Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antiferromagnetic spin-torque diode effect in a kagome Weyl semimetal

Abstract

Spintronics based on ferromagnets has enabled the development of microwave oscillators and diodes. To achieve even faster operation, antiferromagnets hold great promise despite their challenging manipulation. So far, controlling antiferromagnetic order with microwave currents remains elusive. Here we induce the coherent rotation of antiferromagnetic spins in a Weyl antiferromagnet W/Mn3Sn epitaxial bilayer by DC spin–orbit torque. We show the efficient coupling of this spin rotation with microwave current. The coupled dynamics produce a DC anomalous Hall voltage through rectification, which we coin the antiferromagnetic spin-torque diode effect. Unlike in ferromagnetic systems, the output voltage shows minimal dependence on frequency because of the stabilization of the precession cone angle by exchange interactions. Between 10 GHz and 30 GHz, the output voltage decreases by only 10%. Numerical simulations further reveal that the rectification signals arise from the fast frequency modulation of chiral spin rotation by microwave spin–orbit torque. These results may help the development of high-speed microwave devices for next-generation telecommunication applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Concept of the AFM spin-torque diode effect.
Fig. 2: Rectified Hall voltage through the AFM spin-torque diode effect.
Fig. 3: Frequency dependence of the rectified Hall voltage.
Fig. 4: Numerical simulation based on the LLG equation.

Similar content being viewed by others

Data availability

The data of this work are included in the published article and its Supplementary Information. Additional raw data are available from the corresponding authors upon request.

Code availability

The calculation and simulation codes are available from the corresponding authors upon reasonable request.

References

  1. Tsoi, M. et al. Excitation of a magnetic multilayer by an electric current. Phys. Rev. Lett. 80, 4281 (1998).

    CAS  Google Scholar 

  2. Katine, J. A., Albert, F. J., Buhrman, R. A., Myers, E. B. & Ralph, D. C. Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 3149 (2000).

    CAS  PubMed  Google Scholar 

  3. Kiselev, S. I. et al. Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380 (2003).

    CAS  PubMed  Google Scholar 

  4. Rippard, W. H., Pufall, M. R., Kaka, S., Russek, S. E. & Silva, T. J. Direct-current induced dynamics in Co90Fe10/Ni80Fe20 point contacts. Phys. Rev. Lett. 92, 027201 (2004).

    CAS  PubMed  Google Scholar 

  5. Chen, T. et al. Spin-torque and spin-Hall nano-oscillators. Proc. IEEE 104, 1919 (2016).

    Google Scholar 

  6. Tulapurkar, A. A. et al. Spin-torque diode effect in magnetic tunnel junctions. Nature 438, 339 (2005).

    CAS  PubMed  Google Scholar 

  7. Sankey, J. C. et al. Spin-transfer-driven ferromagnetic resonance of individual nanomagnets. Phys. Rev. Lett. 96, 227601 (2006).

    CAS  PubMed  Google Scholar 

  8. Miwa, S. et al. Highly sensitive nanoscale spin-torque diode. Nat. Mater. 13, 50 (2013).

    PubMed  Google Scholar 

  9. Locatelli, N., Cros, V. & Grollier, J. Spin-torque building blocks. Nat. Mater. 13, 11 (2013).

    Google Scholar 

  10. Finocchio, G. et al. Perspectives on spintronic diodes. Appl. Phys. Lett. 118, 160502 (2021).

    CAS  Google Scholar 

  11. Liu, L., Moriyama, T., Ralph, D. C. & Buhrman, R. A. Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106, 036601 (2011).

    PubMed  Google Scholar 

  12. Bonetti, S., Muduli, P., Mancoff, F. & Åkerman, J. Spin torque oscillator frequency versus magnetic field angle: the prospect of operation beyond 65 GHz. Appl. Phys. Lett. 94, 102507 (2009).

    Google Scholar 

  13. Houssameddine, D. et al. Spin-torque oscillator using a perpendicular polarizer and a planar free layer. Nat. Mater. 6, 447 (2007).

    CAS  Google Scholar 

  14. Gomonay, H. V. & Loktev, V. M. Spin transfer and current-induced switching in antiferromagnets. Phys. Rev. B 81, 144427 (2010).

    Google Scholar 

  15. Khymyn, R., Lisenkov, I., Tiberkevich, V., Ivanov, B. A. & Slavin, A. Antiferromagnetic THz-frequency Josephson-like oscillator driven by spin current. Sci. Rep. 7, 43705 (2017).

