surface-to-bulk partition of proteins in extracellular vesicles. Colloids Surf. B Biointerfaces 218, 112728 (2022).

    PubMed  CAS  Google Scholar 

  49. Zhang, Q. et al. Supermeres are functional extracellular nanoparticles replete with disease biomarkers and therapeutic targets. Nat. Cell Biol. 23, 1240–1254 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Anand, S., Samuel, M. & Mathivanan, S. in New Frontiers: Extracellular Vesicles Vol. 97 (eds Mathivanan, S. et al.) 89–97 (Springer, 2021).

  51. Wang, G. et al. Tumour extracellular vesicles and particles induce liver metabolic dysfunction. Nature 618, 374–382 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Jahnke, K. & Staufer, O. Membranes on the move: the functional role of the extracellular vesicle membrane for contact‐dependent cellular signalling. J. Extracell. Vesicles 13, e12436 (2024).

    PubMed  PubMed Central  Google Scholar 

  53. Mizenko, R. R. et al. Tetraspanins are unevenly distributed across single extracellular vesicles and bias sensitivity to multiplexed cancer biomarkers. J. Nanobiotechnol. 19, 250 (2021).

    CAS  Google Scholar 

  54. Ferguson, S., Yang, K. S. & Weissleder, R. Single extracellular vesicle analysis for early cancer detection. Trends Mol. Med. 28, 681–692 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Mol, E. A., Goumans, M.-J., Doevendans, P. A., Sluijter, J. P. G. & Vader, P. Higher functionality of extracellular vesicles isolated using size-exclusion chromatography compared to ultracentrifugation. Nanomedicine 13, 2061–2065 (2017).

    PubMed  CAS  Google Scholar 

  56. Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    PubMed  CAS  Google Scholar 

  57. Martel, R., Shen, M. L., DeCorwin-Martin, P., De Araujo, L. O. F. & Juncker, D. Extracellular vesicle antibody microarray for multiplexed inner and outer protein analysis. ACS Sens. 7, 3817–3828 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  58. Ko, J., Wang, Y., Sheng, K., Weitz, D. A. & Weissleder, R. Sequencing-based protein analysis of single extracellular vesicles. ACS Nano 15, 5631–5638 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  59. Sariano, P. A. et al. Convection and extracellular matrix binding control interstitial transport of extracellular vesicles. J. Extracell. Vesicles 12, e12323 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  60. Welsh, J. A. et al. A compendium of single extracellular vesicle flow cytometry. J. Extracell. Vesicles 12, e12299 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  61. Deng, F. et al. Single-particle interferometric reflectance imaging characterization of individual extracellular vesicles and population dynamics. J. Vis. Exp. https://doi.org/10.3791/62988 (2022).

  62. Cimorelli, M., Nieuwland, R., Varga, Z. & Van Der Pol, E. Standardized procedure to measure the size distribution of extracellular vesicles together with other particles in biofluids with microfluidic resistive pulse sensing. PLoS ONE 16, e0249603 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  63. McNamara, R. P. et al. Imaging of surface microdomains on individual extracellular vesicles in 3-D. J. Extracell. Vesicles 11, e12191 (2022). Using advanced direct stochastic optical reconstruction microscopy, this work reports the imaging of spatial microdomains on single EVs, uncovering a previously unappreciated level of structural intricacy and heterogeneity.

    PubMed  PubMed Central  CAS  Google Scholar 

  64. Saftics, A. et al. Single Extracellular VEsicle Nanoscopy. J. Extracell. Vesicles 12, 12346 (2023). Using SRM, this study introduces an innovative assay that provides in-depth insights into the physical, chemical and morphological characteristics of individual EVs in the context of discerning disease-associated and organ-associated EV subtypes.

    PubMed  PubMed Central  CAS  Google Scholar 

  65. Höög, J. L. & Lötvall, J. Diversity of extracellular vesicles in human ejaculates revealed by cryo-electron microscopy. J. Extracell. Vesicles 4, 28680 (2015).

    PubMed  Google Scholar 

  66. Musante, L. et al. Rigorous characterization of urinary extracellular vesicles (uEVs) in the low centrifugation pellet - a neglected source for uEVs. Sci. Rep. 10, 3701 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  67. Paolini, L. et al. Fourier-transform infrared (FT-IR) spectroscopy fingerprints subpopulations of extracellular vesicles of different sizes and cellular origin. J. Extracell. Vesicles 9, 1741174 (2020).

