Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nanoengineering of non-aqueous liquid electrolyte solutions for future lithium metal batteries

Abstract

Research and development of non-aqueous electrolyte solutions are essential for practical advancement towards the production of high-energy lithium metal batteries (LMBs). An ideal LMB electrolyte solution should enable highly efficient, uniform and prolonged lithium metal plating and stripping, preserve the electrodes’ electro(chemo)mechanical properties and ensure compatibility with all cell components. However, despite extensive research efforts, scientists have yet to achieve an electrolyte design that meets these requirements simultaneously. Here, by examining the nanoengineering aspects of various non-aqueous electrolyte solution designs, we elucidate the understanding of the nanoscale physicochemical and electrochemical processes taking place in LMBs, which are mainly governed by the thermodynamic and kinetic properties of the electrolyte system. We also explore emerging research directions and propose an accelerated, iterative framework that integrates nanoengineering principles with machine learning, high-throughput computation and experimentation to facilitate the development of next-generation non-aqueous electrolyte solutions for practical LMBs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chronological development of LMBs.
Fig. 2: Interplay between essential electrolyte properties.
Fig. 3: SEI on lithium metal and origin of mossy-like Li deposition.
Fig. 4: Historical evolution of electrolyte concepts to enable efficient Li stripping/plating.
Fig. 5: Characterization techniques for LMBs.
Fig. 6: Iterative process for accelerated electrolyte development.

Similar content being viewed by others

References

  1. Hobold, G. M. et al. Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes. Nat. Energy 6, 951–960 (2021).

    Article  CAS  Google Scholar 

  2. Horstmann, B. et al. Strategies towards enabling lithium metal in batteries: interphases and electrodes. Energy Environ. Sci. 14, 5289–5314 (2021).

    Article  CAS  Google Scholar 

  3. Brandt, K. & Laman, F. C. Reproducibility and reliability of rechargeable lithium/molybdenum disulfide batteries. J. Power Sources 25, 265–276 (1989).

    Article  CAS  Google Scholar 

  4. Fang, C., Wang, X. & Meng, Y. S. Key issues hindering a practical lithium-metal anode. Trends Chem. 1, 152–158 (2019).

    Article  CAS  Google Scholar 

  5. Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).

    Article  CAS  Google Scholar 

  6. Jagger, B. & Pasta, M. Solid electrolyte interphases in lithium metal batteries. Joule 7, 2228–2244 (2023).

    Article  CAS  Google Scholar 

  7. He, X. et al. The passivity of lithium electrodes in liquid electrolytes for secondary batteries. Nat. Rev. Mater. 6, 1036–1052 (2021).

    Article  CAS  Google Scholar 

  8. Lu, D. et al. Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Adv. Energy Mater. 5, 1400993 (2015).

    Article  Google Scholar 

  9. Wang, H. et al. Liquid electrolyte: the nexus of practical lithium metal batteries. Joule 6, 588–616 (2022).

    Article  CAS  Google Scholar 

  10. Boyle, D. T. et al. Correlating kinetics to cyclability reveals thermodynamic origin of lithium anode morphology in liquid electrolytes. J. Am. Chem. Soc. 144, 20717–20725 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Giffin, G. A. The role of concentration in electrolyte solutions for non-aqueous lithium-based batteries. Nat. Commun. 13, 5250 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yu, Z. et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7, 94–106 (2022). Systematic design of bi-ethers to optimize the thermodynamic and kinetic properties of liquid electrolytes.

    Article  CAS  Google Scholar 

  13. Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Choi, I. R. et al. Asymmetric ether solvents for high-rate lithium metal batteries. Nat. Energy 10, 365–379 (2025).

    Article  CAS  Google Scholar 

  15. Zhang, G. et al. A monofluoride ether-based electrolyte solution for fast-charging and low-temperature non-aqueous lithium metal batteries. Nat. Commun. 14, 1081 (2023). Single-solvent mono-ether-based electrolyte enabling efficient Li stripping/plating at high current densities.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang, W., Chen, A., He, P. & Zhou, H. Advancing lithium metal electrode beyond 99.9% coulombic efficiency via super-saturated electrolyte with compressed solvation structure. Nat. Commun. 16, 4229 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu, K. Electrolytes, Interfaces and Interphases (Royal Society of Chemistry, 2023).

  18. Zhou, P., Xiang, Y. & Liu, K. Understanding and applying the donor number of electrolytes in lithium metal batteries. Energy Environ. Sci. 17, 8057–8077 (2024).

    Article  CAS  Google Scholar 

  19. Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010).

    Article  CAS  Google Scholar 

  20. Peljo, P. & Girault, H. H. Electrochemical potential window of battery electrolytes: the HOMO–LUMO misconception. Energy Environ. Mater. 11, 2306–2309 (2018).

    CAS  Google Scholar 

  21. Xu, K., Ding, S. P. & Jow, T. R. Toward reliable values of electrochemical stability limits for electrolytes. J. Electrochem. Soc. 146, 4172–4178 (1999).

    Article  CAS  Google Scholar 

  22. Sethurajan, A. K., Krachkovskiy, S. A., Halalay, I. C., Goward, G. R. & Protas, B. Accurate characterization of ion transport properties in binary symmetric electrolytes using in situ NMR imaging and inverse modeling. J. Phys. Chem. B 119, 12238–12248 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Hou, T. & Monroe, C. W. Composition-dependent thermodynamic and mass-transport characterization of lithium hexafluorophosphate in propylene carbonate. Electrochim. Acta 332, 135085 (2020).

    Article  CAS  Google Scholar 

  24. Wang, A. A., Hou, T., Karanjavala, M. & Monroe, C. W. Shifting-reference concentration cells to refine composition-dependent transport characterization of binary lithium-ion electrolytes. Electrochim. Acta 358, 136688 (2020).

    Article  CAS  Google Scholar 

  25. Diederichsen, K. M., McShane, E. J. & McCloskey, B. D. Promising routes to a high Li+ transference number electrolyte for lithium ion batteries. ACS Energy Lett. 2, 2563–2575 (2017).

    Article  CAS  Google Scholar 

  26. Lorenz, M. et al. Local volume conservation in concentrated electrolytes is governing charge transport in electric fields. J. Phys. Chem. Lett. 13, 8761–8767 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Schammer, M., Horstmann, B. & Latz, A. Theory of transport in highly concentrated electrolytes. J. Electrochem. Soc. 168, 026511 (2021).

    Article  CAS  Google Scholar 

  28. Zugmann, S. et al. Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study. Electrochim. Acta 56, 3926–3933 (2011).

    Article  CAS  Google Scholar 

  29. Petrowsky, M., Frech, R., Suarez, S. N., Jayakody, J. R. P. & Greenbaum, S. Investigation of fundamental transport properties and thermodynamics in diglyme−salt solutions. J. Phys. Chem. B 110, 23012–23021 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Kwabi, D. G. et al. Experimental and computational analysis of the solvent-dependent O2/Li+–O2 redox couple: standard potentials, coupling strength, and implications for lithium–oxygen batteries. Angew. Chem. Int. Ed. 55, 3129–3134 (2016).

    Article  CAS  Google Scholar 

  31. Leverick, G. & Shao-Horn, Y. Controlling electrolyte properties and redox reactions using solvation and implications in battery functions: a mini-review. Adv. Energy Mater. 13, 2204094 (2023).

    Article  CAS  Google Scholar 

  32. Ko, S. et al. Electrode potential influences the reversibility of lithium-metal anodes. Nat. Energy 7, 1217–1224 (2022).

    Article  CAS  Google Scholar 

  33. Wu, Q., McDowell, M. T. & Qi, Y. Effect of the electric double layer (EDL) in multicomponent electrolyte reduction and solid electrolyte interphase (SEI) formation in lithium batteries. J. Am. Chem. Soc. 145, 2473–2484 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Angarita-Gomez, S. & Balbuena, P. B. Solvation vs. surface charge transfer: an interfacial chemistry game drives cation motion. Chem. Commun. 57, 6189–6192 (2021).

    Article  CAS  Google Scholar 

  35. Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Camacho-Forero, L. E., Smith, T. W. & Balbuena, P. B. Effects of high and low salt concentration in electrolytes at lithium-metal anode surfaces. J. Phys. Chem. C 121, 182–194 (2017).

    Article  CAS  Google Scholar 

  37. Sayah, S. et al. How do super concentrated electrolytes push the Li-ion batteries and supercapacitors beyond their thermodynamic and electrochemical limits?. Nano Energy 98, 107336 (2022).

    Article  CAS  Google Scholar 

  38. Dokko, K. et al. Direct evidence for Li ion hopping conduction in highly concentrated sulfolane-based liquid electrolytes. J. Phys. Chem. B 122, 10736–10745 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Raccichini, R., Dibden, J. W., Brew, A., Owen, J. R. & García-Aráez, N. Ion speciation and transport properties of LiTFSI in 1,3-dioxolane solutions: a case study for Li–S battery applications. J. Phys. Chem. B 122, 267–274 (2018).

    Article  CAS  PubMed  Google Scholar 

  40. Chen, Y. et al. Steric effect tuned ion solvation enabling stable cycling of high-voltage lithium metal battery. J. Am. Chem. Soc. 143, 18703–18713 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Lin, Y.-X. et al. Connecting the irreversible capacity loss in Li-ion batteries with the electronic insulating properties of solid electrolyte interphase (SEI) components. J. Power Sources 309, 221–230 (2016).

    Article  CAS  Google Scholar 

  42. Li, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358, 506–510 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, M. et al. Effect of LiFSI concentrations to form thickness- and modulus-controlled SEI layers on lithium metal anodes. J. Phys. Chem. C 122, 9825–9834 (2018).

    Article  CAS  Google Scholar 

  44. Zhang, Z. et al. Capturing the swelling of solid-electrolyte interphase in lithium metal batteries. Science 375, 66–70 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Li, Y. & Qi, Y. Transferable self-consistent charge density functional tight-binding parameters for Li-metal and Li-ions in inorganic compounds and organic solvents. J. Phys. Chem. C 122, 10755–10764 (2018).

    Article  CAS  Google Scholar 

  46. Soto, F. A., Ma, Y., Martinez De La Hoz, J. M., Seminario, J. M. & Balbuena, P. B. Formation and growth mechanisms of solid–electrolyte interphase layers in rechargeable batteries. Chem. Mater. 27, 7990–8000 (2015).

    Article  CAS  Google Scholar 

  47. Single, F., Latz, A. & Horstmann, B. Identifying the mechanism of continued growth of the solid-electrolyte interphase. ChemSusChem 11, 1950–1955 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Von Kolzenberg, L., Latz, A. & Horstmann, B. Solid–electrolyte interphase during battery cycling: theory of growth regimes. ChemSusChem 13, 3901–3910 (2020).

    Article  Google Scholar 

  49. Single, F., Horstmann, B. & Latz, A. Dynamics and morphology of solid electrolyte interphase (SEI). Phys. Chem. Chem. Phys. 18, 17810–17814 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Single, F., Horstmann, B. & Latz, A. Revealing SEI morphology: in-depth analysis of a modeling approach. J. Electrochem. Soc. 164, E3132–E3145 (2017).

    Article  CAS  Google Scholar 

  51. Harris, O. C., Lin, Y., Qi, Y., Leung, K. & Tang, M. H. How transition metals enable electron transfer through the SEI: part I. Experiments and Butler–Volmer modeling. J. Electrochem. Soc. 167, 013502 (2020).

    Article  CAS  Google Scholar 

  52. Menkin, S. et al. Toward an understanding of SEI formation and lithium plating on copper in anode-free batteries. J. Phys. Chem. C 125, 16719–16732 (2021).

    Article  CAS  Google Scholar 

  53. Wang, H. et al. The effect of removing the native passivation film on the electrochemical performance of lithium metal electrodes. J. Power Sources 520, 230817 (2022).

    Article  CAS  Google Scholar 

  54. Kühn, S. P. et al. Back to the basics: advanced understanding of the as-defined solid electrolyte interphase on lithium metal electrodes. J. Power Sources 549, 232118 (2022).

    Article  Google Scholar 

  55. Otto, S.-K. et al. Storage of lithium metal: the role of the native passivation layer for the anode interface resistance in solid state batteries. ACS Appl. Energy Mater. 4, 12798–12807 (2021).

    Article  CAS  Google Scholar 

  56. Yoon, J. S. et al. Thermodynamics, adhesion, and wetting at Li/Cu(-oxide) interfaces: relevance for anode-free lithium-metal batteries. ACS Appl. Mater. Interfaces 16, 18790–18799 (2024).

    Article  CAS  PubMed  Google Scholar 

  57. Aravindan, V., Gnanaraj, J., Madhavi, S. & Liu, H. Lithium-ion conducting electrolyte salts for lithium batteries. Chem. Eur. J. 17, 14326–14346 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Schmitz, R. W. et al. Investigations on novel electrolytes, solvents and SEI additives for use in lithium-ion batteries: systematic electrochemical characterization and detailed analysis by spectroscopic methods. Prog. Solid State Chem. 42, 65–84 (2014).

    Article  CAS  Google Scholar 

  59. Yeddala, M., Rynearson, L. & Lucht, B. L. Modification of carbonate electrolytes for lithium metal electrodes. ACS Energy Lett. 8, 4782–4793 (2023).

    Article  CAS  Google Scholar 

  60. Bai, P., Li, J., Brushett, F. R. & Bazant, M. Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221–3229 (2016).

    Article  CAS  Google Scholar 

  61. Shin, W. & Manthiram, A. A facile potential hold method for fostering an inorganic solid-electrolyte interphase for anode-free lithium-metal batteries. Angew. Chem. 134, e202115909 (2022).

    Article  Google Scholar 

  62. Kwon, Y. et al. Elucidating the role of cathode identity: voltage-dependent reversibility of anode-free batteries. Chem 10, 3159–3183 (2024).

    Article  CAS  Google Scholar 

  63. Fang, C. et al. Pressure-tailored lithium deposition and dissolution in lithium metal batteries. Nat. Energy 6, 987–994 (2021).

    Article  CAS  Google Scholar 

  64. Lei, Y. et al. Recent advances in separator design for lithium metal batteries without dendrite formation: implications for electric vehicles. eTransportation 20, 100330 (2024).

    Article  Google Scholar 

  65. Ishikawa, M., Tasaka, Y., Yoshimoto, N. & Morita, M. Optimization of physicochemical characteristics of a lithium anode interface for high-efficiency cycling: an effect of electrolyte temperature. J. Power Sources 97/98, 262–264 (2001).

    Article  Google Scholar 

  66. Wang, J. et al. Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy. Nat. Energy 4, 664–670 (2019).

    Article  CAS  Google Scholar 

  67. Sheng, S., Sheng, L., Wang, L., Piao, N. & He, X. Thickness variation of lithium metal anode with cycling. J. Power Sources 476, 228749 (2020).

    Article  CAS  Google Scholar 

  68. McBrayer, J. D., Apblett, C. A., Harrison, K. L., Fenton, K. R. & Minteer, S. D. Mechanical studies of the solid electrolyte interphase on anodes in lithium and lithium ion batteries. Nanotechnology 32, 502005 (2021).

    Article  CAS  Google Scholar 

  69. Yuan, S. et al. Revisiting the designing criteria of advanced solid electrolyte interphase on lithium metal anode under practical condition. Nano Energy 83, 105847 (2021).

    Article  CAS  Google Scholar 

  70. Shen, X. et al. The failure of solid electrolyte interphase on Li metal anode: structural uniformity or mechanical strength? Adv. Energy Mater. 10, 1903645 (2020).

    Article  CAS  Google Scholar 

  71. Werres, M. et al. Origin of heterogeneous stripping of lithium in liquid electrolytes. ACS Nano 17, 10218–10228 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gao, Y. et al. Unraveling the mechanical origin of stable solid electrolyte interphase. Joule 5, 1860–1872 (2021).

    Article  CAS  Google Scholar 

  73. Gu, Y. et al. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes. Nat. Commun. 9, 1339 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wang, J. et al. In situ self-assembly of ordered organic/inorganic dual-layered interphase for achieving long-life dendrite-free Li metal anodes in LiFSI-based electrolyte. Adv. Funct. Mater. 31, 2007434 (2021).

    Article  CAS  Google Scholar 

  75. Xu, Y. et al. Theoretical calculation study on the electrochemical properties of lithium halide-based artificial SEI films for lithium metal anodes. Surf. Interfaces 44, 103768 (2024).

    Article  CAS  Google Scholar 

  76. Shi, S. et al. Direct calculation of Li-ion transport in the solid electrolyte interphase. J. Am. Chem. Soc. 134, 15476–15487 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Lu, P. & Harris, S. J. Lithium transport within the solid electrolyte interphase. Electrochem. Commun. 13, 1035–1037 (2011). Investigation of Li+ transport in the SEI via isotope exchange experiments.

    Article  CAS  Google Scholar 

  78. Yu, X. et al. Direct and in situ examination of Li+ transport kinetics in an isotope-labeled solid–electrolyte interphase. Proc. Natl Acad. Sci. USA 122, e2514652122 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Das Goswami, B. R., Jabbari, V., Shahbazian-Yassar, R., Mashayek, F. & Yurkiv, V. Unraveling ion diffusion pathways and energetics in polycrystalline SEI of lithium-based batteries: combined cryo-HRTEM and DFT study. J. Phys. Chem. C 127, 21971–21979 (2023).

    Article  Google Scholar 

  80. Soto, F. A., Marzouk, A., El-Mellouhi, F. & Balbuena, P. B. Understanding ionic diffusion through SEI components for lithium-ion and sodium-ion batteries: insights from first-principles calculations. Chem. Mater. 30, 3315–3322 (2018).

    Article  CAS  Google Scholar 

  81. Xu, Y. et al. Direct in situ measurements of electrical properties of solid-electrolyte interphase on lithium metal anodes. Nat. Energy 8, 1345–1354 (2023). Experimental evidence of the electrical semiconducting properties of the SEI.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Benitez, L. & Seminario, J. M. Electron transport and electrolyte reduction in the solid-electrolyte interphase of rechargeable lithium ion batteries with silicon anodes. J. Phys. Chem. C 120, 17978–17988 (2016).

    Article  CAS  Google Scholar 

  83. Derosa, P. A. & Seminario, J. M. Electron transport through single molecules: scattering treatment using density functional and Green function theories. J. Phys. Chem. B 105, 471–481 (2001).

    Article  CAS  Google Scholar 

  84. Köbbing, L., Latz, A. & Horstmann, B. Growth of the solid-electrolyte interphase: electron diffusion versus solvent diffusion. J. Power Sources 561, 232651 (2023).

    Article  Google Scholar 

  85. Feng, M., Pan, J. & Qi, Y. Impact of electronic properties of grain boundaries on the solid electrolyte interphases (SEIs) in Li-ion batteries. J. Phys. Chem. C 125, 15821–15829 (2021).

    Article  CAS  Google Scholar 

  86. Fang, C. et al. Quantifying inactive lithium in lithium metal batteries. Nature 572, 511–515 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Steiger, J., Kramer, D. & Mönig, R. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium. J. Power Sources 261, 112–119 (2014).

    Article  CAS  Google Scholar 

  88. Xu, Y. et al. Current density regulated atomic to nanoscale process on Li deposition and solid electrolyte interphase revealed by cryogenic transmission electron microscopy. ACS Nano 14, 8766–8775 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Boyle, D. T. et al. Resolving current-dependent regimes of electroplating mechanisms for fast charging lithium metal anodes. Nano Lett. 22, 8224–8232 (2022).

    Article  CAS  PubMed  Google Scholar 

  90. He, M., Guo, R., Hobold, G. M., Gao, H. & Gallant, B. M. The intrinsic behavior of lithium fluoride in solid electrolyte interphases on lithium. Proc. Natl Acad. Sci. USA 117, 73–79 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Zhang, X.-Q., Cheng, X.-B., Chen, X., Yan, C. & Zhang, Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 27, 1605989 (2017).

    Article  Google Scholar 

  92. Dhattarwal, H. S., Kuo, J.-L. & Kashyap, H. K. Mechanistic insight on the stability of ether and fluorinated ether solvent-based lithium bis(fluoromethanesulfonyl) electrolytes near Li metal surface. J. Phys. Chem. C 126, 8953–8963 (2022).

    Article  CAS  Google Scholar 

  93. Perez-Beltran, S., Kuai, D. & Balbuena, P. B. SEI formation and lithium-ion electrodeposition dynamics in lithium metal batteries via first-principles kinetic Monte Carlo modeling. ACS Energy Lett. 9, 5268–5278 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tan, Y. et al. Lithium fluoride in electrolyte for stable and safe lithium-metal batteries. Adv. Mater. 33, 2102134 (2021).

    Article  CAS  Google Scholar 

  95. Zeng, H. et al. Beyond LiF: tailoring Li2O-dominated solid electrolyte interphase for stable lithium metal batteries. ACS Nano 18, 1969–1981 (2024).

    Article  CAS  PubMed  Google Scholar 

  96. Hobold, G. M., Wang, C., Steinberg, K., Li, Y. & Gallant, B. M. High lithium oxide prevalence in the lithium solid–electrolyte interphase for high Coulombic efficiency. Nat. Energy 9, 580–591 (2024). Correlation of Li2O prevalence in the SEI and the CE in lithium metal batteries.

    Article  CAS  Google Scholar 

  97. Gao, K., Sun, L., Wang, K. & Zhang, Y. Non-aqueous liquid electrolytes in lithium metal battery: components and modification. Mater. Today Energy 37, 101413 (2023).

    Article  CAS  Google Scholar 

  98. Borodin, O., Self, J., Persson, K. A., Wang, C. & Xu, K. Uncharted waters: super-concentrated electrolytes. Joule 4, 69–100 (2020).

    Article  CAS  Google Scholar 

  99. Jiang, G. et al. Perspective on high-concentration electrolytes for lithium metal batteries. Small Struct. 2, 2000122 (2021).

    Article  CAS  Google Scholar 

  100. Ren, X. et al. Enabling high-voltage lithium-metal batteries under practical conditions. Joule 3, 1662–1676 (2019).

    Article  CAS  Google Scholar 

  101. Ren, X. et al. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem 4, 1877–1892 (2018). Introduction of LHCEs as promising electrolyte concept for lithium metal batteries.

    Article  CAS  Google Scholar 

  102. Zheng, J. et al. Extremely stable sodium metal batteries enabled by localized high-concentration electrolytes. ACS Energy Lett. 3, 315–321 (2018).

    Article  CAS  Google Scholar 

  103. Efaw, C. M. et al. Localized high-concentration electrolytes get more localized through micelle-like structures. Nat. Mater. 22, 1531–1539 (2023).

    Article  CAS  PubMed  Google Scholar 

  104. Verma, A., Schulze, M. C. & Colclasure, A. Micelle-like bulk structure of localized high-concentration electrolytes. Joule 8, 10–12 (2024).

    Article  Google Scholar 

  105. Cao, X., Jia, H., Xu, W. & Zhang, J.-G. Review—Localized high-concentration electrolytes for lithium batteries. J. Electrochem. Soc. 168, 010522 (2021).

    Article  CAS  Google Scholar 

  106. Chen, J. et al. Design of localized high-concentration electrolytes via donor number. ACS Energy Lett. 8, 1723–1734 (2023).

    Article  CAS  Google Scholar 

  107. Ren, F. et al. Solvent–diluent interaction-mediated solvation structure of localized high-concentration electrolytes. ACS Appl. Mater. Interfaces 14, 4211–4219 (2022).

    Article  CAS  PubMed  Google Scholar 

  108. Chen, S. et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 30, 1706102 (2018).

    Article  Google Scholar 

  109. Zhang, X. et al. Advanced electrolytes for fast-charging high-voltage lithium-ion batteries in wide-temperature range. Adv. Energy Mater. 10, 2000368 (2020).

    Article  CAS  Google Scholar 

  110. Jia, H. et al. High-performance silicon anodes enabled by nonflammable localized high-concentration electrolytes. Adv. Energy Mater. 9, 1900784 (2019).

    Article  Google Scholar 

  111. Ahmed, R. A. et al. Enhanced electrochemical performance of disordered rocksalt cathodes in a localized high-concentration electrolyte. Adv. Energy Mater. 14, 2400722 (2024).

    Article  CAS  Google Scholar 

  112. Cao, X. et al. Optimization of fluorinated orthoformate based electrolytes for practical high-voltage lithium metal batteries. Energy Storage Mater. 34, 76–84 (2021).

    Article  Google Scholar 

  113. Cao, X. Effects of fluorinated solvents on electrolyte solvation structures and electrode/electrolyte interphases for lithium metal batteries. Proc. Natl Acad. Sci. USA 118, e2020357118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Niu, C. et al. Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries. Nat. Energy 6, 723–732 (2021).

    Article  CAS  Google Scholar 

  115. Perez Beltran, S., Cao, X., Zhang, J.-G., El-Khoury, P. Z. & Balbuena, P. B. Influence of diluent concentration in localized high concentration electrolytes: elucidation of hidden diluent–Li + interactions and Li + transport mechanism. J. Mater. Chem. A 9, 17459–17473 (2021).

    Article  CAS  Google Scholar 

  116. Liu, Y. et al. Regulating electrolyte solvation structures via diluent–solvent interactions for safe high-voltage lithium metal batteries. Small 20, 2311812 (2024).

    Article  CAS  Google Scholar 

  117. Zhao, Y. et al. Electrolyte engineering for highly inorganic solid electrolyte interphase in high-performance lithium metal batteries. Chem 9, 682–697 (2023).

    Article  CAS  Google Scholar 

  118. Shi, J. et al. An amphiphilic molecule-regulated core–shell-solvation electrolyte for Li-metal batteries at ultra-low temperature. Angew. Chem. Int. Ed. 62, e202218151 (2023).

    Article  CAS  Google Scholar 

  119. Kim, S. et al. Wide-temperature-range operation of lithium-metal batteries using partially and weakly solvating liquid electrolytes. Energy Environ. Sci. 16, 5108–5122 (2023).

    Article  CAS  Google Scholar 

  120. Tran, T. et al. Enhancing cycling stability of lithium metal batteries by a bifunctional fluorinated ether. Adv. Funct. Mater. 34, 2407012 (2024).

    Article  CAS  Google Scholar 

  121. Chen, S. et al. High-efficiency lithium metal batteries with fire-retardant electrolytes. Joule 2, 1548–1558 (2018).

    Article  CAS  Google Scholar 

  122. Cao, N. et al. Designing ionic liquid electrolytes for a rigid and Li+-conductive solid electrolyte interface in high performance lithium metal batteries. Chem. Phys. Lett. 866, 141959 (2025).

    Article  CAS  Google Scholar 

  123. Hai, F. et al. A low-cost, fluorine-free localized highly concentrated electrolyte toward ultra-high loading lithium metal batteries. Adv. Energy Mater. 14, 2304253 (2024).

    Article  CAS  Google Scholar 

  124. Yuan, Z., Chen, A., Liao, J., Song, L. & Zhou, X. Recent advances in multifunctional generalized local high-concentration electrolytes for high-efficiency alkali metal batteries. Nano Energy 119, 109088 (2024).

    Article  CAS  Google Scholar 

  125. Li, M. et al. Acetonitrile-based local high-concentration electrolytes for advanced lithium metal batteries. Adv. Mater. 36, 2404271 (2024).

    Article  CAS  Google Scholar 

  126. Jie, Y. et al. Towards long-life 500 Wh kg−1 lithium metal pouch cells via compact ion-pair aggregate electrolytes. Nat. Energy 9, 987–998 (2024).

    Article  CAS  Google Scholar 

  127. Kim, S. C. et al. High-entropy electrolytes for practical lithium metal batteries. Nat. Energy 8, 814–826 (2023).

    Article  CAS  Google Scholar 

  128. Li, Z. et al. Critical review of fluorinated electrolytes for high-performance lithium metal batteries. Adv. Funct. Mater. 33, 2300502 (2023).

    Article  CAS  Google Scholar 

  129. Wichmann, L. et al. Design of fluorine-free weakly coordinating electrolyte solvents with enhanced oxidative stability. Angew. Chem. Int. Ed. 64, e202506826 (2025).

  130. Yu, Z. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 5, 526–533 (2020).

    Article  CAS  Google Scholar 

  131. Zhang, X. et al. Li+(ionophore) nanoclusters engineered aqueous/non-aqueous biphasic electrolyte solutions for high-potential lithium-based batteries. Nat. Nanotechnol. 20, 798–806 (2025).

    Article  CAS  PubMed  Google Scholar 

  132. Vu, M. C. et al. Low melting alkali-based molten salt electrolytes for solvent-free lithium-metal batteries. Matter 6, 4357–4375 (2023). Report of low melting FSI-based molten salt electrolyte with high oxidative stability, enabling high Coulombic efficiencies at high rates.

    Article  CAS  Google Scholar 

  133. Xue, W. et al. FSI-inspired solvent and ‘full fluorosulfonyl’ electrolyte for 4 V class lithium-metal batteries. Energy Environ. Sci. 13, 212–220 (2020). Introduction of full fluorosulfonyl electrolytes for lithium metal batteries.

    Article  CAS  Google Scholar 

  134. Xue, W. et al. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat. Energy 6, 495–505 (2021).

    Article  CAS  Google Scholar 

  135. Rustomji, C. S. et al. Liquefied gas electrolytes for electrochemical energy storage devices. Science 356, eaal4263 (2017). Report of liquefied gas electrolytes enabling efficient Li plating/stripping.

    Article  PubMed  Google Scholar 

  136. Yang, Y. et al. High-efficiency lithium-metal anode enabled by liquefied gas electrolytes. Joule 3, 1986–2000 (2019).

    Article  CAS  Google Scholar 

  137. Louli, A. J. et al. Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nat. Energy 5, 693–702 (2020).

    Article  CAS  Google Scholar 

  138. Weber, R. et al. Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat. Energy 4, 683–689 (2019).

    Article  CAS  Google Scholar 

  139. Qiu, F. et al. A concentrated ternary-salts electrolyte for high reversible Li metal battery with slight excess Li. Adv. Energy Mater. 9, 1803372 (2019).

    Article  Google Scholar 

  140. Kang, D. W., Moon, J., Choi, H.-Y., Shin, H.-C. & Kim, B. G. Stable cycling and uniform lithium deposition in anode-free lithium-metal batteries enabled by a high-concentration dual-salt electrolyte with high LiNO3 content. J. Power Sources 490, 229504 (2021).

    Article  CAS  Google Scholar 

  141. Stuckenberg, S. et al. Influence of LiNO3 on the lithium metal deposition behavior in carbonate-based liquid electrolytes and on the electrochemical performance in zero-excess lithium metal batteries. Small 20, 2305203 (2024).

    Article  CAS  Google Scholar 

  142. Agostini, M., Scrosati, B. & Hassoun, J. An advanced lithium-ion sulfur battery for high energy storage. Adv. Energy Mater. 5, 1500481 (2015).

    Article  Google Scholar 

  143. Ma, Q. et al. Improved cycling stability of lithium-metal anode with concentrated electrolytes based on lithium (fluorosulfonyl)(trifluoromethanesulfonyl)imide. ChemElectroChem 3, 531–536 (2016).

    Article  CAS  Google Scholar 

  144. Weintz, D., Kühn, S. P., Winter, M. & Cekic-Laskovic, I. Tailoring the preformed solid electrolyte interphase in lithium metal batteries: impact of fluoroethylene carbonate. ACS Appl. Mater. Interfaces 15, 53526–53532 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Xue, T. et al. Tailoring fluorine-rich solid electrolyte interphase to boost high efficiency and long cycling stability of lithium metal batteries. Sci. China Chem. 66, 2121–2129 (2023).

    Article  CAS  Google Scholar 

  146. Ding, F. et al. Effects of cesium cations in lithium deposition via self-healing electrostatic shield mechanism. J. Phys. Chem. C 118, 4043–4049 (2014).

    Article  CAS  Google Scholar 

  147. Ding, F. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Frith, J. T., Lacey, M. J. & Ulissi, U. A non-academic perspective on the future of lithium-based batteries. Nat. Commun. 14, 420 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Adams, B. D., Zheng, J., Ren, X., Xu, W. & Zhang, J. Accurate determination of Coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 8, 1702097 (2018).

    Article  Google Scholar 

  150. Single, F., Horstmann, B. & Latz, A. Theory of impedance spectroscopy for lithium batteries. J. Phys. Chem. C 123, 27327–27343 (2019).

    Article  CAS  Google Scholar 

  151. Stolz, L., Winter, M. & Kasnatscheew, J. Practical relevance of charge transfer resistance at the Li metal electrode|electrolyte interface in batteries?. J. Solid State Electrochem. 29, 4181–4186 (2025).

    Article  CAS  Google Scholar 

  152. Meddings, N. et al. Application of electrochemical impedance spectroscopy to commercial Li-ion cells: a review. J. Power Sources 480, 228742 (2020).

    Article  CAS  Google Scholar 

  153. Meunier, V., Leal De Souza, M., Morcrette, M. & Grimaud, A. Design of workflows for crosstalk detection and lifetime deviation onset in Li-ion batteries. Joule 7, 42–56 (2023).

    Article  CAS  Google Scholar 

  154. Meng, W. et al. The progress of in situ technology for lithium metal batteries. Mater. Chem. Front. 8, 700–714 (2024).

    Article  CAS  Google Scholar 

  155. Scurtu, R.-G. et al. From small batteries to big claims. Nat. Nanotechnol. 20, 970–976 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Xu, Y. et al. Atomic to nanoscale origin of vinylene carbonate enhanced cycling stability of lithium metal anode revealed by cryo-transmission electron microscopy. Nano Lett. 20, 418–425 (2020).

    Article  CAS  PubMed  Google Scholar 

  157. Cao, X. et al. Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy 4, 796–805 (2019).

    Article  CAS  Google Scholar 

  158. Chen, W. et al. Formation and impact of nanoscopic oriented phase domains in electrochemical crystalline electrodes. Nat. Mater. 22, 92–99 (2023).

    Article  PubMed  Google Scholar 

  159. Ji, P., Lei, X. & Su, D. In situ transmission electron microscopy methods for lithium-ion batteries. Small Methods 8, 2301539 (2024).

    Article  CAS  Google Scholar 

  160. Zhang, Z. et al. Characterizing batteries by in situ electrochemical atomic force microscopy: a critical review. Adv. Energy Mater. 11, 2101518 (2021).

    Article  CAS  Google Scholar 

  161. Wolff, B. & Hausen, F. Mechanical evolution of solid electrolyte interphase on metallic lithium studied by in situ atomic force microscopy. J. Electrochem. Soc. 170, 010534 (2023).

    Article  CAS  Google Scholar 

  162. Tan, S. et al. Evolution and interplay of lithium metal interphase components revealed by experimental and theoretical studies. J. Am. Chem. Soc. 146, 11711–11718 (2024).

    Article  CAS  PubMed  Google Scholar 

  163. Ma, C., Xu, F. & Song, T. Dual-layered interfacial evolution of lithium metal anode: SEI analysis via TOF-SIMS technology. ACS Appl. Mater. Interfaces 14, 20197–20207 (2022).

