Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A roadmap for next-generation nanomotors

Abstract

Since their discovery in 2004, there has been remarkable progress in research on nanomotors, from the elucidation of different propulsion mechanisms to the study of their collective behaviour, culminating in investigations into their applications in biomedicine and environmental remediation. This Perspective reviews this evolution in nanomotor research and discusses the key challenges ahead, including the need for developing advanced characterization techniques, precise motion control, materials innovation, theory and modelling, and translationally feasible in vivo biomedical applications. These challenges highlight the current limitations of synthetic nanomotors and point to exciting future opportunities to revolutionize theranostics and create ‘living’ hybrid systems. We introduce the concept of ‘systems materials’ to encompass interacting functional materials across length scales from molecular to macro. Thus, this Perspective aims to inspire future generations of researchers to advance both fundamental understanding and practical breakthroughs, thereby engineering a paradigm shift in nanomotor research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of key breakthroughs in nanomotor development.
Fig. 2: Gaps and challenges in nanomotor development provide opportunities for future innovation.
Fig. 3: The evolution of nanomotors over 20 years and beyond.

Similar content being viewed by others

References

  1. Paxton, W. F. et al. Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126, 13424–13431 (2004). A landmark study that introduced chemically powered nanomotors, launching the field of synthetic nanomotor research.

    Article  CAS  PubMed  Google Scholar 

  2. Fournier-Bidoz, S., Arsenault, A. C., Manners, I. & Ozin, G. A. Synthetic self-propelled nanorotors. Chem. Commun. 41, 441–443 (2005).

    Article  Google Scholar 

  3. Yesin, K. B., Vollmers, K. & Nelson, B. J. Analysis and design of wireless magnetically guided microrobots in body fluids. Proc. IEEE Int. Conf. Robot. Autom. 2, 1333–1338 (2004).

    Google Scholar 

  4. Yesin, K. B., Vollmers, K. & Nelson, B. J. in Experimental Robotics IX. Springer Tracts in Advanced Robotics Vol. 21 (eds Ang, M. H. & Khatib, O.) 321–330 (Springer, 2006).

  5. Golestanian, R., Liverpool, T. B. & Ajdari, A. Propulsion of a molecular machine by asymmetric distribution of reaction products. Phys. Rev. Lett. 94, 220801 (2005). This research article provides the foundational theoretical framework for self-diffusiophoresis as a propulsion mechanism for nanomotors.

    Article  PubMed  Google Scholar 

  6. Howse, J. R. et al. Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99, 048102 (2007).

    Article  PubMed  Google Scholar 

  7. Solovev, A. A., Mei, Y., Ureña, E. B., Huang, G. & Schmidt, O. G. Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small 5, 1688–1692 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Ibele, M., Mallouk, T. E. & Sen, A. Schooling behavior of light-powered autonomous micromotors in water. Angew. Chem. Int. Ed. 121, 3358–3362 (2009).

    Article  Google Scholar 

  9. Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J. & Chaikin, P. M. Living crystals of light-activated colloidal surfers. Science 339, 933–936 (2013). An innovative research article highlighting light-powered active particles that form dynamic biomimetic self-assembled structures.

    Article  Google Scholar 

  10. Dai, B. et al. Programmable artificial phototactic microswimmer. Nat. Nanotechnol. 11, 1087–1092 (2016). This work demonstrated phototactic behaviour in a group of synthetic microswimmers, mimicking the collective phototactic behaviour of green algae.

    Article  CAS  PubMed  Google Scholar 

  11. Yesin, K. B., Vollmers, K. & Nelson, B. J. Modeling and control of untethered biomicrorobots in a fluidic environment using electromagnetic fields. Int. J. Robot. Res. 25, 527–536 (2006).

    Article  Google Scholar 

  12. Bell, D. J., Leutenegger, S., Hammar, K. M., Dong, L. X. & Nelson, B. J. Flagella-like propulsion for microrobots using a nanocoil and a rotating electromagnetic field. Proc. IEEE Int. Conf. Robot. Autom. 24, 1128–1133 (2007).

    Google Scholar 

  13. Ghosh, A. & Fischer, P. Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett. 9, 2243–2245 (2009). A groundbreaking research article that demonstrated precise propulsion and control of magnetic nanomotors in fluidic environments.

    Article  CAS  PubMed  Google Scholar 

  14. Fan, D. et al. Subcellular-resolution delivery of a cytokine through precisely manipulated nanowires. Nat. Nanotechnol. 5, 545–551 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim, K., Xu, X., Guo, J. & Fan, D. L. Ultrahigh-speed rotating nanoelectromechanical system devices assembled from nanoscale building blocks. Nat. Commun. 5, 3632 (2014).