    PubMed  PubMed Central  Google Scholar 

  68. Kwon, Y. & Park, J. Methods to analyze extracellular vesicles at single particle level. Micro Nano Syst. Lett. 10, 14 (2022).

    Google Scholar 

  69. Bachurski, D. et al. Extracellular vesicle measurements with nanoparticle tracking analysis – an accuracy and repeatability comparison between NanoSight NS300 and ZetaView. J. Extracell. Vesicles 8, 1596016 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  70. Enciso-Martinez, A. et al. Synchronized Rayleigh and Raman scattering for the characterization of single optically trapped extracellular vesicles. Nanomedicine 24, 102109 (2020).

    PubMed  CAS  Google Scholar 

  71. Jung, M. K. & Mun, J. Y. Sample preparation and imaging of exosomes by transmission electron microscopy. J. Vis. Exp. https://doi.org/10.3791/56482 (2018).

  72. Andronico, L. A. et al. Sizing extracellular vesicles using membrane dyes and a single molecule-sensitive flow analyzer. Anal. Chem. 93, 5897–5905 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  73. Morales, R.-T. T. & Ko, J. Future of digital assays to resolve clinical heterogeneity of single extracellular vesicles. ACS Nano 16, 11619–11645 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  74. Welsh, J. A., Jones, J. C. & Tang, V. A. Fluorescence and light scatter calibration allow comparisons of small particle data in standard units across different flow cytometry platforms and detector settings. Cytometry A 97, 592–601 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  75. Nieuwland, R., Siljander, P. R.-M., Falcón-Pérez, J. M. & Witwer, K. W. Reproducibility of extracellular vesicle research. Eur. J. Cell Biol. 101, 151226 (2022).

    PubMed  CAS  Google Scholar 

  76. Kashkanova, A. D., Blessing, M., Gemeinhardt, A., Soulat, D. & Sandoghdar, V. Precision size and refractive index analysis of weakly scattering nanoparticles in polydispersions. Nat. Methods 19, 586–593 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  77. Kanwar, S. S., Dunlay, C. J., Simeone, D. M. & Nagrath, S. Microfluidic device (ExoChip) for on-chip isolation, quantification and characterization of circulating exosomes. Lab Chip 14, 1891–1900 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  78. Kamerkar, S. et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 546, 498–503 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  79. Roerig, J. et al. A focus on critical aspects of uptake and transport of milk-derived extracellular vesicles across the Caco-2 intestinal barrier model. Eur. J. Pharm. Biopharm. 166, 61–74 (2021).

    PubMed  CAS  Google Scholar 

  80. Wolf, M. et al. A functional corona around extracellular vesicles enhances angiogenesis, skin regeneration and immunomodulation. J. Extracell. Vesicles 11, e12207 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  81. Banks, W. A. et al. Transport of extracellular vesicles across the blood–brain barrier: brain pharmacokinetics and effects of inflammation. Int. J. Mol. Sci. 21, 4407 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  82. Kumar, P. et al. Neuroprotective effect of placenta-derived mesenchymal stromal cells: role of exosomes. FASEB J. 33, 5836–5849 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  83. Yadid, M. et al. Endothelial extracellular vesicles contain protective proteins and rescue ischemia–reperfusion injury in a human heart-on-chip. Sci. Transl. Med. 12, eaax8005 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  84. You, B. et al. Extracellular vesicles rich in HAX1 promote angiogenesis by modulating ITGB6 translation. J. Extracell. Vesicles 11, e12221 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  85. Fan, J., Xu, G., Chang, Z., Zhu, L. & Yao, J. miR-210 transferred by lung cancer cell-derived exosomes may act as proangiogenic factor in cancer-associated fibroblasts by modulating JAK2/STAT3 pathway. Clin. Sci. 134, 807–825 (2020).

    CAS  Google Scholar 

  86. Choi, J. S. et al. Exosomes from differentiating human skeletal muscle cells trigger myogenesis of stem cells and provide biochemical cues for skeletal muscle regeneration. J. Control. Release 222, 107–115 (2016).

    PubMed  CAS  Google Scholar 

  87. Yang, J., Zhang, X., Chen, X., Wang, L. & Yang, G. Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia. Mol. Ther. Nucleic Acids 7, 278–287 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  88. Kennedy, T. L., Russell, A. J. & Riley, P. Experimental limitations of extracellular vesicle-based therapies for the treatment of myocardial infarction. Trends Cardiovasc. Med. 31, 405–415 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  89. Reiner, A. T. et al. Concise Review: Developing best-practice models for the therapeutic use of extracellular vesicles. Stem Cells Transl. Med. 6, 1730–1739 (2017).