    PubMed  PubMed Central  Google Scholar 

  16. Sulymenko, O. R. et al. Terahertz-frequency spin Hall auto-oscillator based on a canted antiferromagnet. Phys. Rev. Appl. 8, 064007 (2017).

    Google Scholar 

  17. Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).

    PubMed  Google Scholar 

  18. Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212 (2015).

    CAS  PubMed  Google Scholar 

  19. Park, B. G. et al. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nat. Mater. 10, 347 (2011).

    CAS  PubMed  Google Scholar 

  20. Marti, X. et al. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 13, 367 (2014).

    CAS  PubMed  Google Scholar 

  21. Chen, X. et al. Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction. Nature 613, 490 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Qin, P. et al. Room-temperature magnetoresistance in an all-antiferromagnetic tunnel junction. Nature 613, 485 (2023).

    CAS  PubMed  Google Scholar 

  23. Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587 (2016).

    CAS  PubMed  Google Scholar 

  24. Tsai, H. et al. Electrical manipulation of a topological antiferromagnetic state. Nature 580, 608 (2020).

    CAS  PubMed  Google Scholar 

  25. Li, J. et al. Spin current from sub-terahertz-generated antiferromagnetic magnons. Nature 578, 70 (2020).

    CAS  PubMed  Google Scholar 

  26. Vaidya, P. et al. Subterahertz spin pumping from an insulating antiferromagnet. Science 368, 160 (2020).

    CAS  PubMed  Google Scholar 

  27. Safin, A. et al. Electrically tunable detector of THz-frequency signals based on an antiferromagnet. Appl. Phys. Lett. 117, 222411 (2020).

    CAS  Google Scholar 

  28. Yang, D. et al. Electrically tunable terahertz resonance in antiferromagnetic NiO/Pt heterostructures. Phys. Rev. Appl. 20, 014023 (2023).

    CAS  Google Scholar 

  29. Zhou, Y. et al. Spin-torque-driven antiferromagnetic resonance. Sci. Adv. 10, eadk7935 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231 (2016).

    CAS  PubMed  Google Scholar 

  31. Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    CAS  Google Scholar 

  32. Šmejkal, L., Mokrousov, Y., Yan, B. & MacDonald, A. H. Topological antiferromagnetic spintronics. Nat. Phys. 14, 242 (2018).

    Google Scholar 

  33. Šmejkal, L., MacDonald, A. H., Sinova, J., Nakatsuji, S. & Jungwirth, T. Anomalous Hall antiferromagnets. Nat. Rev. Mater. 7, 482 (2022).

    Google Scholar 

  34. Nakatsuji, S. & Arita, R. Topological magnets: functions based on Berry phase and multipoles. Annu. Rev. Condens. Matter Phys. 13, 119 (2022).

    CAS  Google Scholar 

  35. Han, J., Cheng, R., Liu, L., Ohno, H. & Fukami, S. Coherent antiferromagnetic spintronics. Nat. Mater. 22, 684 (2023).

    CAS  PubMed  Google Scholar 

  36. Takeuchi, Y. et al. Chiral-spin rotation of non-collinear antiferromagnet by spin–orbit torque. Nat. Mater. 20, 1364 (2021).

    CAS  PubMed  Google Scholar 

  37. Torrejon, J. et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 428 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Grollier, J. et al. Neuromorphic spintronics. Nat. Electron. 3, 360 (2020).

    Google Scholar 

  39. Suzuki, M.-T., Koretsune, T., Ochi, M. & Arita, R. Cluster multipole theory for anomalous Hall effect in antiferromagnets. Phys. Rev. B 95, 094406 (2017).

    Google Scholar 

  40. Kuroda, K. et al. Evidence for magnetic Weyl fermions in a correlated metal. Nat. Mater. 16, 1090 (2017).

    CAS  PubMed  Google Scholar 

  41. Yang, H. et al. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn. New J. Phys. 19, 015008 (2017).

    Google Scholar 

  42. Zhang, Y. et al. Strong anisotropic anomalous Hall effect and spin Hall effect in the chiral antiferromagnetic compounds Mn3X (X = Ge, Sn, Ga, Ir, Rh, and Pt). Phys. Rev. B 95, 075128 (2017).

    Google Scholar 

  43. Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085 (2017).

    CAS  Google Scholar 

  44. Li, X. et al. Anomalous Nernst and Righi-Leduc effects in Mn3Sn: Berry curvature and entropy flow. Phys. Rev. Lett. 119, 056601 (2017).