    Article  PubMed  Google Scholar 

  16. Wang, W., Castro, L. A., Hoyos, M. & Mallouk, T. E. Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano 6, 6122–6132 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, W. et al. Acoustic propulsion of nanorod motors inside living cells. Angew. Chem. Int. Ed. 53, 3201–3204 (2014). The demonstration of acoustic propulsion of nanorods inside living cells.

    Article  CAS  Google Scholar 

  18. Ren, L. et al. 3D steerable, acoustically powered microswimmers for single-particle manipulation. Sci. Adv. 5, eaax3084 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu, T. et al. Reversible swarming and separation of self-propelled chemically powered nanomotors under acoustic fields. J. Am. Chem. Soc. 137, 2163–2166 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Feng, J., Yuan, J. & Cho, S. K. Micropropulsion by an acoustic bubble for navigating microfluidic spaces. Lab Chip 15, 1554–1562 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Najafi, A. & Golestanian, R. Simple swimmer at low Reynolds number: three linked spheres. Phys. Rev. E 69, 062901–062904 (2004).

    Article  Google Scholar 

  22. Dreyfus, R. et al. Microscopic artificial swimmers. Nature 437, 862–865 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Hong, Y., Blackman, N. M. K., Kopp, N. D., Sen, A. & Velegol, D. Chemotaxis of nonbiological colloidal rods. Phys. Rev. Lett. 99, 178103–178106 (2007).

    Article  PubMed  Google Scholar 

  24. Dey, K. K. et al. Chemotactic separation of enzymes. ACS Nano 8, 11941–11949 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Baraban, L., Harazim, S. M., Sanchez, S. & Schmidt, O. G. Chemotactic behavior of catalytic motors in microfluidic channels. Angew. Chem. Int. Ed. 52, 5552–5556 (2013).

    Article  CAS  Google Scholar 

  26. Peng, F., Tu, Y., Van Hest, J. C. M. & Wilson, D. A. Self-guided supramolecular cargo-loaded nanomotors with chemotactic behavior towards cells. Angew. Chem. Int. Ed. 54, 11662–11665 (2015).

    Article  CAS  Google Scholar 

  27. Kagan, D., Balasubramanian, S. & Wang, J. Chemically triggered swarming of gold microparticles. Angew. Chem. Int. Ed. 123, 523–526 (2011).

    Article  Google Scholar 

  28. Wang, W., Duan, W., Sen, A. & Mallouk, T. E. Catalytically powered dynamic assembly of rod-shaped nanomotors and passive tracer particles. Proc. Natl Acad. Sci. USA 110, 17744–17749 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Solovev, A. A., Sanchez, S. & Schmidt, O. G. Collective behaviour of self-propelled catalytic micromotors. Nanoscale 5, 1284–1293 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Yu, J. et al. Active generation and magnetic actuation of microrobotic swarms in bio-fluids. Nat. Commun. 10, 5631 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu, D. et al. Enzyme-powered liquid metal nanobots endowed with multiple biomedical functions. ACS Nano 15, 11543–11554 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Altemose, A. et al. Chemically controlled spatiotemporal oscillations of colloidal assemblies. Angew. Chem. Int. Ed. 56, 7817–7821 (2017).

    Article  CAS  Google Scholar 

  33. Singh, D. P., Choudhury, U., Fischer, P. & Mark, A. G. Non-equilibrium assembly of light-activated colloidal mixtures. Adv. Mater. 29, 1701328 (2017).

    Article  Google Scholar 

  34. Walker, D., Käsdorf, B. T., Jeong, H. H., Lieleg, O. & Fischer, P. Enzymatically active biomimetic micropropellers for the penetration of mucin gels. Sci. Adv. 1, e1500501 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ramos-Docampo, M. A. et al. Microswimmers with heat delivery capacity for 3D cell spheroid penetration. ACS Nano 13, 12192–12205 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Gardi, G., Ceron, S., Wang, W., Petersen, K. & Sitti, M. Microrobot collectives with reconfigurable morphologies, behaviors, and functions. Nat. Commun. 13, 2239 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen, S. et al. Collective buoyancy-driven dynamics in swarming enzymatic nanomotors. Nat. Commun. 15, 9315 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ruiz-González, N. et al. Swarms of enzyme-powered nanomotors enhance the diffusion of macromolecules in viscous media. Small 20, 2309387–2309403 (2024).