    Article  CAS  PubMed  Google Scholar 

  164. Markevich, E., Salitra, G., Chesneau, F., Schmidt, M. & Aurbach, D. Very stable lithium metal stripping–plating at a high rate and high areal capacity in fluoroethylene carbonate-based organic electrolyte solution. ACS Energy Lett. 2, 1321–1326 (2017).

    Article  CAS  Google Scholar 

  165. Schmitz, R. et al. SEI investigations on copper electrodes after lithium plating with Raman spectroscopy and mass spectrometry. J. Power Sources 233, 110–114 (2013).

    Article  CAS  Google Scholar 

  166. Hope, M. A. et al. Selective NMR observation of the SEI–metal interface by dynamic nuclear polarisation from lithium metal. Nat. Commun. 11, 2224 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hsieh, Y.-C. et al. Quantification of dead lithium via in situ nuclear magnetic resonance spectroscopy. Cell Rep. Phys. Sci. 1, 100139 (2020).

    Article  CAS  Google Scholar 

  168. Golozar, M. et al. In situ observation of solid electrolyte interphase evolution in a lithium metal battery. Commun. Chem. 2, 131 (2019).

    Article  CAS  Google Scholar 

  169. Zachman, M. J., Tu, Z., Choudhury, S., Archer, L. A. & Kourkoutis, L. F. Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries. Nature 560, 345–349 (2018).

    Article  CAS  PubMed  Google Scholar 

  170. He, X., Larson, J. M., Bechtel, H. A. & Kostecki, R. In situ infrared nanospectroscopy of the local processes at the Li/polymer electrolyte interface. Nat. Commun. 13, 1398 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Zhang, H., Shen, C., Huang, Y. & Liu, Z. Spontaneously formation of SEI layers on lithium metal from LiFSI/DME and LiTFSI/DME electrolytes. Appl. Surf. Sci. 537, 147983 (2021).

    Article  CAS  Google Scholar 

  172. Perez Beltran, S. & Balbuena, P. B. SEI formation mechanisms and Li+ dissolution in lithium metal anodes: impact of the electrolyte composition and the electrolyte-to-anode ratio. J. Power Sources 551, 232203 (2022).

    Article  CAS  Google Scholar 

  173. Wagner-Henke, J. et al. Knowledge-driven design of solid-electrolyte interphases on lithium metal via multiscale modelling. Nat. Commun. 14, 6823 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Pohlmann, S. Metrics and methods for moving from research to innovation in energy storage. Nat. Commun. 13, 1538 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Benayad, A. et al. High-throughput experimentation and computational freeway lanes for accelerated battery electrolyte and interface development research. Adv. Energy Mater. 12, 2102678 (2022).

    Article  CAS  Google Scholar 

  176. Ward, L. et al. Principles of the Battery Data Genome. Joule 6, 2253–2271 (2022).

    Article  CAS  Google Scholar 

  177. Qu, X. et al. The Electrolyte Genome project: a big data approach in battery materials discovery. Comput. Mater. Sci. 103, 56–67 (2015).

    Article  CAS  Google Scholar 

  178. Tagade, P. M. et al. Attribute driven inverse materials design using deep learning Bayesian framework. npj Comput. Mater. 5, 127 (2019).

    Article  Google Scholar 

  179. Barter, D. et al. Predictive stochastic analysis of massive filter-based electrochemical reaction networks. Digit. Discov. 2, 123–137 (2023).

    Article  CAS  Google Scholar 

  180. Gao, Y.-C. et al. Data-driven insight into the reductive stability of ion–solvent complexes in lithium battery electrolytes. J. Am. Chem. Soc. 145, 23764–23770 (2023).

    Article  CAS  PubMed  Google Scholar 

  181. Yan, P. et al. Non-aqueous battery electrolytes: high-throughput experimentation and machine learning-aided optimization of ionic conductivity. J. Mater. Chem. A 12, 19123–19136 (2024).

    Article  CAS  Google Scholar 

  182. Dave, A. et al. Autonomous optimization of non-aqueous Li-ion battery electrolytes via robotic experimentation and machine learning coupling. Nat. Commun. 13, 5454 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Flores, E. et al. Learning the laws of lithium-ion transport in electrolytes using symbolic regression. Digit. Discov. 1, 440–447 (2022).

    Article  CAS  Google Scholar 

  184. Lewis, G. N. & Keyes, F. G. The potential of the lithium electrode. J. Am. Chem. Soc. 35, 340–344 (1913).

    Article  CAS  Google Scholar 

  185. Harris, W. S. Electrochemical Studies in Cyclic Esters. PhD thesis, Univ. California, Berkeley (1958). Demonstration of reversible electrochemical Li deposition and dissolution.

  186. Greatbatch, W. et al. The solid-state lithium battery: a new improved chemical power source for implantable cardiac pacemakers. IEEE Trans. Biomed. Eng BME-18, 317–324 (1971).

    Article  Google Scholar 

  187. Peled, E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J. Electrochem. Soc. 126, 2047–2051 (1979). Proposal of the SEI model.

    Article  CAS  Google Scholar 

  188. Scarr, R. F. Kinetics of the solid lithium electrode in propylene carbonate. J. Electrochem. Soc. 117, 295–298 (1970).

    Article  CAS  Google Scholar 

  189. Winter, M., Barnett, B. & Xu, K. Before Li ion batteries. Chem. Rev. 118, 11433–11456 (2018).

    Article  CAS  PubMed  Google Scholar 

  190. Selim, R. & Bro, P. Some observations on rechargeable lithium electrodes in a propylene carbonate electrolyte. J. Electrochem. Soc. 121, 1457–1459 (1974).

    Article  CAS  Google Scholar 

  191. Rauh, R. D. & Brummer, S. B. The effect of additives on lithium cycling in propylene carbonate. Electrochim. Acta 22, 75–83 (1977).

    Article  CAS  Google Scholar 

  192. Koch, V. R. & Young, J. H. The stability of the secondary lithium electrode in tetrahydrofuran-based electrolytes. J. Electrochem. Soc. 125, 1371–1377 (1978).