    PubMed  Google Scholar 

  45. Higo, T. et al. Perpendicular full switching of chiral antiferromagnetic order by current. Nature 607, 474 (2022).

    CAS  PubMed  Google Scholar 

  46. Pal, B. et al. Setting of the magnetic structure of chiral kagome antiferromagnets by a seeded spin–orbit torque. Sci. Adv. 8, eabo5930 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yan, G. Q. et al. Quantum sensing and imaging of spin–orbit-torque-driven spin dynamics in the non-collinear antiferromagnet Mn3Sn. Adv. Mater. 34, 2200327 (2022).

    CAS  Google Scholar 

  48. Sakamoto, S. et al. Observation of spontaneous x-ray magnetic circular dichroism in a chiral antiferromagnet. Phys. Rev. B 104, 134431 (2021).

    CAS  Google Scholar 

  49. Yoon, J.-Y. et al. Handedness anomaly in a non-collinear antiferromagnet under spin–orbit torque. Nat. Mater. 22, 1106 (2023).

    CAS  PubMed  Google Scholar 

  50. Krishnaswamy, G. K. et al. Time-dependent multistate switching of topological antiferromagnetic order in Mn3Sn. Phys. Rev. Appl. 18, 024064 (2022).

    CAS  Google Scholar 

  51. Rippard, W. H. et al. Injection locking and phase control of spin transfer nano-oscillators. Phys. Rev. Lett. 95, 067203 (2005).

    CAS  PubMed  Google Scholar 

  52. Georges, B. et al. Coupling efficiency for phase locking of a spin transfer nano-oscillator to a microwave current. Phys. Rev. Lett. 101, 017201 (2008).

    CAS  PubMed  Google Scholar 

  53. Fang, B. et al. Giant spin-torque diode sensitivity in the absence of bias magnetic field. Nat. Commun. 7, 11259 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. You, Y. et al. Anomalous Hall effect–like behavior with in-plane magnetic field in noncollinear antiferromagnetic Mn3Sn films. Adv. Electron. Mater. 5, 1800818 (2019).

    Google Scholar 

  55. Yoon, J. et al. Crystal orientation and anomalous Hall effect of sputter-deposited non-collinear antiferromagnetic Mn3Sn thin films. Appl. Phys. Express 13, 013001 (2019).

    Google Scholar 

  56. Nomoto, T. & Arita, R. Cluster multipole dynamics in noncollinear antiferromagnets. Phys. Rev. Res. 2, 012045 (2020).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Kondou of RIKEN for discussion. X-ray diffraction measurements, chemical composition analysis and electrode deposition were performed at the X-ray laboratory, the electron microscope section and Q-NanoLab of the Institute for Solid State Physics, The University of Tokyo, respectively. The synchrotron radiation experiments were performed at the BL25SU of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (proposal no. 2022A1072). This work was supported by JSPS KAKENHI (nos. JP19H05825, JP21H04437, JP22H00290, 22H04964, 23H01833 and 24H02234), JST CREST (JPMJCR18T3), JST-Mirai Program (JPMJMI20A1), MEXT Initiative to Establish Next-Generation Novel Integrated Circuit Centers (X-NICS) (no. JPJ011438), JST-PRESTO (no. JPMJPR20L7), JST-ASPIRE (no. JPMJAP2317) and Spintronics Research Network of Japan (Spin-RNJ). The Institute for Quantum Matter, an Energy Frontier Research Center, was funded by DOE, Office of Science, Basic Energy Sciences, under award no. DE-SC0024469.

Author information

Authors and Affiliations

Authors

Contributions

S.S. and S.M. conceived and designed the experiments. S.S. made the devices and performed electrical measurements. S.S., T.H., H.K., M.S. and D.N.-H. developed epitaxial Mn3Sn thin films, and Y.H. and K.Y. fabricated polycrystalline Mn3Sn thin films. S.S. performed microwave experiments with help of T.Y., S.T. and T. Nozaki. S.S., Y.K. and T. Nakamura conducted X-ray magnetic circular dichroism measurements. S.S., T. Nomoto and R.A. performed numerical calculations. S.S., S.N. and S.M. wrote the paper with inputs from all the authors.

Corresponding authors

Correspondence to Shoya Sakamoto or Shinji Miwa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Enrique del Barco, Zhongming Zeng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12 and discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakamoto, S., Nomoto, T., Higo, T. et al. Antiferromagnetic spin-torque diode effect in a kagome Weyl semimetal. Nat. Nanotechnol. 20, 216–221 (2025). https://doi.org/10.1038/s41565-024-01820-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41565-024-01820-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing