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High-power coherent optical transmitters with high-speed controllability 
are in demand for a number of cutting-edge applications, including 
intersatellite communications and deep-space optical communications. 
The conventional transmitters used in these applications require many 
bulky optical components besides their semiconductor laser sources, such 
as fibre-optical amplifiers, external phase modulators, optical fibres and 
beam-collimation lenses, which are obstacles in achieving compact and 
efficient systems. Here we propose and experimentally demonstrate compact 
coherent optical transmitters based on frequency-modulated photonic-crystal 
surface-emitting lasers (PCSELs) towards achieving long-distance free-space 
optical (FSO) communications. We design two-section PCSELs that incorporate 
two photonic crystals with slightly different band-edge resonant frequencies, 
and we realize watt-class frequency modulation with suppressed amplitude 
modulation via anti-phase current injection into the two sections. Using the 
above two-section PCSELs as coherent optical transmitters, we demonstrate 
fibre-amplifier-free FSO communications with Gbps-class bandwidth, even 
when the laser power is attenuated by >80 dB. Our work opens avenues toward 
the realization of one-chip coherent optical transmitters whose volume and 
weight are several orders of magnitude smaller than conventional bulky 
systems for a wide variety of coherent free-space laser applications.

Single-mode semiconductor lasers are used for various applications that 
require optical coherence, including optical communications and opti-
cal metrology1–4. Recently, the range of applications for coherent semi-
conductor lasers has expanded further to include terrestrial free-space 
optical (FSO) communications and intersatellite optical communica-
tions between low Earth orbits (LEOs) and/or geostationary Earth orbits 
(GEOs)5–8. In these emerging applications, both laser monochromaticity 
and high-power (greater than watt-level) operation are required, and 

coherent signal generation using techniques such as frequency modu-
lation (FM) and phase modulation (PM) are also demanded to enable 
detection with high sensitivity for long-distance communications. Con-
ventional single-mode semiconductor lasers, however, cannot afford 
such high output power while maintaining single-mode operation, and 
they typically use an external phase modulator to generate FM or PM sig-
nals. Accordingly, conventional high-power coherent transmission sys-
tems require a number of bulky optical components, such as fibre-optical 
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with slightly different lattice constants (a = a0 ± Δa/2, a0 = 276 nm, 
Δa/a0 = 8 × 10−5) are introduced inside the current injection region 
(diameter of 500 μm), whereby a small difference in the band-edge fre-
quency (Δf12 = 26 GHz) is introduced between the two sections (PC1 and 
PC2). The top-side electrodes above the two sections are also divided to 
enable the injection of different amounts of current (I1, I2). The detailed 
structures of the PCSEL and double-lattice photonic crystal are pro-
vided in Supplementary Section 1. Figure 2b presents a schematic of 
the band-edge frequency distribution and calculated photon distribu-
tions inside the device (the numerical simulation method is detailed 
in Supplementary Section 2). By appropriately designing the coupling 
coefficients of the double-lattice photonic crystal, the light can be 
distributed in both sections, even when the band-edge frequency dif-
ference between the two PCs exists (Supplementary Section 3 provides 
details). When the injection current of PC1 becomes larger than that of 
PC2, the photon density inside PC1 increases, which induces a blueshift 
of the lasing frequency. On the other hand, when the injection current 
of PC2 becomes larger than that of PC1, the photon density inside PC2 
increases, which induces a redshift of the lasing frequency. Therefore, 
by injecting anti-phase radiofrequency (RF) current with the same 
amount of bias current into the two sections as shown in Fig. 2c, the 
photon density of each section can be temporally modulated and the 
lasing frequency can be modulated in proportion to their difference. 
Moreover, as the sum of the injection current into the two sections is 
constant for the anti-phase modulation, AM signals can be suppressed 
in the proposed two-section device. This is different from conventional 
single-section PCSELs, which mainly induce intensity modulation18–20.

To confirm the above-mentioned principle, we numerically sim-
ulated the FM and AM characteristics of the proposed two-section 
PCSELs by using time-dependent three-dimensional coupled-wave 
theory21,22. The calculated changes in lasing frequency and output 
power of the designed PCSEL for anti-phase sinusoidal modulation 
(bias current, Idc = 3.0 A; RF current, Irf = 0.1 A; modulation frequency, 
fmod = 1 GHz) are shown in Fig. 2d. Here, we define the amplitude of  
the anti-phase RF current Irf as that of the RF current injected into the 
active layer just above PC1/PC2, which is not always the same as that 
applied at the separated top electrodes (Supplementary Section 4 
provides details). In the proposed device, a relatively large frequency 
change of 0.7 GHzpp is obtained while maintaining a small AM modu-
lation depth (ma < 0.02), which is defined as the ratio of the change  
in output power over the average power. We have also confirmed  
that there is no significant change in the beam profile during FM opera-
tion (Supplementary Section 5 provides details). Figure 2e,f shows 
the calculated changes in frequency (FM) and output power (AM) 
under direct sinusoidal modulation for the two-section PCSEL and 

amplifiers with relatively low electro-optical conversion efficiency, 
external phase modulators, single-mode fibres and beam-collimation 
lenses (shown in the left part of Fig. 1), which undermines the advantages 
of compactness and the high efficiency of the semiconductor lasers.

Photonic-crystal surface-emitting lasers (PCSELs) are considered 
to be a leading candidate to satisfy the above requirements without 
forfeiting the advantages of semiconductor lasers, because PCSELs 
can realize single-mode high-power lasing over a large emission area 
owing to a two-dimensional coherent band-edge resonance inside the 
photonic-crystal layer9–17. General design guidelines have already been 
established to maintain single-mode oscillation with large-area PCSELs14, 
and the experimentally achieved single-mode output power has increased 
from 1–10 W to 50 W by enlarging the device diameter of the PCSEL from 
0.5–1 mm (ref. 12) to 3 mm (ref. 15). In addition, owing to the accumula-
tion of a much larger number of photons inside these large-area PCSELs 
compared to conventional semiconductor lasers, PCSELs can also realize 
narrow intrinsic spectral linewidths (less than kilohertz) without relying 
on any optical feedback systems17. Thanks to these features, PCSELs  
are promising candidates for one-chip high-power coherent transmit-
ters, as schematically shown in the right panel of Fig. 1. However, the  
method to realize high-speed coherent modulation (FM or PM) in PCSELs, 
which is essential to enable high-sensitivity coherent detection harness-
ing the advantage of narrow-linewidth PCSELs, has yet to be clarified.

In this Article we propose and experimentally demonstrate PCSELs 
that enable high-power FM with suppressed amplitude modulation 
(AM) under direct modulation, and we apply these PCSELs to coherent 
FSO transmitters. We propose two-section PCSELs that incorporate 
two photonic crystals with slightly different lattice constants, and we 
realize watt-class FM signals with a gigahertz-class bandwidth while 
suppressing AM signals. Then, by using one such two-section PCSEL 
as a transmitter, we demonstrate coherent Gbps-class FSO communi-
cation with an allowable power attenuation (or link budget) of >80 dB 
in an optical-amplifier-free transmitter configuration. Our work is an 
important milestone towards the realization of one-chip coherent 
FSO transmitters whose volumes and weights are several orders of 
magnitude smaller than those of conventional, bulkier systems. Such 
compact transmitters are expected to find favour in various fields of 
space communication, including ground-to-satellite, intersatellite 
(LEO–GEO), Moon-to-Earth and deep-space communications.

Results
Proposal of two-section PCSELs for the generation of FM 
signals
Figure 2a presents a schematic of a two-section PCSEL for the gen-
eration of large FM signals. Here, double-lattice photonic crystals 
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Fig. 1 | Concept of the PCSEL-based high-power coherent transmitter. Progression from conventional high-power coherent transmission systems (left) to the PCSEL-
based high-power coherent transmitter (right).
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a conventional single-section PCSEL as functions of the modulation 
frequency. In these calculations, the photonic-crystal structure and 
modulation parameters (Idc = 3.0 A, Irf = 0.1 A) are assumed to be the 
same for both devices. These results show that the two-section PCSELs 
can realize a change of frequency that is one order of magnitude larger 
than the single-section PCSEL with the same amount of RF current Irf 
with a suppressed AM component at modulation frequencies of up to 
3 GHz, which corresponds to the relaxation frequency of the PCSEL. 
It should be noted that the AM response of the two-section PCSEL 
increases as the modulation frequency approaches the relaxation 
oscillation frequency, which is due to incomplete cancellation of the 
photon density change inside PC1 and PC2 at high modulation frequen-
cies (Supplementary Section 6 provides details).

Demonstration of watt-class FM signal generation from 
two-section PCSELs
Based on the above design, we fabricated a two-section PCSEL with a 
lasing diameter of 500 μm and a lasing wavelength of 942 nm. Figure 3a 
presents a photograph of the fabricated two-section PCSEL, which was 
mounted on a cooling package. The two top-side electrodes on the 
PCSEL were wire-bonded to the external coplanar electrical circuits 
with a 50-Ω impedance, as shown in the figure. Figure 3b shows the 
measured current–light output (I–L) characteristics and far-field beam 
pattern of the fabricated device when the anti-phase RF current was not 
applied. An output power of >1 W was obtained at a bias current of 3 A, 
and single-mode lasing with a beam divergence angle of 0.2° (M2 ≈ 1.6), 
evaluated at 1/e2 of the maximum value, was realized. Figure 3c presents 
a schematic of the optical set-up utilized to measure the FM characteris-
tics of the PCSEL. Here we generated an anti-phase RF current signal by 
using the differential output of an arbitrary waveform generator (AWG) 
and a broadband RF amplifier, and we directly modulated the PCSEL by 

superimposing the bias current Idc and the above anti-phase RF signal 
with a bias tee. We then mixed the light from the modulated PCSEL 
with that from a reference single-mode PCSEL to perform a heterodyne 
measurement. The heterodyne offset frequency of the two PCSELs 
before modulation was set to ~6 GHz by finely adjusting the tempera-
ture of the reference PCSEL. The beat note signals were acquired with a 
balanced photodetector (BPD) composed of two 42-GHz photodetec-
tors (RXM42AF, Thorlabs) and were recorded with a real-time digital 
oscilloscope. Finally, the temporal change of the heterodyne beat note 
frequency was calculated (details are provided in Methods). We also 
measured the AM characteristics of the same device by directly meas-
uring the amplitude change using another high-speed photodetector.

Figure 3d shows the measured FM and AM characteristics of the 
two-section PCSEL at a bias current of 3 A (Pave = 1.1 W), an applied 
anti-phase RF current of ~0.22 App and a modulation frequency of 1 GHz. 
We obtained an FM signal with a large frequency change of ~0.55 GHzpp, 
while suppressing the modulation depth of the AM signal, ma, below 
0.1. Figure 3e,f shows the experimentally measured FM and AM changes 
under direct sinusoidal modulation for the two-section PCSEL as a 
function of the modulation frequency. In these graphs, we also plot the 
measured FM and AM characteristics of a conventional single-section 
PCSEL with the same amplitude of the applied RF current (0.22 App) 
(Supplementary Section 7 provides details). Note that the measured 
values of the frequency change and the amplitude change contain  
several irregular variations, which might be caused by multiple reflec-
tions of the electrical signals due to impedance mismatching between 
the PCSEL and the coplanar electrical circuit. Excluding such effects, the 
frequency change Δf of the two-section PCSEL was twice as large as that 
of the single-section PCSEL at all modulation frequencies up to 1 GHz, 
and the amplitude modulation depth, ma, of the two-section PCSEL 
was suppressed by a factor of 4. Using the ratio of FM/AM amplitude 
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Fig. 2 | Principle and numerical results of two-section PCSELs for the 
generation of high-power FM signals. a, Schematic of the proposed two-section 
PCSEL. ωm, angular frequency of modulation; t, time. b, Band-edge frequency 
and photon distributions inside the device. c, Principle of FM signal generation 
for anti-phase current modulation. d, Calculated temporal change in the lasing 
frequency (freq.) and output power of the two-section PCSEL under anti-phase 

sinusoidal current modulation. e,f, Calculated changes in frequency (FM) (e) and 
output power (AM) (f) under direct sinusoidal modulation for the two-section 
PCSEL and a single-section PCSEL as a function of the modulation frequency. In 
these calculations, the double-lattice photonic-crystal structure and modulation 
parameters (Idc = 3.0 A, Irf = 0.1 A) are assumed to be the same for both devices.
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(Δf/ma) as a figure of merit (FoM), the two-section PCSEL was seen to 
achieve a FoM that was one order of magnitude larger than that of the 
single-section PCSEL. Therefore, the two-section PCSEL was confirmed 
to enable the generation of watt-class FM signals with suppressed AM, 
which is suitable for coherent FSO communications with minimal AM 
noise. It should be noted that the measured two-fold enhancement of 
the frequency change in the two-section PCSELs is smaller than the 
calculated ten-fold enhancement predicted in the previous simula-
tion. This is because the effective anti-phase RF current injected into 
the active layer was much smaller than that applied at the top-side 
(n-side) electrodes (Supplementary Section 4 provides details). By 
employing separated electrodes in the bottom side (p-side) instead of 
the top side, the effective anti-phase RF current injected into the active 
layer is expected to be substantially enhanced, enabling a ten-fold 
enhancement of the frequency change as predicted in the simulation.

Demonstration of optical-amplifier-free coherent FSO 
communications using FM PCSELs
Using the above two-section PCSEL, we performed a proof-of-concept 
demonstration of optical-amplifier-free coherent FSO communications. 
The experimental set-up is shown in Fig. 4a. Bipolar non-return-to-zero 
(NRZ) signals filtered by the raised-cosine filter were generated from 
the AWG and injected into the PCSELs using a bias tee after being ampli-
fied to 0.22 App. The bias current of the PCSEL was set to 3.0 A, which 
corresponds to an output power of 1.1 W (30 dBm). Signal baud rates  

of 0.5 Gbaud and 1 Gbaud were used. The watt-class FM signals  
emitted into free space from the PCSEL were attenuated by beamsplit-
ters and a variable neutral density (ND) filter to emulate the link loss 
between a transmitter and receiver in practical long-distance FSO com-
munications. After passing through the link-loss emulator, the opti-
cal signal was coupled into a single-mode fibre, and heterodyne beat  
note signals were obtained by using another reference PCSEL as a  
local oscillator (LO), as described in the previous sections. The optical 
power of the LO was maintained at 10 dBm. In this experiment, a different  
BPD that had a smaller electrical bandwidth (2.5 GHz), but lower  
electrical noise intensity, was used (PDB482C-AC, Thorlabs), and thus 
the heterodyne offset frequency between the two PCSELs was set to 
~1 GHz, accordingly. The electrical signal from the BPD was recorded 
using a digital oscilloscope and finally processed by an offline digi-
tal signal processor. The above process was repeated by changing  
the amount of attenuation in the link-loss emulator (or the received 
signal power), and the bit-error ratios (BERs) of the FSO communica-
tions were evaluated for each link loss. Details of the BER evaluation 
and eye-diagram measurements are provided in Methods.

Figure 4b shows a measured eye diagram at a received power 
of −50 dBm and a signal baud rate of 0.5 Gbaud. The horizontal and  
vertical axes denote the time and the instantaneous frequency change 
of the laser, respectively. Despite the substantially large power attenua-
tion at the link-loss emulator (80 dB), a clear eye pattern was observed, 
and a BER of below 5 × 10−5 (corresponding to the error-free transmission 
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power of the two-section PCSEL under anti-phase sinusoidal current modulation 
at a bias current of 3 A (Pave = 1.1 W), an applied anti-phase RF current of 0.22 App 
and a modulation frequency of 1 GHz. e,f, Measured changes in frequency (e, FM) 
and amplitude (f, AM) under direct sinusoidal modulation for the two-section 
PCSEL and the single-section PCSEL as functions of the modulation frequency.
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in this measurement) was achieved. Figure 4c shows the measured 
BER of the coherent FSO communication when the received power 
was varied. Assuming a BER threshold of 20% overhead soft-decision 
forward-error correcting code23 (dashed line in Fig. 4c), the mini-
mum allowable received optical power was −58 dBm and −51 dBm at 
0.5 Gbaud and 1.0 Gbaud, respectively, corresponding to allowable 
power attenuations (link budgets) of 88 dB and 81 dB, respectively.  
The relatively large difference of ~7 dB between the two cases may 
be attributed to the limited electrical bandwidth of the BPD used in  
the experiment (2.5 GHz). Specifically, the high-order sidebands of the 
FM beat note signals may have become cut off at 1.0 Gbaud. It should 
also be noted that the above-mentioned received powers (<−50 dBm) 
and link budgets (>80 dB) are comparable to those required in 
long-distance intersatellite communications between GEO and ground 
or between GEO and LEO24,25, which suggests the future applicability  
of our device in actual intersatellite communication systems.