    Article  CAS  Google Scholar 

  193. Koch, V. R. & Young, J. H. 2-Methyltetrahydrofuran–lithium hexafluoroarsenate: a superior electrolyte for the secondary lithium electrode. Science 204, 499–501 (1979).

    Article  CAS  PubMed  Google Scholar 

  194. Koch, V. R., Goldman, J. L., Mattos, C. J. & Mulvaney, M. Specular lithium deposits from lithium hexafluoroarsenate/diethyl ether electrolytes. J. Electrochem. Soc. 129, 1–4 (1982).

    Article  CAS  Google Scholar 

  195. Ding, F. et al. Effects of carbonate solvents and lithium salts on morphology and Coulombic efficiency of lithium electrode. J. Electrochem. Soc. 160, A1894–A1901 (2013).

    Article  CAS  Google Scholar 

  196. Miao, R. et al. Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility. J. Power Sources 271, 291–297 (2014).

    Article  CAS  Google Scholar 

  197. Fan, X. et al. Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4, 174–185 (2018).

    Article  CAS  Google Scholar 

  198. Fan, X. et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol. 13, 715–722 (2018).

    Article  CAS  PubMed  Google Scholar 

  199. Zhao, Y., Zhou, T., Mensi, M., Choi, J. W. & Coskun, A. Electrolyte engineering via ether solvent fluorination for developing stable non-aqueous lithium metal batteries. Nat. Commun. 14, 299 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Li, C. et al. Developing diluted low-concentration electrolyte with a high anion-to-solvent ratio for high-voltage lithium metal batteries. J. Mater. Chem. A 12, 8236–8243 (2024).

    Article  CAS  Google Scholar 

  201. Morita, M., Asai, Y., Yoshimoto, N. & Ishikawa, M. A Raman spectroscopic study of organic electrolyte solutions based on binary solvent systems of ethylene carbonate with low viscosity solvents which dissolve different lithium salts. J. Chem. Soc. Faraday Trans. 94, 3451–3456 (1998).

    Article  CAS  Google Scholar 

  202. Qian, K., Winans, R. E. & Li, T. Insights into the nanostructure, solvation, and dynamics of liquid electrolytes through small-angle X-ray scattering. Adv. Energy Mater. 11, 2002821 (2021).

    Article  CAS  Google Scholar 

  203. Leifer, N., Aurbach, D. & Greenbaum, S. G. NMR studies of lithium and sodium battery electrolytes. Prog. Nucl. Magn. Reson. Spectrosc. 142/143, 1–54 (2024).

    Article  PubMed  Google Scholar 

  204. Kim, T. et al. Applications of voltammetry in lithium ion battery research. J. Electrochem. Sci. Technol. 11, 14–25 (2020).

    Article  CAS  Google Scholar 

  205. Hess, S., Wohlfahrt-Mehrens, M. & Wachtler, M. Flammability of Li-ion battery electrolytes: flash point and self-extinguishing time measurements. J. Electrochem. Soc. 162, A3084–A3097 (2015).

    Article  CAS  Google Scholar 

  206. Hellweg, L., Beuse, T., Winter, M. & Börner, M. Influence of lithium metal deposition on thermal stability: combined DSC and morphology analysis of cyclic aged lithium metal batteries. J. Electrochem. Soc. 170, 040530 (2023).

    Article  CAS  Google Scholar 

  207. Arbizzani, C., Gabrielli, G. & Mastragostino, M. Thermal stability and flammability of electrolytes for lithium-ion batteries. J. Power Sources 196, 4801–4805 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This Review is the result of a concerted approach within the LILLINT II research project, jointly funded by the US Department of Energy (DOE) and the German Federal Ministry of Research, Technology and Space (BMFTR). A.S. and R.K. acknowledge the financial support of the Assistant Secretary for Energy Efficiency and Renewable Energy, Vehicle Technologies Office (VTO), under the Advanced Battery Materials Research (BMR) Program, of the US DOE under contract DE-AC02-05CH11231. R.A., C.-C.S., X.L. and K.A. acknowledge the US DOE, VTO. Argonne National Laboratory is operated by the DOE Office of Science by UChicago Argonne, LLC, under contract DE-AC02-06CH11357. P.B.B. and J.M.S. acknowledge the US DOE through the US–Germany Cooperation on Energy Storage under contract DE-AC02-05CH11357. Computational resources from the Texas A&M University High Performance Research Computing are gratefully acknowledged. The work performed at Pacific Northwest National Laboratory (PNNL) was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, VTO, US DOE and the Advanced BMR Program and the US–Germany Cooperation on Energy Storage with contracts DE-LC-000L072 (C.W.) and DE-AC05-76RL01830 (W.X.). Y.S.-H., C.O.P.-R. and D.W. acknowledge the financial support of the Assistant Secretary for Energy Efficiency and Renewable Energy, VTO, under the Advanced BMR Program of the US DOE under contract DE-AC02-06CH11357, subcontract 9F-60231. J.L. and F.S. thank the National Science Foundation for support under grant 2239690. D.C. and F.S. acknowledge the Assistant Secretary for Energy Efficiency and Renewable Energy, VTO, US DOE through the US–Germany Cooperation on Energy Storage under contract DE-AC02-05CH11357. A.U. and U.K. acknowledge the BMFTR in the framework of LILLINT (03XP0511C). Z.L., D.B., M.Werres., B.H. and A.L. acknowledge financial support within the LILLINT II project (03XP0511E). S.W.-M. and B.v.H. acknowledge financial support within the LILLINT II project (03XP0511D). F.H., R.-A.E, S.B., E.F., I.C.-L., D.W. and M.Winter. acknowledge financial support within the LILLINT II project (13XP0511B).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rachid Amine, Arnulf Latz, Robert Kostecki or Isidora Cekic-Laskovic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Jianan Wang and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weintz, D., Werres, M., Horstmann, B. et al. Nanoengineering of non-aqueous liquid electrolyte solutions for future lithium metal batteries. Nat. Nanotechnol. (2026). https://doi.org/10.1038/s41565-025-02110-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41565-025-02110-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing