In 1985, experiments revealed the quantum behaviour of a macroscopic degree of freedom: the phase difference across a Josephson junction. The authors recount the history of this milestone for the development of superconducting quantum circuits.
Enjoying our latest content?
Log in or create an account to continue
- Access the most recent journalism from Nature's award-winning team
- Explore the latest features & opinion covering groundbreaking research
or
References
Leggett, A. J. Prog. Theor. Phys. Suppl. 69, 80–100 (1980).
Martinis, J. M., Devoret, M. H. & Clarke, J. Phys. Rev. Lett. 55, 1543–1546 (1985).
Josephson, B. D. Phys. Lett. 1, 251–253 (1962).
Josephson, B. D. Adv. Phys. 14, 419–451 (1965).
Martinis, J. M., Devoret, M. H. & Clarke, J. Phys. Rev. 35, 4682–4698 (1987).
Clarke, J., Braginski, A. I. (eds) The SQUID Handbook: Fundamentals and Technology of SQUIDs and SQUID Systems (Wiley, 2004).
Rüfenacht, A., Flowers-Jacobs, N. E. & Benz, S. P. Metrologia 55, S152–S173 (2018).
Stewart, W. C. Appl. Phys. Lett. 12, 277–280 (1968).
McCumber, D. E. J. Appl. Phys. 39, 3113–3118 (1968).
Fulton, T. A. & Dunkelberger, L. N. Phys. Rev. B 9, 4760–4768 (1974).
Caldeira, A. O. & Leggett, A. J. Ann. Phys. 149, 374–456 (1983).
Voss, R. F. & Webb, R. A. Phys. Rev. Lett. 47, 265–268 (1981).
Jackel, L. D. et al. Phys. Rev. Lett. 47, 697–700 (1981).
Devoret, M. H., Martinis, J. M. & Clarke, J. Phys. Rev. Lett. 55, 1908–1911 (1985).
Devoret, M. H., Martinis, J. M., Esteve, D. & Clarke, J. Phys. Rev. Lett. 53, 1260–1263 (1984).
Ivlev, B. I. & Mel’nikov, V. I. Phys. Rev. Lett. 55, 1614–1617 (1985).
Larkin, A. I. & Ovchinnikov, Y. N. J. Low. Temp. Phys. 63, 317–329 (1986).
Bouchiat, V., Vion, D., Joyez, P., Esteve, D. & Devoret, M. H. Phys. Scr. T76, 165–170 (1998).
Nakamura, Y., Pashkin, Y. A. & Tsai, J. S. Nature 398, 786–788 (1999).
Mooij, J. E. et al. Science 285, 1036–1039 (1999).
Chiorescu, I., Nakamura, Y., Harmans, C. J. & Mooij, J. E. Science 299, 1869–1871 (2003).
Martinis, J. M., Nam, S., Aumentado, J. & Urbina, C. Phys. Rev. Lett. 89, 117901 (2002).
Martinis, J. Quant. Inf. Proc. 8, 81–103 (2009).
Vion, D. et al. Science 296, 886–889 (2002).
Koch, J. et al. Phys. Rev. A 76, 042319 (2007).
Houck, A. A. et al. Phys. Rev. Lett. 101, 080502 (2008).
Manucharyan, V. E., Koch, J., Glazman, L. I. & Devoret, M. H. Science 326, 113–116 (2009).
Devoret, M. H., Esteve, D., Martinis, J. M. & Urbina, C. Phys. Scr. T25, 118–121 (1989).
Schoelkopf, R. J., Wahlgren, P., Kozhevnikov, A. A., Delsing, P. & Prober, D. E. Science 280, 1238–1242 (1998).
Clarke, J. & Wilhelm, F. K. Nature 453, 1031–1042 (2008).
Girvin, S. M., Devoret, M. H. & Schoelkopf, R. J. Phys. Scr. T137, 014012 (2009).
Devoret, M. H. & Schoelkopf, R. J. Science 339, 1169–1174 (2013).
Krantz, P., Kjaergaard, M., Yan, F., Orlando, T. P., Gustavsson, S. & Oliver, W. D. Appl. Phys. Rev. 6, 021318 (2019).
Haroche, S. & Raimond, J.-M. Exploring the Quantum: Atoms, Cavities and Photons (Oxford Univ. Press, 2006).
Minev, Z. K. et al. Nature 570, 200–204 (2019).
Sayrin, C. et al. Nature 477, 73–77 (2011).
Vijay, R. et al. Nature 490, 77–80 (2012).
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information Ch. 10 (Cambridge Univ. Press, 2000).
Ofek, N. et al. Nature 536, 441–445 (2016).
Arute, F. et al. Nature 574, 505–510 (2019).
Tabuchi, Y. et al. Science 349, 405–408 (2015).
Ranjan, V. et al. J. Mag. Res. 310, 106662 (2020).
Gustafsson, M. V., Santos, P. V., Johansson, G. & Delsing, P. Nat. Phys. 8, 338–343 (2012).
Noguchi, A., Yamazaki, R., Tabuchi, Y. & Nakamura, Y. Phys. Rev. Lett. 119, 180505 (2017).
Malnou, M. et al. Phys. Rev. X 9, 021023 (2019).
Campagne-Ibarcq, P. et al. Phys. Rev. Lett. 120, 200501 (2018).
Axline, C. et al. Nat. Phys. 14, 705–710 (2018).
Kurpiers, P. et al. Phys. Rev. Appl. 12, 044067 (2019).
Zhong, Y. P. et al. Nat. Phys. 15, 741–744 (2019).
Higginbotham, A. P. et al. Nat. Phys. 14, 1038–1042 (2018).
Ma, R. et al. Nature 566, 51–57 (2019).
Acknowledgements
M.H.D. acknowledges support from the Army Research Office and Air Force Office of Scientific Research.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Martinis, J.M., Devoret, M.H. & Clarke, J. Quantum Josephson junction circuits and the dawn of artificial atoms. Nat. Phys. 16, 234–237 (2020). https://doi.org/10.1038/s41567-020-0829-5
Published:
Issue date:
DOI: https://doi.org/10.1038/s41567-020-0829-5
This article is cited by
-
On the Fermi Gas, the Sommerfeld Fine Structure Constant, and the Electron–Electron Scattering in Conductors
Brazilian Journal of Physics (2025)
-
Quantum computation with electrons trapped on liquid Helium by using the centimeter-wave manipulating techniques
Quantum Information Processing (2024)
-
Inductively shunted transmons exhibit noise insensitive plasmon states and a fluxon decay exceeding 3 hours
Nature Communications (2023)
-
Shortcuts to adiabaticity in superconducting circuits for fast multi-partite state generation
Communications Physics (2023)
-
Multi-party Entanglement Generation Through Superconducting Circuits
International Journal of Theoretical Physics (2023)