    PubMed  PubMed Central  Google Scholar 

  90. Paolini, L. et al. Large-scale production of extracellular vesicles: report on the “massivEVs” ISEV workshop. J. Extracell. Biol. 1, e63 (2022).

    PubMed  PubMed Central  Google Scholar 

  91. Witwer, K. W. et al. Defining mesenchymal stromal cell (MSC)-derived small extracellular vesicles for therapeutic applications. J. Extracell. Vesicles 8, 1609206 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  92. Gimona, M. et al. Critical considerations for the development of potency tests for therapeutic applications of mesenchymal stromal cell-derived small extracellular vesicles. Cytotherapy 23, 373–380 (2021). This road-map article on mesenchymal stromal/stem cells (MSCs) presents an analysis within the context of therapeutic medicine, emphasizing the potential of small EVs over traditional cellular MSC products, with a focus on the intricacies and challenges in quality control and consistent potency.

    PubMed  CAS  Google Scholar 

  93. Poupardin, R., Wolf, M. & Strunk, D. Adherence to minimal experimental requirements for defining extracellular vesicles and their functions. Adv. Drug Deliv. Rev. 176, 113872 (2021).

    PubMed  CAS  Google Scholar 

  94. Lötvall, J. et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J. Extracell. Vesicles 3, 26913 (2014).

    PubMed  Google Scholar 

  95. Théry, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, 1535750 (2018).

    PubMed  PubMed Central  Google Scholar 

  96. EV-TRACK Consortium et al. EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nat. Methods 14, 228–232 (2017).

    Google Scholar 

  97. Otero-Ortega, L. et al. Low dose of extracellular vesicles identified that promote recovery after ischemic stroke. Stem Cell Res. Ther. 11, 70 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  98. Sjöqvist, S. et al. Exosomes derived from clinical-grade oral mucosal epithelial cell sheets promote wound healing. J. Extracell. Vesicles 8, 1565264 (2019).

    PubMed  PubMed Central  Google Scholar 

  99. Karttunen, J. et al. Effect of cell culture media on extracellular vesicle secretion from mesenchymal stromal cells and neurons. Eur. J. Cell Biol. 101, 151270 (2022).

    PubMed  CAS  Google Scholar 

  100. Salmond, N., Khanna, K., Owen, G. R. & Williams, K. C. Nanoscale flow cytometry for immunophenotyping and quantitating extracellular vesicles in blood plasma. Nanoscale 13, 2012–2025 (2021).

    PubMed  CAS  Google Scholar 

  101. Basu, J. & Ludlow, J. W. Cell-based therapeutic products: potency assay development and application. Regen. Med. 9, 497–512 (2014).

    PubMed  CAS  Google Scholar 

  102. Guidance for Industry: Potency Tests for Cellular and Gene Therapy Products (Food and Drug Administration, 2011).

  103. Ko, S. Y. et al. The glycoprotein CD147 defines miRNA‐enriched extracellular vesicles that derive from cancer cells. J. Extracell. Vesicles 12, 12318 (2023). This study reveals a fundamental discovery: the glycoproteins CD147 and CD98 uniquely characterize specific EV subpopulations, fundamentally different from the traditional tetraspanin-positive EVs, providing an enhanced specificity in distinguishing cancerous origins.

    PubMed  PubMed Central  CAS  Google Scholar 

  104. Sung, B. H. et al. A live cell reporter of exosome secretion and uptake reveals pathfinding behavior of migrating cells. Nat. Commun. 11, 2092 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  105. Lee, E. J., Choi, Y., Lee, H. J., Hwang, D. W. & Lee, D. S. Human neural stem cell-derived extracellular vesicles protect against Parkinson’s disease pathologies. J. Nanobiotechnol. 20, 198 (2022).

    CAS  Google Scholar 

  106. Hao, Q. et al. Mesenchymal stem cell-derived extracellular cesicles decrease lung injury in mice. J. Immunol. 203, 1961–1972 (2019).

    PubMed  CAS  Google Scholar 

  107. Kulaj, K. et al. Adipocyte-derived extracellular vesicles increase insulin secretion through transport of insulinotropic protein cargo. Nat. Commun. 14, 709 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  108. Xie, F. et al. Breast cancer cell-derived extracellular vesicles promote CD8+ T cell exhaustion via TGF-β type II receptor signaling. Nat. Commun. 13, 4461 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  109. Baumgart, T., Hunt, G., Farkas, E. R., Webb, W. W. & Feigenson, G. W. Fluorescence probe partitioning between Lo/Ld phases in lipid membranes. Biochim. Biophys. Acta Biomembr. 1768, 2182–2194 (2007).

    CAS  Google Scholar 

  110. Tertel, T. et al. Imaging flow cytometry challenges the usefulness of classically used extracellular vesicle labeling dyes and qualifies the novel dye Exoria for the labeling of mesenchymal stromal cell–extracellular vesicle preparations. Cytotherapy 24, 619–628 (2022).

    PubMed  CAS  Google Scholar 

  111. Welsh, J. A. et al. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. J. Extracell. Vesicles 13, e12404 (2024).

    PubMed  PubMed Central  Google Scholar 

  112. Zhang, X. et al. Proteomic analysis of MSC-derived apoptotic vesicles identifies Fas inheritance to ameliorate haemophilia a via activating platelet functions. J. Extracell. Vesicles 11, e12240 (2022).

    PubMed  PubMed Central  Google Scholar 

  113. Campos-Mora, M. et al. Neuropilin-1 is present on Foxp3+ T regulatory cell-derived small extracellular vesicles and mediates immunity against skin transplantation. J. Extracell. Vesicles 11, e12237 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  114. Collino, F. et al. AKI recovery induced by mesenchymal stromal cell-derived extracellular vesicles carrying microRNAs. J. Am. Soc. Nephrol. 26, 2349–2360 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  115. Scalise, M., Pochini, L., Giangregorio, N., Tonazzi, A. & Indiveri, C. Proteoliposomes as tool for sssaying membrane transporter functions and interactions with xenobiotics. Pharmaceutics 5, 472–497 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  116. Sejwal, K. et al. Proteoliposomes – a system to study membrane proteins under buffer gradients by cryo-EM. Nanotechnol. Rev. 6, 57–74 (2017).

    CAS  Google Scholar 

  117. Shapira, S. et al. A novel platform for attenuating immune hyperactivity using EXO-CD24 in COVID-19 and beyond. EMBO Mol. Med. 14, e15997 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  118. Gwak, H., Park, S., Yu, H., Hyun, K.-A. & Jung, H.-I. A modular microfluidic platform for serial enrichment and harvest of pure extracellular vesicles. Analyst 147, 1117–1127 (2022).

    PubMed  CAS  Google Scholar 

  119. Bordanaba-Florit, G., Royo, F., Kruglik, S. G. & Falcón-Pérez, J. M. Using single-vesicle technologies to unravel the heterogeneity of extracellular vesicles. Nat. Protoc. https://doi.org/10.1038/s41596-021-00551-z (2021).

  120. Hromada, C., Mühleder, S., Grillari, J., Redl, H. & Holnthoner, W. Endothelial extracellular vesicles—promises and challenges. Front. Physiol. 8, 275 (2017).

    PubMed  PubMed Central  Google Scholar 

  121. Yang, Z. et al. Functional exosome-mimic for delivery of siRNA to cancer: in vitro and in vivo evaluation. J. Control. Release 243, 160–171 (2016).

    PubMed  CAS  Google Scholar 

  122. Ramasubramanian, L., Kumar, P. & Wang, A. Engineering extracellular vesicles as nanotherapeutics for regenerative medicine. Biomolecules 10, 48 (2020).

    CAS  Google Scholar 

  123. Jang, S. C. et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano 7, 7698–7710 (2013).

    PubMed  CAS  Google Scholar 

  124. Jo, W. et al. Large-scale generation of cell-derived nanovesicles. Nanoscale 6, 12056–12064 (2014).

    PubMed  CAS  Google Scholar 

  125. Bozzuto, G. & Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomed. 10, 975–999 (2015).

    CAS  Google Scholar 

  126. Akbarzadeh, A. et al. Liposome: classification, preparation, and applications. Nanoscale Res. Lett. 8, 102 (2013).

    PubMed  PubMed Central  Google Scholar 

  127. Patil, Y. P. & Jadhav, S. Novel methods for liposome preparation. Chem. Phys. Lipids 177, 8–18 (2014).

    PubMed  CAS  Google Scholar 

  128. Lapinski, M. M., Castro-Forero, A., Greiner, A. J., Ofoli, R. Y. & Blanchard, G. J. Comparison of liposomes formed by sonication and extrusion: rotational and translational diffusion of an embedded chromophore. Langmuir 23, 11677–11683 (2007).

