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Approaching optimal entangling collective 
measurements on quantum computing 
platforms
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Fabiana S. Santana    8, Rainer Blatt4,9, Thomas Monz    4,10, Ping Koy Lam    1,11,12   
& Syed M. Assad1,11 

Entanglement is a fundamental feature of quantum mechanics and holds 
great promise for enhancing metrology and communications. Much of 
the focus of quantum metrology so far has been on generating highly 
entangled quantum states that offer better sensitivity, per resource, 
than what can be achieved classically. However, to reach the ultimate 
limits in multi-parameter quantum metrology and quantum information 
processing tasks, collective measurements, which generate entanglement 
between multiple copies of the quantum state, are necessary. Here, 
we experimentally demonstrate theoretically optimal single- and 
two-copy collective measurements for simultaneously estimating 
two non-commuting qubit rotations. This allows us to implement 
quantum-enhanced sensing, for which the metrological gain persists for 
high levels of decoherence, and to draw fundamental insights about the 
interpretation of the uncertainty principle. We implement our optimal 
measurements on superconducting, trapped-ion and photonic systems, 
providing an indication of how future quantum-enhanced sensing networks 
may look.

Quantum-enhanced single-parameter estimation is an established 
capability, with non-classical probe states achieving precisions beyond 
what can be reached by the equivalent classical resources in photonic1–3, 
trapped-ion4,5, superconducting6 and atomic7,8 systems. This has 
paved the way for quantum enhancements in practical sensing appli-
cations, from gravitational wave detection9 to biological imaging10.  

For single-parameter estimation, entangled probe states are sufficient 
to reach the ultimate allowed precisions. However, for multi-parameter 
estimation, owing to the possible incompatibility of different observa-
bles, entangling resources are also required at the measurement stage. 
The ultimate attainable limits in quantum multi-parameter estima-
tion are set by the Holevo Cramér–Rao bound (Holevo bound)11,12.  
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Fig. 1 | Experimental implementation of optimal collective measurements 
using quantum computers. a,b, Probe states are sent to the quantum 
computers (QC) individually for the single-copy measurement (a) and in pairs for 
the two-copy measurement (b). c,d, The qubit probes experience rotations,  
θx and θy, about the x and y axes of the Bloch sphere (c) before undergoing 
decoherence that has the effect of shrinking the Bloch vector (d). This rotation 
can be thought of as being caused by an external magnetic field that we wish to 
sense. e,f, The QCs then implement quantum circuits corresponding to the 

optimal single-copy (e) and two-copy (f) measurements. Two optimal single-copy 
circuits are shown, one for estimating θx and one for θy. g, Finally, error mitigation 
is used to improve the accuracy of the estimated angle. We create a model (green 
line) for how the noisy estimate of θ, θ̂noisy (black dots), is related to the true value 
(red line). The model is then used to correct θ̂noisy to produce the final estimate θ̂. 
Sample data from the F-IBM QS1 device downsampled by a factor of three are 
shown in g. Error bars are smaller than the markers.

In most practical scenarios, it is not feasible to reach the Holevo bound 
as this requires a collective measurement on infinitely many copies 
of the quantum state13–16 (see Methods for a rigorous definition of 
collective measurements). Nevertheless, it is important to develop 
techniques that will enable the Holevo bound to be approached, given 
that multi-parameter estimation is fundamentally connected to the 
uncertainty principle17 and has many physically motivated applica-
tions, including simultaneously estimating phase and phase diffu-
sion18,19, quantum super-resolution20,21, estimating the components 
of a three-dimensional field22,23 and tracking chemical processes24. 
Furthermore, as we demonstrate, collective measurements offer an 
avenue to quantum-enhanced sensing even in the presence of large 
amounts of decoherence, unlike the use of entangled probe states25,26.

To date, collective measurements for quantum multi-parameter 
metrology have been demonstrated exclusively on optical systems27–32. 
Contemporary approaches to collective measurements on optical 
systems are limited in their scalability: that is, it is difficult to general-
ize present approaches to measuring many copies of a quantum state 
simultaneously. The limited gate set available can also make it harder to 
implement an arbitrary optimal measurement. Indeed, the collective 
measurements demonstrated so far have all been restricted to measuring 
two copies of the quantum state and, while quantum enhancement has 
been observed, have all failed to reach the ultimate theoretical limits on 
separable measurements33,34. Thus, there is a pressing need for a more ver-
satile and scalable approach to implementing collective measurements.

In this work, we design and implement theoretically optimal col-
lective measurement circuits on superconducting and trapped-ion 
platforms. The ease with which these devices can be reprogrammed, 
the universal gate set available and the number of modes across which 
entanglement can be generated, ensure that they avoid many of the 

issues that current optical systems suffer from. Using recently devel-
oped error mitigation techniques35 we estimate qubit rotations about 
the axes of the Bloch sphere with a greater precision than what is allowed 
by separable measurements on individual qubits. This approach allows 
us to investigate several interesting physical phenomena: (1) we dem-
onstrate both optimal single- and two-copy collective measurements 
reaching the theoretical limits33,34. We also implement a three-copy col-
lective measurement as a first step towards surpassing two-copy meas-
urements. However, due to the circuit complexity, this measurement 
performs worse than single-copy measurements. (2) We investigate 
the connection between collective measurements and the uncertainty 
principle. Using two-copy collective measurements, we experimentally 
violate a metrological bound based on known, but restrictive uncer-
tainty relations36. (3) Finally, we compare the metrological performance 
of quantum processors from different platforms, providing an indica-
tion of how future quantum metrology networks may look.

Theoretical results
In this work we implement theoretically optimal quantum circuits 
saturating the Nagaoka bound33,34, which sets an upper limit on the 
precision attainable with separable measurements. We consider  
the probe |ψ⟩ = |0⟩, which experiences small rotations, θx and θy,  
about the x and y axes of the Bloch sphere, respectively, before getting 
decohered (Fig. 1c,d). For small rotations, the state becomes 
ρ1 ≈ (1 − ϵ) |0⟩ ⟨0| + ϵ/2 , where ϵ is the decoherence strength. Such a 
noise model is relevant for quantum computing37 and communication38 
among other applications. The Nagaoka bound is given by

vx + vy ≥ 𝒩𝒩1 =
4

(1 − ϵ)2
, (1)
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where vx(y) is the variance in the estimate of θx(y). This applies when the 
probe states are measured one by one (Fig. 1a). We shall refer to meas-
urements of this type as single-copy measurements. The two-copy 
Nagaoka bound is

vx + vy ≥ 𝒩𝒩2 =
4 − 2ϵ + ϵ2

2(1 − ϵ)2
, (2)

which applies when we can perform a collective measurement on two 
copies of the probe, ρ2 = ρ1 ⊗ ρ1, which are entangled during the meas-
urement (Fig. 1b). These measurements are referred to as two-copy 
measurements. Finally, allowing for collective measurements on infi-
nitely many copies of the probe state, the Holevo bound is

vx + vy ≥ ℋ = lim
m→∞

m ×𝒩𝒩m = 4 − 2ϵ
(1 − ϵ)2

. (3)

The hierarchy between the bounds is, ℋ ≤ 2𝒩𝒩2 ≤ 𝒩𝒩1, with equality only 
for ϵ = 0 or 1. Detail on the computation of the different bounds is given 
in Supplementary Note 1.

The Nagaoka bounds, equations (1) and (2), can be saturated by pos-
itive operator valued measures (POVMs) in two- and four-dimensional 
Hilbert spaces, respectively (detailed in Supplementary Note 2). For 

single-copy measurements, it is possible to measure θx and θy sepa-
rately, with two different POVMs, each using half of the total probe 
states without any loss in precision (Fig. 1e). For the two-copy meas-
urement, this is not possible; both parameters have to be estimated 
simultaneously to take advantage of the collective measurement. To 
implement the optimal POVMs, we find a unitary matrix that diagonal-
izes each POVM in the computational basis. Using standard techniques 
from quantum computing, we then convert these unitary matrices to 
quantum circuits39, which can be executed experimentally (Fig. 1e,f).  
We present three- and four-copy POVMs, and the corresponding quan-
tum circuits, which theoretically surpass the two- and three-copy 
Nagaoka bounds, respectively, in Supplementary Notes 3 and 4.

We also investigate the asymptotic attainability of the Holevo 
bound, examining how closely measurements on a finite number of 
copies of the probe state can approach it. In Fig. 2f, we compute the 
Nagaoka bound for performing collective measurements on up to 
seven copies of the probe state simultaneously, corresponding to a 
128-dimensional Hilbert space40.

Experimental results
In what follows, we will describe the results of experiments conducted 
on multiple quantum platforms. The superconducting processors used 
were the Fraunhofer IBM Q System One (F-IBM QS1) processor,  
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Fig. 2 | Surpassing single-copy limits through collective measurements. In 
all figures the dashed pink, purple and green lines correspond to the single-
copy Nagaoka, two-copy Nagaoka and Holevo bounds, respectively. The 
orange-shaded region corresponds to the m.s.e. attainable with separable 
measurements. m.s.e.s below the dashed green line are forbidden by quantum 
mechanics. Error bars are obtained using the bootstrapping technique52 and 
correspond to one standard deviation. All experimental points have error 
bars but some are smaller than the marker size. Each data point corresponds 
to the average of 400 individual experimental runs, each using 512 shots, as 
shown in the inset of a (see Methods for details). a,c, Single-copy (a) and two-
copy (c) estimates of θx, both with and without error mitigation. Results for 
estimating θy are similar (Extended Data Fig. 1). b,d, The corresponding m.s.e.: 
single-copy (b) and two-copy (d). The distribution of m.s.e. values follows the 
expected chi-squared distribution, shown in the inset of d. The black circle 
in the inset corresponds to the mean m.s.e. value. The results shown in a–d 

are for decoherence parameter ϵ = 0.5 and are obtained on the F-IBM QS1 
device. e, Optimal single-, two- and three-copy measurements at different 
decoherence strengths, ϵ. The pink, purple and blue markers correspond to 
experimental single-, two- and three-copy measurements, respectively. For 
the superconducting devices, all markers correspond to the precision after 
using error mitigation. The results of the AQTION trapped-ion processor for 
ϵ = 0.5 are shown in the inset for clarity. f, Bars are one minus the ratio of the 
Holevo bound to the m-copy Nagaoka bound, for m up to and including 7, 
calculated theoretically at ϵ = 0.5. Experimental points are one minus the ratio 
of the Holevo bound to the m.s.e. obtained experimentally. Unfilled black 
diamonds correspond to the precision that our three- and four-copy projective 
measurements can obtain in theory. The upper and lower filled black diamonds 
are simulations based on a depolarizing noise model with gate error rates of 
5 × 10−3 and 1 × 10−3, respectively. The legend is the same as in e.
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11 cloud-accessible IBM Q processors and the Rigetti Aspen-9 proces-
sor. The trapped-ion processor (AQTION) is described in ref. 41 and the 
Jena quantum photonic processor ( JenQuant) is described in the Meth-
ods. We implement the circuits corresponding to the optimal POVMs, 
shown in Fig. 1e,f, on the superconducting and trapped-ion processors. 
Additionally, we implement the single-copy measurements on Jen-
Quant. The specific circuit parameters are provided in Supplementary 
Note 4. The outcomes of each run of a circuit are input to an estimator 
function to return the estimated values θ̂x and θ̂y. This allows the mean 
squared error (m.s.e.) to be determined.

Error mitigation for quantum metrology
Our first experiment investigates one possible application of error miti-
gation to quantum metrology. The details of the error mitigation used 
are found in Methods, but it is essentially a calibration process based 
on known angles as shown in Fig. 1g. For this experiment, conducted on 
the F-IBM QS1 processor, the decoherence parameter is fixed at ϵ = 0.5 
and we estimate a range of θ values. This verifies the unbiasedness of the 
estimator after error mitigation. Figure 2a,c shows the average estimate 
of θx, both before and after error mitigation, with single- and two-copy 
measurements, respectively. The improvement offered by error miti-
gation, evident in these figures, is quantified by the m.s.e. in Fig. 2b,d. 
Error mitigation cannot reduce the m.s.e. below what is theoretically 
allowed by the Nagaoka bound, but it does enable both the single- and 
two-copy measurements to reach the corresponding Nagaoka bounds. 
Crucially, Fig. 2d shows the advantage of the two-copy measurement, 
achieving a precision beyond what is classically possible over the range 
of θ considered and saturating the two-copy Nagaoka bound. Averaged 
over the entire range of θ, the two-copy measurements show a m.s.e. 
19 ± 4% below the theoretical single-copy measurement limit, which is 
only 6 ± 4% larger than the Holevo bound. In contrast, when restricted 
to single-copy measurements, the m.s.e. is guaranteed to be at least 33% 
larger than the Holevo bound. The ability to measure a range of angles is 
important for practical applications of quantum-enhanced metrology.

Optimal single-, two- and three-copy measurements
We next fix the rotations to θx = θy = 0 and demonstrate a quantum 
enhancement over a range of ϵ values. Figure 2e shows the (scaled) 
m.s.e. attained on different platforms. Using the F-IBM QS1 device, 
we can demonstrate a clear quantum enhancement across a range of 
ϵ values. The two-copy measurement on the F-IBM QS1 device shows a 
maximum advantage over the theoretical single-copy limit of 21 ± 4%. 
In contrast, the Rigetti Aspen-9 superconducting device does not 
approach the theoretical limits for any of the measurements, likely 
due to the higher gate and readout error rates. Notably, both JenQuant 
and the AQTION processor are able to reach the theoretical single-copy 
measurement limits without any error mitigation. The AQTION pro-
cessor does not, however, reach the theoretical two-copy limits. The 
demonstration of quantum-enhanced sensing with highly mixed states 
showcases that collective measurements may provide metrological gain 
in real-world sensing applications where decoherence is unavoidable.

In Fig. 2e,f, we show the m.s.e. of our three-copy measurement 
when implemented on the Rigetti Aspen-9 and F-IBM QS1 proces-
sors. In Supplementary Note 6, we present further three-copy results 
for these and several other devices, all of which failed to reach the 
theoretical limit and display properties of a bad estimator. These 
experimental results are in qualitative agreement with simulations of 
three- and four-copy measurements based on the noise level expected 
for near-future quantum processors, also shown in Fig. 2f. From Fig. 
2f, it is evident that for the problem we have considered, the benefit of 
three-copy measurements over two-copy measurements is marginal. 
This raises the question of whether measurements on many copies of a 
quantum state simultaneously are practically useful. In Supplementary 
Note 7, we present a similar problem, based on an amplitude damp-
ing noise model, where there is a sizeable gap between the two-copy 

Nagaoka and Holevo bounds, suggesting that collective measurements 
on many copies may be useful. With continually decreasing error rates, 
superconducting and trapped-ion devices may bridge this gap and 
approach the Holevo bound ever more closely. However, as the data 
from Fig. 2f show, there is a pertinent trade-off between what is gained 
by measuring more copies of the quantum state and what is lost by the 
increased experimental complexity.

Collective measurements and the uncertainty principle
The uncertainty principle is one of the most fundamental features of 
quantum mechanics17. Recently, it has been observed that the original 
formulations of the uncertainty principle fail to hold in certain sce-
narios42,43, leading to the introduction of ‘universally valid’ uncertainty 
relations (UVUR) for operators44–46. In spite of the name, UVUR assume 
that measurements are carried out on single copies of the quantum 
state. This appears to be a natural assumption when considering how 
the measurement of one quantity disturbs any subsequent measure-
ment of a second quantity. However, the same is not true when consid-
ering the precision with which two quantities can be jointly measured. 
Given this restriction, one might expect that UVUR can be violated 
through collective measurements.

Recently, Lu and Wang extended the UVUR to quantum 
multi-parameter estimation36, deriving a metrological bound on how 
well two parameters can be simultaneously estimated. We shall denote 
this the Lu–Wang uncertainty relation. For our problem, this bound can 
be calculated as (Supplementary Note 8):

1
vx

+ 1
vy

≤ (1 − ϵ)2, (4)

which is saturated when vx = vy = 2/(1 − ϵ)2. The variances allowed by 
equation (4) coincide with our single-copy measurement variances. 
Indeed, our single-copy measurement variances, shown in pink in Fig. 3,  
verify the validity of UVUR in this scenario. However, our two-copy 
measurements implemented on the F-IBM QS1 processor were able 
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Fig. 3 | Collective measurements violating the Lu–Wang uncertainty relation. 
The shaded region shows the measurement variances allowed by the Lu–Wang 
(LW) uncertainty relation36. All experimental points correspond to a decoherence 
parameter of ϵ = 0.5. The dashed grey line shows where the variance in estimating 
both parameters are equal. The purple and green lines are obtained by calculating 
the two-copy Nagaoka bound and Holevo bound with different weights attached 
to each parameter. Solid lines are used for bounds on the allowed values (vx, vy) 
(as opposed to the sum of variances as in Fig. 2). The data in the main figure 
correspond to the F-IBM QS1 device. Data from the other processors are shown 
in the inset. The legend is the same as Fig. 2e. Each data point corresponds to the 
average of 400 individual experimental runs, each using 512 shots and error bars 
correspond to one standard deviation obtained by bootstrapping.
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to experimentally violate the Lu–Wang uncertainty relation by more 
than three standard deviations as shown in purple in Fig. 3. The POVMs 
that give rise to the unbalanced variances are presented in Supplemen-
tary Note 9. The observation, both theoretically and experimentally, 
that UVUR can be surpassed has importance for the manner in which 
the uncertainty principle is interpreted and indicates that tighter 
uncertainty relations are required when allowing for any measure-
ment type. In Supplementary Note 10 we relate the violation of the 
Lu–Wang uncertainty relation to the more common error-disturbance 
operator uncertainty relations.

Cross-platform comparison
Our final experiment compares the performance of different platforms 
for estimating qubit rotations. This provides an indication of what 
resources may be used in a future quantum metrology network. For 
superconducting devices, we first perform simultaneous qubit rotation 
estimation using all non-neighbouring (pairs of) qubits, to minimize 
cross-talk between qubits. The mean m.s.e. and minimum m.s.e. across 
all qubits is shown in Fig. 4a,b for each device tested. Each m.s.e. is 
averaged over estimating five angles in the range θ = −0.01 to 0.01, 
repeated 120 times for each angle. For the trapped-ion and photonic 
devices only one photon, ion or pair of ions was used, hence only the 
mean m.s.e. is shown. We then repeat the experiment using only the 
best performing qubit(s), now applying error mitigation as shown in 

Fig. 4c,d. The benefits of error mitigation are most pronounced for the 
F-IBM QS1 processor as we had unrestricted access to this device. Hav-
ing restricted access to a device means each experiment takes longer, 
hence the model for the device provided by error mitigation is likely 
to be less accurate by the end of the experiment.

Discussion
Superconducting and trapped-ion devices are natural platforms for 
attaining the maximal advantage of quantum metrology and quantum 
information tasks through collective measurements. By implementing 
collective measurements on pairs of quantum states, we have been able 
to perform quantum multi-parameter estimation with a precision that 
cannot be reached classically using the same resources. There are many 
scenarios where this work may prove beneficial, particularly when there 
is an intrinsic restriction on resources. One can envision an optical sys-
tem connected to a quantum processor through optical-to-microwave 
converters47. With only a limited number of qubits, such a device could 
greatly enhance biomedical imaging or quantum communications, 
meaning these advantages may be leveraged with near-future tech-
nology. Furthermore, collective measurements can be beneficial for 
quantum tomography48, entanglement distillation for quantum com-
munication49 and quantum illumination50.

This work opens up a number of avenues for future investigation: 
a natural extension to using error mitigation for quantum metrology 

Single-copya b

c d

Two-copy

Tr
ap

pe
d-

io
n

Ph
ot

on
ic

Tr
ap

pe
d-

io
n

Ph
ot

on
ic

Superconducting

Tr
ap

pe
d-

io
n

Ph
ot

on
icSuperconducting

Tr
ap

pe
d-

io
n

Ph
ot

on
ic

Superconducting

SuperconductingMinimum MSE

0.1

0.05

M
SE

N
o 

er
ro

r m
iti

ga
tio

n

0.02

0.01
Bl Bg Cs Gu Ja Li Ma Qu Sa To Yo QS1 RA9 UIBK JQ Bl Bg Cs Gu Ja Li Ma Qu Sa To Yo QS1 RA9 UIBK JQ

Bl Bg Cs Gu Ja Li Ma Qu Sa To Yo QS1 RA9 UIBK JQ Bl Bg Cs Gu Ja Li Ma Qu Sa To Yo QS1 RA9 UIBK JQ

0.1

0.05

M
SE

Er
ro

r m
iti

ga
tio

n

0.02

0.01

0.1

0.05

0.02

0.01

0.1

0.05

0.02

0.01

Mean MSE

MSE without EM
MSE with EM

1

1

1

2

1

2

Fig. 4 | Comparing optimal measurement circuits on different quantum 
processors. a,b, The mean m.s.e. and minimum m.s.e. across all qubits with 
different quantum processors for the single- (a) and two-copy (b) measurements, 
respectively. No error mitigation is used in these figures. Each m.s.e. is averaged 
over 600 experimental runs, corresponding to five different angles, each using 
512 shots. c,d, The m.s.e. with and without error mitigation (EM) for the single- 
and two-copy measurements, respectively. In all but four cases error mitigation 
is beneficial. The data in c and d correspond to the average of 400 individual 
experimental runs, each using 512 shots. For all figures, error bars correspond 
to one standard deviation obtained by bootstrapping. The different IBM Q 

processors tested are Belem (Bl), Bogota (Bg), Casablanca (Cs), Guadalupe (Gu), 
Jakarta ( Ja), Lima (Li), Manhattan (Ma), Quito (Qu), Santiago (Sa), Toronto (To), 
Yorktown (Yo) and the F-IBM QS1 device (QS1). Also shown is the Rigetti Aspen-9 
superconducting device (RA9), JenQuant ( JQ) and the AQTION trapped-ion device 
(UIBK). For the Rigetti Aspen-9 device, only one qubit or pair of qubits was tested, 
hence the mean m.s.e. and minimum m.s.e. are equal. For the AQTION device, 
the mean m.s.e. and minimum m.s.e. are equal as only one ion or pair of ions was 
loaded into the trap. Empty spaces correspond to processors where a particular 
experiment could not be carried out.
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is error correction51. With the aid of the techniques presented here, it 
may be possible to demonstrate multi-parameter metrology that fully 
utilizes quantum resources; benefiting from both entangled probe 
states and collective measurements. By simplifying our three-copy 
measurement circuit, the theoretical limits may be approachable 
with the present generation of quantum processors. It would also be 
pertinent to study further how gate error rates and circuit complexity 
need to scale to successfully implement many-copy collective meas-
urements. Investigating further the connection between collective 
measurements and the uncertainty principle may reveal important 
aspects of fundamental physics and could lead to the development 
of tighter uncertainty relations that hold true for any measurement 
type. Finally, the ideal extension of our work is to demonstrate optimal 
collective measurements in a practical setting. We anticipate that our 
work brings this closer.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41567-022-01875-7.

References
1.	 Kacprowicz, M., Demkowicz-Dobrzański, R., Wasilewski, W., 

Banaszek, K. & Walmsley, I. Experimental quantum-enhanced 
estimation of a lossy phase shift. Nat. Photonics 4, 357–360 (2010).

2.	 Slussarenko, S. et al. Unconditional violation of the shot-noise 
limit in photonic quantum metrology. Nat. Photonics 11, 
 700–703 (2017).

3.	 Guo, X. et al. Distributed quantum sensing in a continuous- 
variable entangled network. Nat. Phys. 16, 281–284 (2020).

4.	 McCormick, K. C. et al. Quantum-enhanced sensing of a 
single-ion mechanical oscillator. Nature 572, 86–90 (2019).

5.	 Leibfried, D. et al. Toward Heisenberg-limited spectroscopy  
with multiparticle entangled states. Science 304, 1476–1478 
(2004).

6.	 Wang, W. et al. Heisenberg-limited single-mode quantum 
metrology in a superconducting circuit. Nat. Commun. 10,  
4832 (2019).

7.	 Muessel, W., Strobel, H., Linnemann, D., Hume, D. & Oberthaler, M. 
Scalable spin squeezing for quantum-enhanced magnetometry 
with Bose-Einstein condensates. Phys. Rev. Lett. 113, 103004 
(2014).

8.	 Gross, C., Zibold, T., Nicklas, E., Esteve, J. & Oberthaler, M. K. 
Nonlinear atom interferometer surpasses classical precision limit. 
Nature 464, 1165–1169 (2010).

9.	 Aasi, J. et al. Enhanced sensitivity of the LIGO gravitational wave 
detector by using squeezed states of light. Nat. Photonics 7, 
613–619 (2013).

10.	 Casacio, C. A. et al. Quantum-enhanced nonlinear microscopy. 
Nature 594, 201–206 (2021).

11.	 Holevo, A. S. Statistical decision theory for quantum systems.  
J. Multivar. Anal. 3, 337–394 (1973).

12.	 Holevo, A. S. Probabilistic and Statistical Aspects of Quantum 
Theory Vol. 1 (Springer Science & Business Media, 2011).

13.	 Kahn, J. & Guţă, M. Local asymptotic normality for finite 
dimensional quantum systems. Commun. Math. Phys. 289, 
597–652 (2009).

14.	 Yamagata, K., Fujiwara, A. & Gill, R. D. Quantum local asymptotic 
normality based on a new quantum likelihood ratio. Ann. Stat. 41, 
2197–2217 (2013).

15.	 Yang, Y., Chiribella, G. & Hayashi, M. Attaining the ultimate 
precision limit in quantum state estimation. Commun. Math. Phys. 
368, 223–293 (2019).

16.	 Conlon, L. O., Suzuki, J., Lam, P. K. & Assad, S. M. The gap 
persistence theorem for quantum multiparameter estimation. 
Preprint at arXiv https://arxiv.org/abs/2208.07386 (2022).

17.	 Heisenberg, W. in Original Scientific Papers Wissenschaftliche 
Originalarbeiten (eds Blum, W. et al.) 478–504 (Springer, 1985).

18.	 Vidrighin, M. D. et al. Joint estimation of phase and phase diffusion 
for quantum metrology. Nat. Commun. 5, 3532 (2014).

19.	 Szczykulska, M., Baumgratz, T. & Datta, A. Reaching for the 
quantum limits in the simultaneous estimation of phase and 
phase diffusion. Quantum Sci. Technol. 2, 044004 (2017).

20.	 Rehaček, J. et al. Multiparameter quantum metrology of 
incoherent point sources: towards realistic superresolution. Phys. 
Rev. A 96, 062107 (2017).

21.	 Chrostowski, A., Demkowicz-Dobrzański, R., Jarzyna, M. & 
Banaszek, K. On super-resolution imaging as a multiparameter 
estimation problem. Int. J. Quantum Inf. 15, 1740005 (2017).

22.	 Baumgratz, T. & Datta, A. Quantum enhanced estimation of a 
multidimensional field. Phys. Rev. Lett. 116, 030801 (2016).

23.	 Hou, Z. et al. Minimal tradeoff and ultimate precision limit of 
multiparameter quantum magnetometry under the parallel 
scheme. Phys. Rev. Lett. 125, 020501 (2020).

24.	 Cimini, V. et al. Quantum sensing for dynamical tracking of 
chemical processes. Phys. Rev. A 99, 053817 (2019).

25.	 Dorner, U. et al. Optimal quantum phase estimation. Phys. Rev. 
Lett. 102, 040403 (2009).

26.	 Demkowicz-Dobrzański, R., Kołodyński, J. & Guţă, M. The elusive 
Heisenberg limit in quantum-enhanced metrology. Nat. Commun. 
3, 1063 (2012).

27.	 Roccia, E. et al. Entangling measurements for multiparameter 
estimation with two qubits. Quantum Sci. Technol. 3, 01LT01 (2017).

28.	 Parniak, M. et al. Beating the Rayleigh limit using two-photon 
interference. Phys. Rev. Lett. 121, 250503 (2018).

29.	 Hou, Z. et al. Deterministic realization of collective measurements 
via photonic quantum walks. Nat. Commun. 9, 1414 (2018).

30.	 Wu, K.-D. et al. Experimentally reducing the quantum 
measurement back action in work distributions by a collective 
measurement. Sci. Adv. 5, eaav4944 (2019).

31.	 Yuan, Y. et al. Direct estimation of quantum coherence by 
collective measurements. NPJ Quantum Inf. 6, 46 (2020).

32.	 Wu, K.-D. et al. Minimizing backaction through entangled 
measurements. Phys. Rev. Lett. 125, 210401 (2020).

33.	 Nagaoka, H. in Asymptotic Theory of Quantum Statistical 
Inference: Selected Papers (ed. Hayashi, M.) 100–112 (World 
Scientific, 2005).

34.	 Nagaoka, H. in Asymptotic Theory of Quantum Statistical 
Inference: Selected Papers (ed. Hayashi, M.) 133–149 (World 
Scientific, 2005).

35.	 Czarnik, P., Arrasmith, A., Coles, P. J. & Cincio, L. Error mitigation 
with Clifford quantum-circuit data. Quantum 5, 592 (2021).

36.	 Lu, X.-M. & Wang, X. Incorporating Heisenberg’s uncertainty 
principle into quantum multiparameter estimation. Phys. Rev. Lett. 
126, 120503 (2021).

37.	 Vovrosh, J. et al. Simple mitigation of global depolarizing errors in 
quantum simulations. Phys. Rev. E 104, 035309 (2021).

38.	 Bennett, C. H., Shor, P. W., Smolin, J. A. & Thapliyal, A. V. 
Entanglement-assisted classical capacity of noisy quantum 
channels. Phys. Rev. Lett. 83, 3081 (1999).

39.	 Vatan, F. & Williams, C. Optimal quantum circuits for general 
two-qubit gates. Phys. Rev. A 69, 032315 (2004).

40.	 Conlon, L. O., Suzuki, J., Lam, P. K. & Assad, S. M. Efficient 
computation of the Nagaoka–Hayashi bound for multiparameter 
estimation with separable measurements. NPJ Quantum Inf. 7,  
110 (2021).

41.	 Pogorelov, I. et al. Compact ion-trap quantum computing 
demonstrator. PRX Quantum 2, 020343 (2021).

http://www.nature.com/naturephysics
https://doi.org/10.1038/s41567-022-01875-7
https://arxiv.org/abs/2208.07386


Nature Physics | Volume 19 | March 2023 | 351–357 357

Article https://doi.org/10.1038/s41567-022-01875-7

42.	 Erhart, J. et al. Experimental demonstration of a universally valid 
error–disturbance uncertainty relation in spin measurements.  
Nat. Phys. 8, 185–189 (2012).

43.	 Rozema, L. A. et al. Violation of Heisenberg’s 
measurement-disturbance relationship by weak measurements. 
Phys. Rev. Lett. 109, 100404 (2012).

44.	 Ozawa, M. Universally valid reformulation of the Heisenberg 
uncertainty principle on noise and disturbance in measurement. 
Phys. Rev. A 67, 042105 (2003).

45.	 Ozawa, M. Uncertainty relations for joint measurements of 
noncommuting observables. Phys. Lett. A 320, 367–374 (2004).

46.	 Branciard, C. Error-tradeoff and error-disturbance relations for 
incompatible quantum measurements. Proc. Natl Acad. Sci. USA 
110, 6742–6747 (2013).

47.	 Higginbotham, A. P. et al. Harnessing electro-optic correlations 
in an efficient mechanical converter. Nat. Phys. 14, 1038–1042 
(2018).

48.	 Massar, S. & Popescu, S. Optimal extraction of information from 
finite quantum ensembles. Phys. Rev. Lett. 74, 1259–1263 (1995).

49.	 Bennett, C. H. et al. Purification of noisy entanglement and faithful 
teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996).

50.	 Zhuang, Q., Zhang, Z. & Shapiro, J. H. Optimum mixed-state 
discrimination for noisy entanglement-enhanced sensing. Phys. 
Rev. Lett. 118, 040801 (2017).

51.	 Dür, W., Skotiniotis, M., Froewis, F. & Kraus, B. Improved quantum 
metrology using quantum error correction. Phys. Rev. Lett. 112, 
080801 (2014).

52.	 Rice, J. A. Mathematical Statistics and Data Analysis (Cengage 
Learning, 2006).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons license and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2023

http://www.nature.com/naturephysics
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Nature Physics

Article https://doi.org/10.1038/s41567-022-01875-7

Methods
Collective measurements
Here we clarify our use of terminology regarding ‘entangling’ and ‘col-
lective’ measurements. We stick to the definitions used in refs. 27–32, 
where a collective measurement is a measurement that acts on multiple 
copies of the quantum state simultaneously. An m-copy collective 
measurement thus simultaneously measures m copies of the same 
state, whereas a ‘single-copy’ measurement, or ‘separable’ measure-
ment, measures the quantum states individually. The quantum states 
themselves may consist of an arbitrary number of possibly entangled 
modes. When we refer to ‘entangling’ measurements we mean measure-
ments capable of creating entanglement between multiple copies of 
the quantum state, or alternatively, in an entangled multi-copy basis.

There are many similar concepts, which may be confused with our 
definition of a collective measurement. For example, in ref. 53 a quantum 
state with 26 entangled modes (ions) was used. In our terminology, meas-
uring the 26 ions simultaneously is a separable measurement, because 
only a single copy of the quantum state was used and consequently no 
entanglement between copies was possible. However, in principle the 
(0,2) and (1,2) schemes in ref. 53 could be used for implementing collec-
tive measurements in the sense of our definition. Similarly, ref. 54 refers 
to collective measurements as measurements of ensemble quantities 
of atoms, wholly unrelated to our terminology. In ref. 55 multi-copy 
discrimination of two quantum states is demonstrated. However, this 
multi-copy discrimination uses separable measurements, the multi-copy 
part referring to the fact that multiple (separable) measurement out-
comes are used in making a final decision. Finally, refs. 56,57 examine 
multi-copy metrology. Again, in this work, the term multi-copy carries 
a different meaning compared to our work, as only single-parameter 
estimation was considered.

Photonic experiment
The Jena quantum photonic processor ( JenQuant) is based on a single 
photon emitting colour centre in the two-dimensional material hex-
agonal boron nitride (hBN). The crystal defect introduces an effective 
two-level system into the bandgap that is excited optically. The emit-
ter is fabricated by treating a multilayer hBN crystal with an oxygen 
plasma and subsequent rapid thermal annealing58. A suitable quan-
tum emitter was then coupled to a hemispherical microcavity59. The 
resonator enhances the emission via the Purcell effect and suppresses 
noise to reduce the multi-photon probability below 0.6% at room 
temperature60. The spectrum is tunable by adjusting the resonator 
length within the free space emission linewidth of 5.76 nm (full-width 
at half-maximum) around 565 nm and has a linewidth of 0.2 nm (ref. 59).

We encode the logical qubits in the polarization of the photons and 
choose |H/V⟩ as the computational basis states |0/1⟩. The input states |0⟩, 
|1⟩, and |ψθ⟩ are set by motorized polarization optics (a half-wave plate, 
polarizer and a quarter-wave plate (QWP)). The polarizer ensures a high 
polarization extinction ratio of >105:1. The single-copy POVMs are imple-
mented by the combination of motorized QWP, half-wave plate and QWP, 
which can perform any arbitrary unitary rotation. In Supplementary Note 
4 we show the decomposition of the optimal single-copy POVMs into 
wave plate rotations. Finally, a polarizing beam splitter projects onto the 
computational basis and the photons are detected by two single photon 
detectors in both arms. JenQuant is thereby a fully universal single qubit 
quantum computer. Performing multi-qubit operations requires an 
entangling gate, such as a controlled NOT gate, which would require 
indistinguishable single photons. This in turn can be achieved by a nar-
rower resonator linewidth <124 MHz to reach a Hong-Ou-Mandel contrast 
>90% (ref. 59). Note that JenQuant does not require any error mitigation, 
partly due to the long-term stability of the system.

Superconducting experiments
The F-IBM QS1 device used is based in Ehningen. It uses an IBM Quantum 
Falcon processor and has 27 qubits. As with all IBM Quantum devices, 

the qubits are transmons. The frequency of the transmons are around 
5 GHz (refs. 61).

Error mitigation
Before running each experiment for estimating the unknown angles 
θx and θy, we implement Clifford data regression error mitigation35. 
This involves constructing a model for how a noisy expectation value 
predicted by a quantum processor is related to the true expectation 
value. In general complex models can be used, however, for quantum 
metrology, it is essential that the chosen model does not bias the esti-
mator. We are therefore required to use a simple model of the form 
θ̂x(y) = θ̂noisy,x(y) + cx(y), where θ̂noisy,x(y) is the unmitigated θx(y) value pre-
dicted by the quantum processor and cx(y) is a constant. Detail on other 
possible models that were considered, but found to bias the estimator, 
is provided in Supplementary Note 5. We use 30 known θ values in the 
range θ ∈ [−0.2, 0.2] rad to determine a value for the model cx(y). An 
example of the model fitting is shown in Fig. 1g for the F-IBM QS1 quan-
tum processor. This model is then used to estimate some unknown 
angle θ = θx = θy. Unless otherwise specified in the main text, the model 
is recalibrated after every 40 predictions of the unknown angle and the 
process is repeated to estimate each unknown angle 400 times. Our 
figure of merit is taken to be the average m.s.e. over all 400 runs.

m.s.e. = 1
400

400
∑
i=1
((θx − θ̂x,i)

2
+ (θy − θ̂y,i)

2
), (5)

where θ̂x(y),i is the ith estimate of θx(y). To obtain each of the 400 esti-
mates, we average the results of 512 repetitions of the experiment for 
each of the single-copy circuits and for the two-copy circuit. For the 
three-copy circuit, we average the results of 341 repetitions of the 
experiment to ensure equal resources are used in each experiment.

For the two-copy measurements in Fig. 3 with vx ≠ vy, a slightly dif-
ferent error mitigation process was used. At the time these particular 
data were being taken, it was not possible to recalibrate in between 
estimating the unknown angle. Hence, the calibration step was only 
performed once, immediately before estimating the unknown angle. 
To increase the utility of the error mitigation in this case, we used 30 
known angles in the range θ ∈ [−0.05, 0.05] rad.

Data availability
All data are available at the following Github repository: https:// 
github.com/LorcanConlon/Approaching-optimal-entangling- 
collective-measurements.

Code availability
All codes are available at the following Github repository: https:// 
github.com/LorcanConlon/Approaching-optimal-entangling- 
collective-measurements.
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Extended Data Fig. 1 | Effect of error mitigation on estimation performance. 
Figs (a) to (d) show the estimated values of θ, averaged over all 400 runs, before 
(blue squares) and after (red circles) applying error mitigation. Figs (a) and (b) 
((c) and (d)) correspond to estimating θx and θy respectively with the optimal 
single(two)-copy measurement. Error bars are obtained using the bootstrapping 

technique and correspond to one standard deviation. All results shown are for 
decoherence parameter ϵ = 0.5 and are obtained on the F-IBM QS1 device. Each 
data point corresponds to the average of 400 individual experimental runs, each 
using 512 shots.
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