Abstract
Spintronic and nanomagnetic devices often derive their functionality from layers of different materials and the interfaces between them. We discuss the opportunities that arise from synthetic antiferromagnets consisting of two or more ferromagnetic layers that are separated by metallic spacers or tunnel barriers and have antiparallel magnetizations.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others
Change history
18 June 2018
Owing to a technical error, this Perspective was originally published without its received and accepted dates in the HTML version; the dates “Received: 30 May 2017; Accepted: 17 January 2018” have now been included. The PDF is correct.
References
Gruünberg, P., Schreiber, R., Pang, Y., Brodsky, M. B. & Sowers, H. Phys. Rev. Lett. 57, 2442–2445 (1986).
Majkrzak, C. F. et al. Phys. Rev. Lett. 56, 2700–2703 (1986).
Salamon, M. B. et al. Phys. Rev. Lett. 56, 259–262 (1986).
Slonczewski, J. C. Phys. Rev. B 39, 6995–7002 (1989).
Parkin, S. S. P., More, N. & Roche, K. P. Phys. Rev. Lett. 64, 2304–2307 (1990).
Edwards, D. M., Mathon, J., Muniz, R. B. & Phan, M. S. Phys. Rev. Lett. 67, 493–496 (1991).
Bruno, P. Phys. Rev. B 52, 411–439 (1995).
Baibich, M. N. et al. Phys. Rev. Lett. 61, 2472–2475 (1988).
Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Phys. Rev. B 39, 4828–4830 (1989).
Yang, S.-H., Ryu, K.-S. & Parkin, S. Nat. Nanotech. 10, 221–226 (2015).
Valet, T. & Fert, A. Phys. Rev. B 48, 7099–7113 (1993).
Parkin, S. et al. Proc. IEEE 91, 661–679 (2003).
Bandiera, S. et al. IEEE Magn. Lett. 1, 3000204 (2010).
Smith, N., Maat, S., Carey, M. J. & Childress, J. R. Phys. Rev. Lett. 101, 247205 (2008).
Lee, S. W. & Lee, K. J. J. Appl. Phys. 109, 07C904 (2011).
Hayakawa, J. et al. Jpn J. Appl. Phys. 45, L1057–L1060 (2006).
Bergman, A. et al. Phys. Rev. B 83, 224429 (2011).
Houssameddine, D. et al. Appl. Phys. Lett. 96, 072511 (2010).
Lau, Y.-C., Betto, D., Rode, K., Coey, J. M. D. & Stamenov, P. Nat. Nanotech. 11, 758–762 (2016).
Bi, C. et al. Phys. Rev. B 95, 104434 (2017).
Fechner, M., Zahn, P., Ostanin, S., Bibes, M. & Mertig, I. Phys. Rev. Lett. 108, 197206 (2012).
You, C.-Y. & Bader, S. D. J. Magn. Magn. Mater. 195, 488–500 (1999).
Newhouse-Illige, T. et al. Nat. Commun. 8, 15232 (2017).
Bender, S. A. & Tserkovnyak, Y. Phys. Rev. B 93, 064418 (2016).
Bauer, G. E. W., Saitoh, E. & van Wees, B. J. Nat. Mater. 11, 391–399 (2012).
Takei, S. & Tserkovnyak, Y. Rev. Lett. 112, 227201 (2014).
Hahn, C. et al. Europhys. Lett. 108, 57005 (2014).
Herranz, D. et al. Phys. Rev. B 79, 134423 (2009).
Saarikoski, H., Kohno, H., Marrows, C. H. & Tatara, G. Phys. Rev. B 90, 094411 (2014).
Shiino, T. et al. Phys. Rev. Lett. 117, 087203 (2016).
Komine, T. & Aono, T. AIP Adv. 6, 056409 (2016).
Lavrijsen, R. et al. Nature 493, 647–650 (2013).
Dzyaloshinskii, I. J. Phys. Chem. Solids 4, 241–255 (1958).
Moriya, T. Phys. Rev. 120, 91–98 (1960).
Roessler, U. K. & Bogdanov, A. N. Phys. Rev. B 69, 094405 (2004).
Zhang, X., Zhou, Y. & Ezawa, M. Nat. Commun. 7, 10293 (2015).
Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Nat. Phys. 11, 453–461 (2015).
Lan, J., Yu, W. & Xiao, J. Nat. Commun. 8, 178 (2017).
Marrows, C. Preprint at https://arxiv.org/abs/1611.00744 (2016).
Bhat, V. S., Heimbach, F., Stasinopoulos, I. & Grundler, D. Phys. Rev. B 93, 140401 (2016). (R).
Fert, A., Cros, V. & Sampaio, J. Nat. Nanotech. 8, 152–156 (2013).
Acknowledgements
R.A.D. is supported by the Stichting voor Fundamenteel Onderzoek der Materie (FOM), the European Research Council (ERC), and is part of the D-ITP consortium, a program of the Netherlands Organization for Scientific Research (NWO) that is funded by the Dutch Ministry of Education, Culture and Science. K.-J.L. was supported by the National Research Foundation of Korea (NRF) (NRF-2015M3D1A1070465, NRF-2017R1A2B2006119). This work was in part supported by EU FET Open RIA Grant no. 766566.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Duine, R.A., Lee, KJ., Parkin, S.S.P. et al. Synthetic antiferromagnetic spintronics. Nature Phys 14, 217–219 (2018). https://doi.org/10.1038/s41567-018-0050-y
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41567-018-0050-y
This article is cited by
-
Impact of layer count and thickness on spin wave modes in multilayer synthetic antiferromagnets
Scientific Reports (2025)
-
Interlayer Dzyaloshinskii-Moriya interaction in spintronics
npj Spintronics (2025)
-
Fast barrier-free switching in synthetic antiferromagnets
Scientific Reports (2025)
-
Impact of Cr Insertion Layer on Spin Transport Properties in Co2FeAl/Ta System
Journal of Superconductivity and Novel Magnetism (2025)
-
Bismuth Doping-Induced Enhancement of the Spin–Orbit Coupling Strength in the Prototype Dilute Ferromagnetic Semiconductor (Ga,Mn)As: A Review
Journal of Electronic Materials (2025)