    PubMed  CAS  Google Scholar 

  129. Large, D. E., Abdelmessih, R. G., Fink, E. A. & Auguste, D. T. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv. Drug Deliv. Rev. 176, 113851 (2021).

    PubMed  CAS  Google Scholar 

  130. Jahn, A., Vreeland, W. N., DeVoe, D. L., Locascio, L. E. & Gaitan, M. Microfluidic directed formation of liposomes of controlled size. Langmuir 23, 6289–6293 (2007).

    PubMed  CAS  Google Scholar 

  131. Carugo, D., Bottaro, E., Owen, J., Stride, E. & Nastruzzi, C. Liposome production by microfluidics: potential and limiting factors. Sci. Rep. 6, 25876 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  132. Genç, R., Ortiz, M. & O′Sullivan, C. K. Curvature-tuned preparation of nanoliposomes. Langmuir 25, 12604–12613 (2009).

    PubMed  Google Scholar 

  133. Piffoux, M., Silva, A. K. A., Wilhelm, C., Gazeau, F. & Tareste, D. Modification of extracellular vesicles by fusion with liposomes for the design of personalized biogenic drug delivery systems. ACS Nano 12, 6830–6842 (2018).

    PubMed  CAS  Google Scholar 

  134. Kuntsche, J., Decker, C. & Fahr, A. Analysis of liposomes using asymmetrical flow field-flow fractionation: separation conditions and drug/lipid recovery. J. Sep. Sci. 35, 1993–2001 (2012).

    PubMed  CAS  Google Scholar 

  135. Larsen, J., Hatzakis, N. S. & Stamou, D. Observation of inhomogeneity in the lipid composition of individual nanoscale liposomes. J. Am. Chem. Soc. 133, 10685–10687 (2011).

    PubMed  CAS  Google Scholar 

  136. Moulahoum, H., Ghorbanizamani, F., Zihnioglu, F. & Timur, S. Surface biomodification of liposomes and polymersomes for efficient targeted drug delivery. Bioconjug. Chem. 32, 1491–1502 (2021).

    PubMed  CAS  Google Scholar 

  137. Staufer, O. et al. Bottom-up assembly of biomedical relevant fully synthetic extracellular vesicles. Sci. Adv. 7, eabg6666 (2021). This research introduces an exciting synthetic approach based on mimetic EVs with defined compositions, a promising avenue for clinical applications and a platform for dissecting the intricacies of EV signalling mechanisms.

    PubMed  PubMed Central  CAS  Google Scholar 

  138. Cheng, K. et al. Bioengineered bacteria-derived outer membrane vesicles as a versatile antigen display platform for tumor vaccination via Plug-and-Display technology. Nat. Commun. 12, 2041 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  139. Rodríguez, D. A. & Vader, P. Extracellular vesicle-based hybrid systems for advanced drug delivery. Pharmaceutics 14, 267 (2022).

    PubMed  PubMed Central  Google Scholar 

  140. Morales-Kastresana, A. et al. Labeling extracellular vesicles for nanoscale flow cytometry. Sci. Rep. 7, 1878 (2017).

    PubMed  PubMed Central  Google Scholar 

  141. Melling, G. E. et al. Confocal microscopy analysis reveals that only a small proportion of extracellular vesicles are successfully labelled with commonly utilised staining methods. Sci. Rep. 12, 262 (2022).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the National Institutes of Health, including R01CA241666, R01EB033389, R01EB034279 and R35GM142788. R.R.M. was supported by F31NS120590. N.L. was supported by a funded training grant program (T32HL007013) of the National Heart, Lung, and Blood Institute. T.H. was supported by an NDSEG Fellowship. A.A. was supported by UC Davis MCB T32. This work was supported in part by the UC Davis Comprehensive Cancer Center’s Women’s Cancer Care & Research (WeCARE) program.

Author information

Authors and Affiliations

Authors

Contributions

R.P.C and R.R.M. wrote the paper and prepared the figures. R.P.C., R.R.M., A.W., C.T. and S.C.G. conceptualized the work. B.T.B., N.L., T.H., A.A., A.W., C.T. and S.C.G. draughted sections of the paper and edited them. N.L. and R.R.M. performed experiments.

Corresponding authors

Correspondence to Randy P. Carney or Steven C. George.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Edwin van der Pol for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carney, R.P., Mizenko, R.R., Bozkurt, B.T. et al. Harnessing extracellular vesicle heterogeneity for diagnostic and therapeutic applications. Nat. Nanotechnol. 20, 14–25 (2025). https://doi.org/10.1038/s41565-024-01774-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41565-024-01774-3

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research