Abstract
Spintronic and multiferroic systems are leading candidates for achieving attojoule-class logic gates for computing, thereby enabling the continuation of Moore’s law for transistor scaling. However, shifting the materials focus of computing towards oxides and topological materials requires a holistic approach addressing energy, stochasticity and complexity.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout


Similar content being viewed by others
References
Auth, C., A. et al. in 2017 IEEE Int. Electron Devices Meeting 29–1. (IEEE, 2017).
Xu, M. & Arce, G. R. Computational Lithography Vol. 77. (Wiley, New York, NY, 2011).
Danowitz, A., Kelley, K., Mao, J., Stevenson, J. P. & Horowitz, M. Commun. ACM 55, 55–63 (2012).
Moore, G. E. ISSCC Dig. Tech. Pap. 20–23 (2003).
Dennard, R. H. et al. IEEE J. Solid-State Circuits 9, 256–268 (1974).
Holt, W. M. in 2016 IEEE International Solid-State Circuits Conf. 8–13 (IEEE, 2016).
Ghani, T. et al. in 2003 IEEE Int. Electron Devices Meeting 11–6 (IEEE, 2003).
Ferain, I., Colinge, C. A. & Colinge, J.-P. Nature 479, 310–316 (2011).
Nikonov, D. E. & Young, I. A. IEEE J. Explor. Solid-State Computat. Devices Circuits 1, 3–11 (2015).
Chappert, C., Fert, A. & Nguyen Van Dau, F. Nat. Mater. 6, 813–823 (2007).
Allwood, D. A. et al. Science 309, 1688–1692 (2005).
Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Nat. Phys 11, 453–461 (2015).
Manipatruni, S., Nikonov, D. E. & Young, I. A. Preprint at https://arxiv.org/abs/1512.05428 (2015).
Meindl, J. D., Chen, Q. & Davis, J. A. Science 293, 2044–2049 (2001).
Nyquist, H. Phys. Rev 32, 110–113 (1928).
Saleh, B. E. A. & Teich, M. C. Fundamentals of Photonics (Wiley, New York, NY, 1991).
Camsari, K. Y., Faria, R., Sutton, B. M. & Datta, S. Preprint at https://arxiv.org/abs/1610.00377 (2016).
von Neumann, J. Automata Studies 34, 43–98 (1956).
Merolla, P. A. et al. Science 345, 668–673 (2014).
Hopfield, J. J. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).
Behin-Aein, B., Datta, D., Salahuddin, S. & Datta, S. Nat. Nanotech 5, 266–270 (2010).
Spaldin, N. A. & Fiebig, M. Science 309, 391–392 (2005).
Khomskii, D. Physics 2, 20 (2009).
Birol, T. et al. Curr. Opin. Solid State Mater. Sci 16, 227–242 (2012).
Heron, J. T. et al. Nature 516, 370–373 (2014).
Chu, Y.-H. et al. Nat. Mater. 7, 478–482 (2008).
He, X. et al. Nat. Mater. 9, 579–585 (2010).
Maruyama, T. et al. Nat. Nanotech 4, 158–161 (2009).
Mayadas, A. F., Shatzkes, M. & Janak, J. F. Appl. Phys. Lett. 14, 345–347 (1969).
Iraei, R. M., Manipatruni, S., Nikonov, D., Young, I. & Naeemi, A. IEEE J. Explor. Solid-State Computat. Devices Circuits 3, 47–55 (2017).
Pan, C., Chang, S.-C. & Naeemi, A. in 2016 IEEE Int. Interconnect Technology Conf./Advanced Metallization Conf. (IITC/AMC) 56–58 (IEEE, 2016).
Manipatruni, S., Lipson, M. & Young, I. A. IEEE J. Sel. Topics Quantum Electron. 19, 8200109 (2013).
Landauer, R. IBM J. Res. Dev 5, 183–191 (1961).
Mead, C. Proc. IEEE 78, 1629–1636 (1990).
Nikonov, D. E. et al. IEEE J. Explor. Solid-State Computat. Devices Circuits 1, 85–93 (2015).
Davies, M. et al. IEEE Micro 38, 82–99 (2018).
Jouppi, N. P. et al. Preprint at https://arxiv.org/abs/1704.04760 (2017).
Köster, U. et al. Preprint at https://arxiv.org/abs/1711.02213 (2017).
Strogatz, S. Sync: The Emerging Science of Spontaneous Order (Penguin, London, 2004).
Anderson, P. W. Science 177, 393–396 (1972).
Stupakiewicz, A., Szerenos, K., Afanasiev, D., Kirilyuk, A. & Kimel, A. V. Nature 542, 71–74 (2017).
Rowlands, G. E. et al. Appl. Phys. Lett. 98, 102509 (2011).
Chu, Y. H. et al. Appl. Phys. Lett. 92, 102909 (2008).
Nowak, J. J. et al. IEEE Magn. Lett 2, 3000204 (2011).
Jan, G. in 2016 IEEE Symp. on VLSI Technology 1–2 (IEEE, 2016).
Shiota, Y. et al. Appl. Phys. Lett. 111, 022408 (2017).
Mundy, J. A. et al. Nature 537, 523–527 (2016).
Wang, Y., Hu, J., Lin, Y. & Nan, C.-W. NPG Asia Mater 2, 61–68 (2010).
Shiomi, Y. et al. Phys. Rev. Lett. 113, 196601 (2014).
Bakaul, S. R. et al. Nat. Commun. 7, 10547 (2016).
Song, Q. et al. Sci. Adv. 3, e1602312 (2017).
Cheng, C. et al. Preprint at https://arxiv.org/abs/1510.03451 (2015).
Jamali, M, et al. Preprint at https://arxiv.org/abs/1703.03822 (2017).
Omori, Y. et al. Appl. Phys. Lett. 104, 242415 (2014).
Sagasta, E. et al. Phys. Rev. B 94, 060412 (2016).
Noguchi, H, et al. in 2016 IEEE Int. Electron Devices Meeting 27–5 (IEEE, 2016).
Chen, L., Preston, K., Manipatruni, S. & Lipson, M. Opt. Express 17, 15248–15256 (2009).
Hamaya, K. et al. Phys. Rev. B 85, 100404 (2012).
Liu, S., Grinberg, I. & Rappe, A. M. Nature 534, 360–363 (2016).
Stengel, M. & Íñiguez, J. Phys. Rev. B 92, 235148 (2015).
Yang, Y. Sci. Adv. 3, e1603117 (2017).
Butler, W. H. et al. IEEE Trans. Magn. 48, 4684–4700 (2012).
Warren, W. L., Tuttle, B. A. & Dimos, D. Appl. Phys. Lett. 67, 1426–1428 (1995).
D’Souza, N., Fashami, M. S., Bandyopadhyay, S. & Atulasimha, J. Nano Lett. 16, 1069–1075 (2016).
Edelstein, V. M. Solid State Commun 73, 233–235 (1990).
Rojas Sánchez, J. C. et al. Nat. Commun. 4, 2944 (2013).
Kirilyuk, A., Kimel, A. V. & Rasing, T. Rev. Mod. Phys. 82, 2731–2784 (2010).
Brewer, R. T. et al. J. Appl. Phys. 97, 034103 (2005).
Patil, A. D., Manipatruni, S., Nikonov, D., Young, I. A. & Shanbhag, N. R. Preprint at https://arxiv.org/abs/1702.06119 (2017).
Kish, L. B. & Granqvist, C.-G. PLoS ONE 7, e46800 (2012).
Acknowledgements
We sincerely acknowledge the discussions with R. Ramamoorthy, N. Shanbhag, D. Schlom, S. Salahuddin, F. Rana, B. Hillebrands, J.-P. Wang and A. Patil.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Manipatruni, S., Nikonov, D.E. & Young, I.A. Beyond CMOS computing with spin and polarization. Nature Phys 14, 338–343 (2018). https://doi.org/10.1038/s41567-018-0101-4
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41567-018-0101-4
This article is cited by
-
Non-volatile electric-field control of room-temperature ferromagnetism in Fe3GaTe2 heterostructures
Nature Communications (2025)
-
Physisorption-assistant optoelectronic synaptic transistors based on Ta2NiSe5/SnS2 heterojunction from ultraviolet to near-infrared
Light: Science & Applications (2025)
-
Spintronic memristors for computing
npj Spintronics (2025)
-
Novel spintronic effects in two-dimensional van der Waals heterostructures
npj 2D Materials and Applications (2025)
-
Strain-restricted transfer of ferromagnetic electrodes for constructing reproducibly superior-quality spintronic devices
Nature Communications (2024)