Extended Data Fig. 6: Growth of the condensed film. | Nature Physics

Extended Data Fig. 6: Growth of the condensed film.

From: A hydrodynamic instability drives protein droplet formation on microtubules to nucleate branches

Extended Data Fig. 6

a, Schematic of the model for growth of the condensed protein film. Microtubules of radius ri are spaced periodically by a distance \(2\bar{R}\), where \(\bar{R}=1/\sqrt{\pi nl}\) where l is the typical microtubule length and n is the number density of microtubules. Soluble protein phase separates from solution and nucleates a spatially uniform condensed film on the microtubule surface, whose interfacial position we denote by \(r=\xi \left(t\right)\). b, Final film thickness h versus initial concentration c0 as measured by atomic force microscopy (blue) and as predicted by equation (19) (black) and using \(1/{c}_{{\rm{R}}}\left({\bar{R}}^{2}/{r}_{{\rm{i}}}^{2}-1\right)\) as a least-squares fit parameter. c, Evolution of the interfacial position of the film ξ/ri over time T for \(S={r}_{{\rm{i}}}/{r}_{{\rm{o}}}\in \left[0.5,0.7\right]\), which is our experimentally observed range of S. Solid lines are the exact solution and dashed lines are the asymptotic formula (34b).

Source data

Back to article page