Extended Data Fig. 7: Average power spectra from AFM data for all concentrations of TPX2 and for uncoated, initially TPX2-coated, C-terminal-TPX2-bound, and kinesin-1-bound microtubules. | Nature Physics

Extended Data Fig. 7: Average power spectra from AFM data for all concentrations of TPX2 and for uncoated, initially TPX2-coated, C-terminal-TPX2-bound, and kinesin-1-bound microtubules.

From: A hydrodynamic instability drives protein droplet formation on microtubules to nucleate branches

Extended Data Fig. 7

Peaks indicate characteristic wavelengths that correspond to a typical droplet spacing (Supplementary Table 3) (N = 25, 17, 23, and 21 microtubules, respectively, for increasing TPX2 concentration). Also included are average power spectra for uncoated microtubules (N = 29 microtubules), microtubules initially coated uniformly with TPX2 (N = 25 microtubules), kinesin-bound microtubules (N = 19 microtubules), and C-terminal-TPX2-bound microtubules (N = 4 microtubules)—none of which show any characteristic spatial features. For kinesin-bound microtubules, h = 2.9 ± 2.0nm, consistent with what one would expect for the kinesin construct used27,28. For C-terminal-TPX2-bound microtubules, h = 3.7 ± 1.8nm. Heights are mean ± standard deviation. Shaded regions represents 95% bootstrap confidence intervals.

Source data

Back to article page