Extended Data Fig. 2: Detection Systematic Uncertainties.
From: Double Chooz θ13 measurement via total neutron capture detection

The 1σ uncertainty stands for 68% frequentist probability. The central column shows the uncertainties on the signal normalisation for the single detector (SD) case. The multi detector (MD) case in the column on the right shows the uncertainty on the ratio of the signal rates (FD/ND). The total systematics is dominated by the uncertainty of the number of protons for IBD interactions (mainly the GC). This is to be re-measured upon future detector dismantling. The total neutron capture selection reduces systematics as compared to the element dependent detection, since it is not sensitive to the knowledge of the Gd/H fraction of neutron captures. Boundary systematics rely on the modelling of spill-in/out events at volume interfaces with the simulation are assumed fully correlated between detectors. The selection systematics rely on an IBD data-driven method, thus inclusively accounting and averaging over selection and energy scale (stability, uniformity and linearity) variations. The vetoes play a negligible role as they were optimised to maximise the selection efficiency while adding a negligible systematic.