    Article  Google Scholar 

  39. Sun, M. et al. Individual and collective manipulation of multifunctional bimodal droplets in three dimensions. Sci. Adv. 10, eadp1439 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Patino, T. et al. Self-sensing enzyme-powered micromotors equipped with pH-responsive DNA nanoswitches. Nano Lett. 19, 3440–3447 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Liu, X. et al. Urease-powered micromotors with spatially selective distribution of enzymes for capturing and sensing exosomes. ACS Nano 17, 24343–24354 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Yuan, K., López, M. Á., Jurado-Sánchez, B. & Escarpa, A. Janus micromotors coated with 2D nanomaterials as dynamic interfaces for (bio)-sensing. ACS Appl. Mater. Interfaces 12, 46588–46597 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Li, H. et al. Precise electrokinetic position and three-dimensional orientation control of a nanowire bioprobe in solution. Nat. Nanotechnol. 18, 1213–1221 (2023).

    Article  CAS  PubMed  Google Scholar 

  44. Esteban-Fernández De Ávila, B. et al. Acoustically propelled nanomotors for intracellular siRNA delivery. ACS Nano 10, 4997–5005 (2016).

    Article  PubMed  Google Scholar 

  45. Tu, Y. et al. Biodegradable hybrid stomatocyte nanomotors for drug delivery. ACS Nano 11, 1957–1963 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xu, H., Medina-Sánchez, M., Maitz, M. F., Werner, C. & Schmidt, O. G. Sperm micromotors for cargo delivery through flowing blood. ACS Nano 14, 2982–2993 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Hortelão, A. C., Patiño, T., Perez-Jiménez, A., Blanco, À. & Sánchez, S. Enzyme-powered nanobots enhance anticancer drug delivery. Adv. Funct. Mater. 28, 1705086 (2018).

    Article  Google Scholar 

  48. Ma, X., Hahn, K. & Sanchez, S. Catalytic mesoporous Janus nanomotors for active cargo delivery. J. Am. Chem. Soc. 137, 4976–4979 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Solovev, A. A., Sanchez, S., Pumera, M., Mei, Y. F. & Schmidt, O. C. Magnetic control of tubular catalytic microbots for the transport, assembly, and delivery of micro-objects. Adv. Funct. Mater. 20, 2430–2435 (2010).

    Article  CAS  Google Scholar 

  50. Wang, Q. et al. Ultrasound Doppler-guided real-time navigation of a magnetic microswarm for active endovascular delivery. Sci. Adv. 7, eabe5914 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ye, Z. et al. Supramolecular modular assembly of imaging-trackable enzymatic nanomotors. Angew. Chem. Int. Ed. 63, e202401209 (2024).

    Article  CAS  Google Scholar 

  52. Zheng, S. et al. Biocompatible nanomotors as active diagnostic imaging agents for enhanced magnetic resonance imaging of tumor tissues in vivo. Adv. Funct. Mater. 31, 2100936 (2021).

    Article  CAS  Google Scholar 

  53. Vilela, D. et al. Medical imaging for the tracking of micromotors. ACS Nano 12, 1220–1227 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Hortelao, A. C. et al. Swarming behavior and in vivo monitoring of enzymatic nanomotors within the bladder. Sci. Robot. 6, eabd2823 (2021).

    Article  PubMed  Google Scholar 

  55. Wu, Z. et al. A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines in vivo. Sci. Robot. 4, eaax0613 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Simó, C. et al. Urease-powered nanobots for radionuclide bladder cancer therapy. Nat. Nanotechnol. 19, 554–564 (2024). The therapeutic use of enzyme-powered nanomotors with radionuclide payloads in vivo, marking a translational milestone.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chen, S. et al. Dual-source powered nanomotor with integrated functions for cancer photo-theranostics. Biomaterials 288, 121744–121753 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Yan, X. et al. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2, eaaq1155 (2017).

    Article  PubMed  Google Scholar 

  59. Soler, L., Magdanz, V., Fomin, V. M., Sanchez, S. & Schmidt, O. G. Self-propelled micromotors for cleaning polluted water. ACS Nano 7, 9611–9620 (2013). A demonstration of self-propelled micromotors for the efficient oxidation of organic pollutants by improving intermixing in liquids.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Orozco, J. et al. Artificial enzyme-powered microfish for water-quality testing. ACS Nano 7, 818–824 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Villa, K., Parmar, J., Vilela, D. & Sánchez, S. Metal-oxide-based microjets for the simultaneous removal of organic pollutants and heavy metals. ACS Appl. Mater. Interfaces 10, 20478–20486 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Villa, K. et al. Visible-light-driven single-component BiVO4 micromotors with the autonomous ability for capturing microorganisms. ACS Nano 13, 8135–8145 (2019).

    Article  CAS  PubMed  Google Scholar 

  63. Ye, H. et al. Atomic H* mediated fast decontamination of antibiotics by bubble-propelled magnetic iron-manganese oxides core-shell micromotors. Appl. Catal. B 314, 121484 (2022).