Discussion
As discussed in the previous sections, the effective anti-phase RF  
current injected into the active layer in the fabricated device was 
much smaller than that applied at the top-side (n-side) electrodes, 
which resulted in a decrease in frequency change, Δf. By employing 
separated electrodes at the bottom side of the two-section PCSELs 
instead of the top side, a larger Δf can be realized with a much smaller 
amplitude of RF current. In this case, the optical phase change during 
one period of the RF signal during FM can be larger than π, even when 
the signal baud rate is further increased, and our FM PCSELs can also 
be used for phase shift keying (for example, binary phase shift keying 
(BPSK) and quadrature phase shift keying (QPSK)) (details are provided 
in Supplementary Section 8), the applicability of which has already 
been verified in several in-orbit demonstrations24,26,27. In addition,  

by increasing the device size while reducing the coupling coefficients 
of the double-lattice photonic crystal, 10-W-class FM signal genera-
tion can also be realized (Supplementary Section 9). With these  
further improvements to increase the link budget and the signal 
baud rate, it will become possible to realize PCSEL-based ultra-small, 
one-chip, coherent transmitters for a wide variety of space communi
cations, from intersatellite to deep-space communications.

In conclusion, towards the realization of optical-amplifier-free 
coherent FSO communications, we have demonstrated PCSELs that 
enable direct, high-power frequency modulation. We have proposed 
two-section PCSELs that incorporate two different photonic crystals  
with slightly different lattice constants, with which a large frequency  
change with well-suppressed AM signals can be generated via anti- 
phase RF current injection into the two sections. We have also  
performed a proof-of-concept experiment of coherent FSO communi-
cations using the two-section PCSEL, and we have demonstrated FSO 
communications with allowable power attenuations (link budgets) of 
88 dB and 81 dB at signal baud rates of 0.5 Gbaud and 1.0 Gbaud, respec-
tively, without using any optical amplifier. Importantly, our FM PCSELs 
are expected to enable the elimination of bulky and low-efficiency 
optical amplifiers and external modulators from transmitters in FSO 
communications, which is especially advantageous in intersatellite 
(LEO/GEO) communications, where the size, weight and power con-
sumption of the transmitter should be made as small as possible. In 
addition, the above-mentioned link budgets and transmission rates can 
be further increased by optimizing the device structure to increase the 
average power and the amount of frequency change during modula-
tion, which will enable even-longer-distance space communications 
such as Moon-to-Earth and deep-space communications. Such com-
pact high-power coherent optical transmitters will also benefit other 
applications such as frequency-modulated continuous-wave LiDAR for 
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autonomous driving and atmospheric sensing28,29. We believe that our 
FM PCSELs will contribute to the development of one-chip, high-speed 
and high-efficiency optical transmitters for a wide variety of coherent 
free-space laser applications in the future.
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acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41566-025-01782-2.
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Methods
Calculation of beat note frequency change
To extract the instantaneous change in beat note frequency from the 
measured heterodyne waveforms, we first estimated the heterodyne 
offset frequency by taking a Fourier transform of the temporal wave-
form and finding the peak component. Next, we down-converted the 
waveforms to the baseband and filtered out-of-band noise. We then 
calculated the phase angles of the complex signals and extracted the 
instantaneous frequency change by evaluating the derivative of the 
phase angle with respect to time.

Evaluation of BER
Digital signal processing in the transmitter side involves gene
rating a binary random signal using a 20-stage pseudo-random  
binary sequence (PRBS). This signal is then oversampled to two 
samples per symbol through zero-padding, and filtered with a 
raised-cosine filter that has a roll-off factor of 0. Subsequently, 
the signal is oversampled again to match the AWG sampling rate  
of 50 GS s−1. At the receiver’s offline digital signal processer, the  
frequency offset of the heterodyne beat signal is determined by 
locating the peak frequency component in its spectrum. The signal 
is then down-converted to the baseband using the identified nega-
tive frequency, and filtered to remove out-of-band noise. Frequency 
demodulation is accomplished by differentiating the phase angles  
of the baseband complex signals. Finally, the retrieved signal is  
equalized using the decision-directed least-mean-square (DD-LMS) 
algorithm, and the BERs are calculated by comparing the retrieved 
signal to the original 20-stage PRBS pattern. It should be noted 
that the eye pattern shown in Fig. 4b shows the dimensionless  
frequency data normalized to a range of [0, 1] after the above  
equalization process, and the line used to determine whether the 
data are 0 or 1 is the median (0.5) of the normalized data. As for the 
BER evaluation, we recorded the signal for 40 μs (corresponding  
to 20,000 bits at 0.5 Gbaud), and thus the detectable minimum  
BER was 1/20,000 = 5 × 10−5.
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