    Article  CAS  Google Scholar 

  64. Chen, C., Ding, S. & Wang, J. Materials consideration for the design, fabrication and operation of microscale robots. Nat. Rev. Mater. 9, 159–172 (2024).

    Article  Google Scholar 

  65. Wang, Y. et al. Swarm autonomy: from agent functionalization to machine intelligence. Adv. Mater. 37, 202312956 (2024).

    Google Scholar 

  66. Zhang, Y. & Hess, H. Chemically-powered swimming and diffusion in the microscopic world. Nat. Rev. Chem. 5, 500–510 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Chen, S., Prado-Morales, C., Sánchez-DeAlcázar, D. & Sánchez, S. Enzymatic micro/nanomotors in biomedicine: from single motors to swarms. J. Mater. Chem. B 12, 2711–2719 (2024).

    Article  CAS  PubMed  Google Scholar 

  68. Wang, Q., Yang, S. & Zhang, L. Untethered micro/nanorobots for remote sensing: toward intelligent platform. Nano Micro Lett. 16, 40 (2024).

    Article  Google Scholar 

  69. Dutta, S. et al. Recent developments in metallic degradable micromotors for biomedical and environmental remediation applications. Nano Micro Lett. 16, 1–35 (2023).

    Google Scholar 

  70. Yang, L. et al. Autonomous environment-adaptive microrobot swarm navigation enabled by deep learning-based real-time distribution planning. Nat. Mach. Intell. 4, 480–493 (2022). A breakthrough in microrobot swarm navigation by integrating machine learning for environment-adaptive reconfiguration, thereby connecting computational intelligence to microrobot swarming.

    Article  Google Scholar 

  71. Ghosh, A. et al. Helical nanomachines as mobile viscometers. Adv. Funct. Mater. 28, 1705687 (2018).

    Article  Google Scholar 

  72. Patiño, T., Llacer-Wintle, J., Pujals, S., Albertazzi, L. & Sánchez, S. Unveiling protein corona formation around self-propelled enzyme nanomotors by nanoscopy. Nanoscale 16, 2904–2912 (2023).

    Article  Google Scholar 

  73. Dasgupta, D. et al. Mobile nanobots for prevention of root canal treatment failure. Adv. Healthc. Mater. 11, 2200232 (2022).

    Article  CAS  PubMed Central  Google Scholar 

  74. Dasgupta, D., Pally, D., Saini, D. K., Bhat, R. & Ghosh, A. Nanomotors sense local physicochemical heterogeneities in tumor microenvironments. Angew. Chem. Int. Ed. 59, 23690–23696 (2020).

    Article  CAS  Google Scholar 

  75. Gao, C., Zhou, C., Lin, Z., Yang, M. & He, Q. Surface wettability-directed propulsion of glucose-powered nanoflask motors. ACS Nano 13, 12758–12766 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Simmchen, J. et al. Topographical pathways guide chemical microswimmers. Nat. Commun. 7, 10598 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Blanchard, A. T. et al. Highly polyvalent DNA motors generate 100+ pN of force via autochemophoresis. Nano Lett. 19, 6977–6986 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Ma, X. et al. Enzyme-powered hollow mesoporous Janus nanomotors. Nano Lett. 15, 7043–7050 (2015).

    Article  PubMed  Google Scholar 

  79. Patiño, T. et al. Influence of enzyme quantity and distribution on the self-propulsion of non-Janus urease-powered micromotors. J. Am. Chem. Soc. 140, 7896–7903 (2018).

    Article  PubMed  Google Scholar 

  80. Singh, D. P. et al. Interface-mediated spontaneous symmetry breaking and mutual communication between drops containing chemically active particles. Nat. Commun. 11, 2210 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Venugopalan, P. L. et al. Conformal cytocompatible ferrite coatings facilitate the realization of a nanovoyager in human blood. Nano Lett. 14, 1968–1975 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Venugopalan, P. L., Jain, S., Shivashankar, S. & Ghosh, A. Single coating of zinc ferrite renders magnetic nanomotors therapeutic and stable against agglomeration. Nanoscale 10, 2327–2332 (2018).

    Article  CAS  PubMed  Google Scholar 

  83. Zhang, L. et al. Artificial bacterial flagella: fabrication and magnetic control. Appl. Phys. Lett. 94, 064107 (2009).

    Article  Google Scholar 

  84. Kadiri, V. M. et al. Biocompatible magnetic micro- and nanodevices: fabrication of FePt nanopropellers and cell transfection. Adv. Mater. 32, 2001114 (2020).

    Article  CAS  Google Scholar 

  85. Peter, F. et al. Degradable and biocompatible magnesium zinc structures for nanomedicine: magnetically actuated liposome microcarriers with tunable release. Adv. Funct. Mater. 34, 2314265 (2024).

    Article  CAS  Google Scholar 

  86. Wilson, D., Nolte, R. & van Hest, J. Autonomous movement of platinum-loaded stomatocytes. Nat. Chem. 4, 268–274 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Liang, Z. & Fan, D. Visible light-gated reconfigurable rotary actuation of electric nanomotors. Sci. Adv. 4, eaau0981 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Liang, Z., Teal, D. & Fan, D. Light programmable micro/nanomotors with optically tunable in-phase electric polarization. Nat. Commun. 10, 5275 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Liang, Z., Joh, H., Lian, B., Fan, D. E. & Fan, D. E. Light-stimulated micromotor swarms in an electric field with accurate spatial, temporal, and mode control. Sci. Adv. 9, eadi9932 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang, J. et al. Light-powered, fuel-free oscillation, migration, and reversible manipulation of multiple cargo types by micromotor swarms. ACS Nano 17, 251–262 (2023).

    Article  CAS  PubMed  Google Scholar 

  91. Li, W. et al. Arbitrary construction of versatile NIR-driven microrobots. Adv. Mater. 36, 2402482 (2024).

    Article  CAS  Google Scholar 

  92. Crosby, G. A., Watts, R. J. & Carstens, D. H. W. Inversion of excited states of transition-metal complexes. Science 170, 1195–1196 (1970).

    Article  CAS  PubMed  Google Scholar 

  93. Zhou, J., Liu, Q., Feng, W., Sun, Y. & Li, F. Upconversion luminescent materials: advances and applications. Chem. Rev. 115, 395–465 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Dey, K. K. et al. Micromotors powered by enzyme catalysis. Nano Lett. 15, 8311–8315 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Pantarotto, D., Browne, W. R. & Feringa, B. L. Autonomous propulsion of carbon nanotubes powered by a multienzyme ensemble. Chem. Commun. 44, 1533–1535 (2008).

    Article  Google Scholar 

  96. Somasundar, A. et al. Positive and negative chemotaxis of enzyme-coated liposome motors. Nat. Nanotechnol. 14, 1129–1134 (2019).

    Article  CAS  PubMed  Google Scholar 

  97. Joseph, A. et al. Chemotactic synthetic vesicles: design and applications in blood-brain barrier crossing. Sci. Adv. 3, e1700362 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Agudo-Canalejo, J., Illien, P. & Golestanian, R. Phoresis and enhanced diffusion compete in enzyme chemotaxis. Nano Lett. 18, 2711–2717 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Zhao, X. et al. Substrate-driven chemotactic assembly in an enzyme cascade. Nat. Chem. 10, 311–317 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Arqué, X. et al. Intrinsic enzymatic properties modulate the self-propulsion of micromotors. Nat. Commun. 10, 2826 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Pumm, A. K. et al. A DNA origami rotary ratchet motor. Nature 607, 492–498 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tran, M. P. et al. Genetic encoding and expression of RNA origami cytoskeletons in synthetic cells. Nat. Nanotechnol. 20, 664–671 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yang, L., Yu, J. & Zhang, L. Statistics-based automated control for a swarm of paramagnetic nanoparticles in 2-D space. IEEE Trans. Robot. 36, 254–270 (2020).

    Article  Google Scholar 

  104. Rückner, G. & Kapral, R. Chemically powered nanodimers. Phys. Rev. Lett. 98, 150603 (2007).

    Article  PubMed  Google Scholar 

  105. Thakur, S., Chen, J. X. & Kapral, R. Interaction of a chemically propelled nanomotor with a chemical wave. Angew. Chem. Int. Ed. 50, 10165–10169 (2011).

    Article  CAS  Google Scholar 

  106. De Corato, M. et al. Self-propulsion of active colloids via ion release: theory and experiments. Phys. Rev. Lett. 124, 108001 (2020).

    Article  PubMed  Google Scholar 

  107. Golestanian, R. Anomalous diffusion of symmetric and asymmetric active colloids. Phys. Rev. Lett. 102, 188305 (2009).

    Article  PubMed  Google Scholar 

  108. Liebchen, B., Marenduzzo, D., Pagonabarraga, I. & Cates, M. E. Clustering and pattern formation in chemorepulsive active colloids. Phys. Rev. Lett. 115, 258301 (2015).

    Article  PubMed  Google Scholar 

  109. Das, S. et al. Boundaries can steer active Janus spheres. Nat. Commun. 6, 8999 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Palacios, L. S. et al. Guided accumulation of active particles by topological design of a second-order skin effect. Nat. Commun. 12, 4691 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Saha, S., Ramaswamy, S. & Golestanian, R. Pairing, waltzing and scattering of chemotactic active colloids. New J. Phys. 21, 063006 (2019).

    Article  CAS  Google Scholar 

  112. Meredith, C. H. et al. Predator–prey interactions between droplets driven by non-reciprocal oil exchange. Nat. Chem. 12, 1136–1142 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. Soto, R. & Golestanian, R. Self-assembly of catalytically active colloidal molecules: tailoring activity through surface chemistry. Phys. Rev. Lett. 112, 068301 (2014).

    Article  PubMed  Google Scholar 

  114. Mandal, N. S., Sen, A. & Astumian, R. D. A molecular origin of non-reciprocal interactions between interacting active catalysts. Chem 10, 1147–1159 (2024).

    Article  CAS  Google Scholar 

  115. Tucci, G. et al. Nonreciprocal collective dynamics in a mixture of phoretic Janus colloids. New J. Phys. 26, 073006 (2024).

    Article  CAS  Google Scholar 

  116. Agudo-Canalejo, J. & Golestanian, R. Active phase separation in mixtures of chemically interacting particles. Phys. Rev. Lett. 123, 018101 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Golestanian, R. in Active Matter and Nonequilibrium Statistical Physics: Lecture Notes of the Les Houches Summer School Vol. 112 (eds Tailleur, J. et al.) 230–293 (Oxford Academic, 2022).

  118. Wang, Q. et al. Tracking and navigation of a microswarm under laser speckle contrast imaging for targeted delivery. Sci. Robot. 9, eadh1978 (2024).

    Article  PubMed  Google Scholar 

  119. Jin, D. et al. Swarming self-adhesive microgels enabled aneurysm on-demand embolization in physiological blood flow. Sci. Adv. 9, eadf9278 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ahmed, D. et al. Bioinspired acousto-magnetic microswarm robots with upstream motility. Nat. Mach. Intell. 3, 116–124 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Palacci, J. et al. Artificial rheotaxis. Sci. Adv. 1, e1400214 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Ren, L. et al. Rheotaxis of bimetallic micromotors driven by chemical-acoustic hybrid power. ACS Nano 11, 10591–10598 (2017).

    Article  CAS  PubMed  Google Scholar 

  123. Choi, H., Cho, S. H. & Hahn, S. K. Urease-powered polydopamine nanomotors for intravesical therapy of bladder diseases. ACS Nano 14, 6683–6692 (2020).

    Article  CAS  PubMed  Google Scholar 

  124. Wu, Z. et al. A swarm of slippery micropropellers penetrates the vitreous body of the eye. Sci. Adv. 4, eaat4388 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Xu, C. et al. Magnesium-based micromotors as hydrogen generators for precise rheumatoid arthritis therapy. Nano Lett. 21, 1982–1991 (2021).

    Article  CAS  PubMed  Google Scholar 

  126. Zhang, F. et al. Biohybrid microrobots locally and actively deliver drug-loaded nanoparticles to inhibit the progression of lung metastasis. Sci. Adv. 10, eadn6157 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Arqué, X. et al. Autonomous treatment of bacterial infections in vivo using antimicrobial micro- and nanomotors. ACS Nano 16, 7547–7558 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Ji, X. et al. Multifunctional parachute-like nanomotors for enhanced skin penetration and synergistic antifungal therapy. ACS Nano 15, 14218–14228 (2021).

    Article  CAS  PubMed  Google Scholar 

  129. Dey, K. K. Dynamic coupling at low Reynolds number. Angew. Chem. Int. Ed. 58, 2208–2228 (2019).

    Article  CAS  Google Scholar 

  130. Maiti, A., Koyano, Y., Kitahata, H. & Dey, K. K. Activity-induced diffusion recovery in crowded colloidal suspensions. Phys. Rev. E 109, 054607 (2024).

    Article  CAS  PubMed  Google Scholar 

  131. Pal, M. et al. Maneuverability of magnetic nanomotors inside living cells. Adv. Mater. 30, 1800429 (2018).

    Article  Google Scholar 

  132. Aghakhani, A. et al. High shear rate propulsion of acoustic microrobots in complex biological fluids. Sci. Adv. 8, eabm5126 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Osat, S. & Golestanian, R. Non-reciprocal multifarious self-organization. Nat. Nanotechnol. 18, 79–85 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Manna, R. K., Gentile, K., Shklyaev, O. E., Sen, A. & Balazs, A. C. Self-generated convective flows enhance the rates of chemical reactions. Langmuir 38, 1432–1439 (2022).

    Article  CAS  PubMed  Google Scholar 

  135. Ma, X., Wang, X., Hahn, K. & Sánchez, S. Motion control of urea-powered biocompatible hollow microcapsules. ACS Nano 10, 3597–3605 (2016).

    Article  CAS  PubMed  Google Scholar 

  136. Mehta, P., Lang, A. H. & Schwab, D. J. Landauer in the age of synthetic biology: energy consumption and information processing in biochemical networks. J. Stat. Phys. 162, 1153–1166 (2016).

    Article  Google Scholar 

  137. Jahnke, K. et al. DNA origami signaling units transduce chemical and mechanical signals in synthetic cells. Adv. Funct. Mater. 34, 2301176 (2024).

    Article  CAS  Google Scholar 

  138. Zhang, F. et al. ACE2 receptor-modified algae-based microrobot for removal of SARS-CoV-2 in wastewater. J. Am. Chem. Soc. 143, 12194–12201 (2021).

    Article  CAS  PubMed  Google Scholar 

  139. Yuan, X., Ferrer-Campos, R., Garcés-Pineda, F. A. & Villa, K. Molecular imprinted BiVO4 microswimmers for selective target recognition and removal. Small 19, 2207303 (2023).

    Article  CAS  Google Scholar 

  140. Yuan, X. et al. Self-degradable photoactive micromotors for inactivation of resistant bacteria. Adv. Opt. Mater. 12, 2303137 (2024).

    Article  CAS  Google Scholar 

  141. Guix, M. et al. Superhydrophobic alkanethiol-coated microsubmarines for effective removal of oil. ACS Nano 6, 4445–4451 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Ferrer Campos, R., Bachimanchi, H., Volpe, G. & Villa, K. Bubble-propelled micromotors for ammonia generation. Nanoscale 15, 15785–15793 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ferrer Campos, R. et al. Boosting the efficiency of photoactive rod-shaped nanomotors via magnetic field-induced charge separation. ACS Appl. Mater. Interfaces 16, 30077–30087 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Parmar, J. et al. Reusable and long-lasting active microcleaners for heterogeneous water remediation. Adv. Funct. Mater. 26, 4152–4161 (2016).

    Article  CAS  Google Scholar 

  145. Vilela, D., Guix, M., Parmar, J., Blanco-Blanes, À. & Sánchez, S. Micromotor-in-sponge platform for multicycle large-volume degradation of organic pollutants. Small 18, 2107619 (2022).

    Article  CAS  Google Scholar 

  146. Zhang, S. et al. 3D-printed micrometer-scale wireless magnetic cilia with metachronal programmability. Sci. Adv. 9, eadf9462 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Tottori, S. et al. Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport. Adv. Mater. 24, 811–816 (2012). The demonstration of two-photon laser-printed microrobots.

    Article  CAS  PubMed  Google Scholar 

  148. Hsu, L. Y. et al. Alignment and actuation of liquid crystals via 3D confinement and two-photon laser printing. Sci. Adv. 10, 2597 (2024).

    Article  Google Scholar 

  149. Melde, K. et al. Ultrasound-assisted tissue engineering. Nat. Rev. Bioeng. 2, 486–500 (2024).

    Article  CAS  Google Scholar 

  150. Kriebisch, C. M. E. et al. A roadmap toward the synthesis of life. Chem 11, 102399 (2025).

    Article  CAS  Google Scholar 

  151. Balazs, A. C., Fischer, P. & Sen, A. Intelligent nano/micromotors: using free energy to fabricate organized systems driven far from equilibrium. Acc. Chem. Res. 51, 2979 (2018).

    Article  CAS  PubMed  Google Scholar 

  152. Song, J., Shklyaev, O. E., Sapre, A., Balazs, A. C. & Sen, A. Self-propelling macroscale sheets powered by enzyme pumps. Angew. Chem. Int. Ed. 136, e202311556 (2024).

    Article  Google Scholar 

  153. Gao, W. et al. Artificial micromotors in the mouse’s stomach: a step toward in vivo use of synthetic motors. ACS Nano 9, 117–123 (2015).

    Article  CAS  PubMed  Google Scholar 

  154. Li, J. et al. Enteric micromotor can selectively position and spontaneously propel in the gastrointestinal tract. ACS Nano 10, 9536–9542 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. De Ávila, B. E. F. et al. Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nat. Commun. 8, 272 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Zhang, F. et al. Nanoparticle-modified microrobots for in vivo antibiotic delivery to treat acute bacterial pneumonia. Nat. Mater. 21, 1324–1332 (2022). Biohybrid microrobots for the active delivery of antibiotics in the lungs in vivo, demonstrating notable potential for clinical applications in intensive care units.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Su, L. et al. Modularized microrobot with lock-and-detachable modules for targeted cell delivery in bile duct. Sci. Adv. 9, eadj0883 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Feng, Y. et al. Directed neural stem cells differentiation via signal communication with Ni–Zn micromotors. Adv. Mater. 35, 2301736 (2023).

    Article  CAS  Google Scholar 

  159. Choi, H. et al. Urease-powered nanomotor containing STING agonist for bladder cancer immunotherapy. Nat. Commun. 15, 9934 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Gao, C. et al. Light-driven artificial cell micromotors for degenerative knee osteoarthritis. Adv. Mater. 37, 2416349 (2025).

    Article  CAS  Google Scholar 

  161. Kagan, D. et al. Chemical sensing based on catalytic nanomotors: motion-based detection of trace silver. J. Am. Chem. Soc. 131, 12082–12083 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Campuzano, S. et al. Bacterial isolation by lectin-modified microengines. Nano Lett. 12, 396–401 (2012).

    Article  CAS  PubMed  Google Scholar 

  163. Li, J. et al. Water-driven micromotors for rapid photocatalytic degradation of biological and chemical warfare agents. ACS Nano 8, 11118–11125 (2014).

    Article  CAS  PubMed  Google Scholar 

  164. Gao, L., Giglio, K. M., Nelson, J. L., Sondermann, H. & Travis, A. J. Ferromagnetic nanoparticles with peroxidase-like activity enhance the cleavage of biological macromolecules for biofilm elimination. Nanoscale 6, 2588–2593 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Vilela, D., Parmar, J., Zeng, Y., Zhao, Y. & Sánchez, S. Graphene-based microbots for toxic heavy metal removal and recovery from water. Nano Lett. 16, 2860–2866 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Jurado-Sánchez, B., Pacheco, M., Rojo, J. & Escarpa, A. Magnetocatalytic graphene quantum dots Janus micromotors for bacterial endotoxin detection. Angew. Chem. Int. Ed. 56, 6957–6961 (2017).

    Article  Google Scholar 

  167. Villa, K., Děkanovský, L., Plutnar, J., Kosina, J. & Pumera, M. Swarming of perovskite-like Bi2WO6 microrobots destroy textile fibers under visible light. Adv. Funct. Mater. 30, 2007073 (2020).

    Article  CAS  Google Scholar 

  168. Mou, F. et al. ZnO-based micromotors fueled by CO2: the first example of self-reorientation-induced biomimetic chemotaxis. Natl Sci. Rev. 8, nwab066 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Urso, M., Ussia, M., Novotný, F. & Pumera, M. Trapping and detecting nanoplastics by MXene-derived oxide microrobots. Nat. Commun. 13, 3573(2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Patiño, T. et al. Synthetic DNA-based swimmers driven by enzyme catalysis. J. Am. Chem. Soc. 146, 12664–12671 (2024).

    Article  Google Scholar 

Download references

Acknowledgements

S.S. acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 and Horizon Europe research and innovation programmes (grant agreement numbers 866348, i-NanoSwarms, and 101138723, MucOncoBots, 101189423, OrthoBots) and from ‘la Caixa’ Foundation under the grant agreement LCF/PR/HR21/52410022. A.S. thanks S. Sen for many stimulating discussions. A.S. also acknowledges funding by the National Science Foundation, the Air Force Office of Scientific Research, the Defense Threat Reduction Agency, the Charles E. Kaufman Foundation and the Alfred P. Sloan Foundation. J.T. thanks the funding support from the Hong Kong Research Grants Council (RGC) (C7082-21G). L.Z. thanks funding support from the Hong Kong Research Grants Council RGC (R4015-2, RFS2122-4S03, STG1/E-401/23-N). W.W. thanks the National Natural Science Foundation of China (grant number T2322006). K.V. acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (GA number 101076680; PhotoSwim) and the grant PID2022-136886OA-I00 financed by MCIN/AEI/10.13039/501100011033/ FEDER, UE. H.H. gratefully acknowledges support from NSF grant 2230116 and ARO grant W911NF-22-1-0047. R.G. acknowledges support from the Max Planck School Matter to Life and the MaxSynBio Consortium, which are jointly funded by the Federal Ministry of Education and Research (BMBF) of Germany and the Max Planck Society. A.G. thanks the Wellcome Trust/DBT India Alliance Fellowships/Grants (grant number IA/S/19/2/504655). D.E.F. thanks the support of the National Science Foundation (2219221 and 1930649). S.C. acknowledges the Predoctoral AGAUR-FI Joan Oró grant (2023 FI-1 00654) funded by ‘Secretaria d’Universitats i Recerca del Departament de Recerca i Universitats de la Generalitat de Catalunya’ and by European Social Fund Plus.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ayusman Sen or Samuel Sánchez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Motilal Mathesh and Fei Peng for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Fan, D.E., Fischer, P. et al. A roadmap for next-generation nanomotors. Nat. Nanotechnol. 20, 990–1000 (2025). https://doi.org/10.1038/s41565-025-01962-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41565-025-01962-9

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research