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Quantum many-body systems with a non-Abelian topological order can host 
anyonic quasiparticles. It has been proposed that anyons could be used to 
encode and manipulate information in a topologically protected manner that 
is immune to local noise, with quantum gates performed by braiding and fusing 
anyons. Unfortunately, realizing non-Abelian topologically ordered states is 
challenging, and it was not until recently that the signatures of non-Abelian 
statistics were observed through digital quantum simulation approaches. 
However, not all forms of topological order can be used to realize universal 
quantum computation. Here we use a superconducting quantum processor to 
simulate non-Abelian topologically ordered states of the Fibonacci string-net 
model and demonstrate braidings of Fibonacci anyons featuring universal 
computational power. We demonstrate the non-trivial topological nature 
of the quantum states by measuring the topological entanglement entropy. 
In addition, we create two pairs of Fibonacci anyons and demonstrate their 
fusion rule and non-Abelian braiding statistics by applying unitary gates on the 
underlying physical qubits. Our results establish a digital approach to explore 
non-Abelian topological states and their associated braiding statistics with 
current noisy intermediate-scale quantum processors.

The discovery of topological order1 has revolutionized the understanding 
of quantum matter based on the Landau–Ginzburg symmetry-breaking 
paradigm2. Different topologically ordered phases could bear exactly 
the same symmetries and showcase topologically distinct features, such 
as long-range entanglement and the emergence of quasiparticles with 
anyonic braiding statistics3–6. They are of fundamental importance in 
understanding strongly correlated quantum phases of matter, and prom-
ise crucial applications in fault-tolerant quantum computing as well7. 

Owing to their intrinsic non-local nature, logical code spaces immune 
to arbitrary local perturbations can be constructed from the topological 
degrees of freedom of the system, and logical operations can be imple-
mented by creating, braiding and fusing anyons. In general, the braid-
ing of two anyons can be described by either Abelian or non-Abelian 
statistics, which leads to a complex phase factor or a unitary matrix 
acting on the degenerate-state manifold, respectively. Non-Abelian 
anyons are quasiparticle excitations in topologically ordered systems 
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of Fibonacci quasiparticle excitations by acting string operators on the 
prepared ground state and demonstrate their non-trivial mutual statis-
tics by braiding them with sequences supporting universal single-qubit 
logic gates. We extract the characterizing monodromy matrix and the 
quantum dimension of the Fibonacci anyon from the measured fusion 
results, which unambiguously indicates that the quasiparticle excita-
tions created in our experiment are indeed Fibonacci anyons.

Framework and experimental setup
We consider the Fibonacci string-net model—the Levin–Wen model—
which is the simplest string-net model supporting braiding-universal 
topological quantum computing6. The corresponding Hamiltonian is 
defined on a honeycomb lattice with spins living on the edges (Fig. 1b):

H = −∑
v
Qv −∑

p
Bp, (1)

where Qv denotes the three-body vertex operator that constrains 
the string types meeting at a trivalent vertex, and Bp denotes the 
twelve-body plaquette operator that measures the ‘magnetic flux’ 
through a plaquette and provides the dynamics for string-net con-
figurations6. The ground state of H is topologically ordered and  
satisfies 〈Qv〉 = 〈Bp〉 = 1 for all vertices v and plaquettes p. The quasiparti-
cle excitations are Fibonacci anyons satisfying the following fusion rule:

τ × τ = 1 + τ, (2)

where 1 and τ denote the vacuum and Fibonacci anyon, respectively. 
They can be created and manipulated by string operators42 (Fig. 1b,c). 
Apparently, preparing the ground state of H and manipulating Fibonacci  
anyons pose a serious challenge due to the intricate multi-body  
plaquette operators involved in the model. To overcome this difficulty, 
we optimize our device and exploit efficient quantum circuits, which 
are obtained through the variational unitary synthesis technique43, 
to prepare the desired non-Abelian ground state and use the idea of 
digital quantum simulation to implement creations and braidings of 
Fibonacci anyons (Methods and Supplementary Section III).

Our experiments are performed on a flip-chip superconducting 
quantum processor with frequency-tunable transmon qubits arranged 

that obey non-Abelian braiding statistics. They are the building blocks 
of topological quantum computing8.

Realizing non-Abelian topologically ordered states and their 
associated non-Abelian anyons has been a long-sought-after goal in 
condensed-matter physics8,9. Exciting progresses have been made 
in both theory10–15 and experiment16–21. Yet, the direct observation of 
non-Abelian exchange statistics has remained elusive so far. In recent 
years, notable advances have been achieved towards the fabrication 
of programmable quantum platforms such as superconducting cir-
cuits22–25, Rydberg atomic arrays26, photons27,28 and trapped ions29,30, 
giving rise to unprecedented opportunities in the synthesis and explo-
ration of increasingly complex topological quantum states31–34. Along 
this direction, non-Abelian statistics has been recently observed by 
simulating the projective Ising anyons in the toric-code model35,36 and 
creating the ground-state wavefunction of non-Abelian D4 topological 
order37. However, neither of the braidings of anyons realized in these 
experiments alone sustain a universal gate set. The Ising anyons are 
related to the Witten–SU(2)–Chern–Simons theory at level k = 2, where 
the SU(2) model is computationally universal for k = 3 or k ≥ 5 (ref. 38). 
For the quantum double model of the finite group (including D4), the 
gate set realized by braiding is finite and is not universal39. With current 
noisy intermediate-scale quantum processors, realizing topological 
orders hosting non-Abelian anyons with universal computational power 
demands an elaborate design of device-adapted quantum circuits com-
bined with the state-of-the-art gate fidelity and coherence time, which is 
exceedingly challenging and has evaded experiment thus far.

Here we report the experimental realization of Fibonacci string-net 
states6,40, which are predicted to host non-Abelian Fibonacci anyons 
carrying universal computational power41 (Fig. 1a), with 27 super-
conducting transmon qubits. We upgrade our device by optimizing 
the device fabrication and controlling process, and execute efficient 
quantum circuits obtained by variational algorithms to prepare the 
desired non-Abelian ground state of the string-net Hamiltonian. We 
measure the multi-body vertex and plaquette operators, yielding aver-
age expectation values of 0.94 and 0.58, respectively. The topological 
order of the prepared states is characterized by measuring the topologi-
cal entanglement entropy, whose averaged value reaches −0.82, which 
is well below zero (for a topologically trivial state), and −0.69 (for the Z2 
topologically ordered toric-code state). In addition, we create two pairs 
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Fig. 1 | Fibonacci anyon and string-net model. a, World line of braiding 
Fibonacci anyons. We create two pairs of Fibonacci anyons from vacuum, braid 
the middle two and then fuse them. In terms of topological quantum computing, 
such a braid will transfer the initial logical state ||0̄⟩ to the logical state 
|Ψ ⟩L = ϕ−1e4πi/5 ||0̄⟩ + ϕ−1/2e−3πi/5 || ̄1⟩, which can be detected by measuring the 
fusion results of the two pairs of anyons. b, Fibonacci string-net model is defined 
on a honeycomb lattice, which, in turn, is constructed out of the underlying 
square lattice that depicts the geometry for the transmon qubits of our quantum 
processor. The Qv and Bp operators are three- and twelve-body projectors acting 

on the qubits associated with each vertex and plaquette, as highlighted in olive 
and blue, respectively. A pair of Fibonacci anyons can be created at the endpoints 
(red dots) of an open string operator (coral line), which can be extended and 
turned around by F and R moves. c, Effects of F move (up) and R move (down). The 
F-move (R-move) operator acts on five (three) qubits circled by the dashed lines, 
which extends (adjusts the direction of) the string operator and moves the 
Fibonacci anyon along (across) the plaquettes (Methods and Supplementary 
Section I.E).
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in a square lattice36. We select 27 neighbouring qubits and construct a 
honeycomb lattice with three plaquettes out of the underlying square 
lattice (Extended Data Fig. 1). The qubits living on the edges of the 
honeycomb lattice are used for implementing the string-net Hamil-
tonian H, and the other ones serve as ancillary qubits to facilitate the 
implementation of multi-qubit string operators. Arbitrary single-qubit 
gates can be realized for each qubit, whereas two-qubit controlled-Z 
gates can be implemented on an arbitrary neighbouring qubit pair 
connected by a tunable coupler. By optimizing the device fabrication 
and controlling process, we push the median lifetime of these qubits to 
117 μs and the median simultaneous single- and two-qubit gate fidelities 
to around 99.96% and 99.50%, respectively. This enables us to success-
fully prepare the desired non-Abelian topological ground state of H and 
implement the braidings of Fibonacci anyons with quantum circuits of 
depths up to 100. Supplementary Section III.A provides the calibration 
procedures and detailed parameters of the device.

Ground-state preparation
We prepare the ground state of H by utilizing the fact that all Qv and 
Bp are projectors commuting with each other. Noting that the N-qubit 
product state |0〉⊗N is an eigenstate of all Qv, the ground state |G〉 can 
be expressed as

|G⟩ ∝∏
p
Bp|0⟩

⊗N =∏
p

1
1 + ϕ2 (B

0
p + ϕB1p) |0⟩

⊗N, (3)

where Bsp  with s ∈ {0, 1} is a twelve-body plaquette operator and 
ϕ = (√5 + 1)/2  is the golden ratio. For an independent type-0 string 
loop |0〉⊗⋯⊗|0〉, the B0p operator leaves the configuration unchanged, 
whereas the B1p operator changes it to a type-1 string loop |1〉⊗⋯⊗|1〉 
according to the fusion rule 1 × τ = τ (ref. 6). Thus, the projector Bp for 
isolated string loops acting on the initial state |0〉⊗N can be implemented 
by randomly choosing one qubit from the plaquette p, preparing  
it onto the state 1

√1+ϕ2
(|0⟩ + ϕ |1⟩)  first with a single-qubit gate 

US =
1

√1+ϕ2
( 1 ϕ
ϕ −1 )  and then successively applying controlled-NOT 

(CNOT) gates on the rest of the qubits, with the chosen qubit being the 
control qubit. Furthermore, we use the F moves to entangle different 
isolated loops. The ground state can be prepared by creating isolated 
loops and entangling them in the honeycomb lattice layer by layer. 
Such an approach is efficient, in the sense that the circuit depth scales 
only linearly with the number of plaquettes (Methods)36,44.

The quantum circuit for the step-by-step preparation of a 
three-plaquette ground state is sketched in Fig. 2a, which is composed 
of single-qubit US gates, CNOT gates and F-move gates. The F-move 
gates can be further decomposed into multi-qubit-controlled unitary 
gates and CNOT gates (Fig. 2b). In our experiments, further compila-
tions are required to fit the circuit to the nearest-neighbour geometry 
of our quantum device with native gates (that is, arbitrary single-qubit 
gates and the two-qubit controlled-Z gate). However, direct decom-
position of the five-qubit F move is expensive and would result in a 
circuit with a depth of around 200 to prepare the ground state, which 
is impractical to reliably implement with a system size as large as 27 
qubits for the state-of-the-art superconducting processors. We elude 
this dilemma by exploiting a variational approach43 (Methods) to 
efficiently implement the three- and five-qubit F-move operations. 
The process infidelity between the synthetic unitary U and target 

unitary V, which is defined as 1 − |Tr (U†V)|
4n

, where n is the qubit number, 

is optimized to be below 10−5. We note that this variational approach 
is device adapted and can substantially suppress the circuit depth for 
implementing F moves. Its scalability is also assured by the fact that F 
moves act locally and we only need to variationally approximate the 
F moves up to five qubits.

With this greatly simplified implementation of F moves, we first 
prepare the ground state of H step by step (Fig. 2a). We measure the 
expectation values of Qv and Bp after each step, with the results shown 
in Extended Data Fig. 2. Although all the Qv operators are diagonal in 
the computational basis and hence can be directly measured in the 
experiment, the Bp operators involve 99,328 twelve-body Pauli terms 
in decomposition and require 290 twelve-body measurements under 
different Pauli bases. The average values of Qv and Bp after preparing 
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Fig. 2 | Ground-state preparation. a, Illustrative quantum circuit for preparing 
the ground state with time flowing to the right. Starting with all the qubits in the 
|0〉 state, we project each plaquette to the ground state of the corresponding Bp 
operator in an order indicated by the yellow hexagons. The circuit consists of 
single-qubit gate US, CNOT gates and F-move gates, which will be decomposed 
further into elementary gates that are native to our quantum processor.  

b, Quantum circuits for implementing the F moves shown in a. c, Measured 
〈Qv〉 and 〈Bp〉 for the non-Abelian topological ground state prepared in our 
experiment. A repetition number of 3,000 (300,000) is used to obtain the 
probability distributions on the computational basis, which are corrected 
with iterative Bayesian unfolding methods58,59 to mitigate the readout error for 
obtaining 〈Qv〉 (〈Bp〉).
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the three-plaquette ground state are 0.88 and 0.36, respectively. For 
the preparation of the three-plaquette ground state, we can further 
simplify the circuit to a depth of 53 by directly targeting the final state 
instead of the whole unitary during the variational search, which can 
generate a state with an infidelity to the target state as low as 10−5 in 
theory. We prepare the ground state with this further simplified circuit 
as well. The measured expectation values of Qv and Bp are displayed in 
Fig. 2c, with average values of 0.94 and 0.58, respectively. These appar-
ently larger-than-zero values indicate that the non-Abelian topological 
state prepared in our experiment indeed has a large overlap with the 
ideal ground state of H, showing the efficiency and effectiveness of our 
approaches. In the following, we use the prepared ground state through 
the further simplified circuit to study the exotic properties of the Fibo-
nacci string-net model, including distinct topological entanglement 
entropy and braiding statistics of Fibonacci anyons.

Topological entanglement entropy
To characterize the topological order of the prepared ground state 
|G〉, we measure its topological entanglement entropy, which is a uni-
versal constant reflecting the topological properties of entanglement 
that survive at arbitrarily long distances45,46. We deliberately choose 
three subregions A, B and C (Fig. 3a), and the topological entanglement 
entropy (denoted as Stopo) can then be obtained through

Stopo = SA + SB + SC − SAB − SBC − SAC + SABC, (4)

where AB indicates the union of A and B and SI(I = A, B, C, AB, BC, AC, 
ABC) denotes the von Neumann entanglement entropy of a subsystem 
I: SI = –Tr(ρIlnρI), where ρI is the reduced density matrix. For the 
string-net model considered in our experiment, it is necessary to map 
the wavefunction to a new lattice with two qubits per boundary edge 
so that the partitioning can be implemented in a symmetric way46. From 
the perspective of topological quantum field theory, Stopo is directly 
related to the total quantum dimension D of the medium by Stopo = –lnD 
(refs. 45,46). For the Fibonacci string-net model, we have D = 1 + d 2

τ , 
where dτ = ϕ is the quantum dimension of a Fibonacci anyon.

Directly measuring Stopo requires quantum state tomography 
in general, which is resource consuming and impractical for the 
system size considered in this work. Alternatively, one can measure 
the second-order Rényi entropy, from which Stopo can be estimated 
up to an exponentially small deviation for the Fibonacci string-net 
model47. In our experiment, we adopt this approach and exploit the 
recently developed randomized measurement method to attain Stopo  
(refs. 33,48,49). We extend the ground state to a new lattice by copy-
ing the three qubits (labelled by Q(7,11), Q(7,13) and Q(5,11)) on the common 
boundary edges of the three plaquettes to the neighbouring free qubits 
(Q(9,13), Q(5,13) and Q(5,9)) with CNOT gates; therefore, each common edge 
is associated with two qubits and can be symmetrically separated into 
different subsystems46 (Methods and Supplementary Section I.G). The 
numbers in the subscript of Q denote the row and column indices of 
the corresponding qubits (Extended Data Fig. 1).

Our results are summarized in Fig. 3b,c. In Fig. 3b, we plot the distri-
butions of the measured entanglement entropies of all the subsystems 
involved, with qubit numbers ranging from three to eleven. Ideally, the 
entanglement entropy of a subsystem scales linearly with its boundary, 
which is a reminder of the area-law entanglement50 satisfied by the 
ground state |G〉. In our experiment, all the measured entanglement 
entropies are slightly above the predicted values, which is consistent 
with numerical estimates considering the control and decoherence 
errors obtained during the calibration procedures (Supplementary 
Section III). The nine extracted Stopo estimates are also slightly above 
the predicted value (Fig. 3c). The mean value of the measured Stopo 
is −0.82, which is significantly lower than zero (for the topologically 
trivial state) and –ln2 ≈ 0.69 (for the Z2 topologically ordered state). 
This provides strong evidence for the Fibonacci topological order of 
the ground state |G〉.

Braiding statistics
The topological order realized above supports a coveted type of  
quasiparticle—the Fibonacci anyons—whose braiding statistics can 
give rise to universal topological quantum computation8. To demon-
strate the non-trivial braiding statistics of Fibonacci anyons, we create 
two pairs of them from vacuum living on two plaquettes (Fig. 4a). We 
then braid them following different sequences by the corresponding 
string operators. After braiding, we fuse them pairwise and measure 
the fusion outcomes to detect their braiding statistics. We encode a 
logical qubit into four Fibonacci anyons as ||0̄⟩ = ||(τ × τ)1, (τ × τ)1⟩  and 
|| ̄1⟩ = ||(τ × τ)τ, (τ × τ)τ⟩, and denote the braiding operations of the first 
and middle two anyons as σ1 and σ2, respectively (Fig. 4b). We note that 
σ1 and σ2 are unitary logical gates and their matrix representation can 
be calculated by the F and R moves (Methods and Supplementary  
Section I.B).

Starting with the prepared ground state, we create two pairs of 
Fibonacci anyons labelled as τ1,2,3,4 by acting on two short type-1 open 
strings. In the logical space, we initialize the system into state ||0̄⟩. We 
consider five different braiding sequences (Fig. 4c) and plot the cor-
responding measured fusion results in Fig. 4d(i). (1) Without braiding: 
as shown in Fig. 4d(i), we measure a probability of 0.81 and 0.04 for 
both pairs fusing to 1 and τ, respectively, which confirms the theoretical 
prediction that anyons created in pairs from vacuum will annihilate 
back into the vacuum without braiding. (2) Braiding of the middle two 
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A, B and C used to measure the topological entanglement entropy Stopo. For 
the eleven-qubit subsystem selected, there are three legitimate divisions of A, 
B and C. In addition, there are three different orientations of the eleven-qubit 
subsystem. Thus, from a single randomized measurement on all the eighteen 
qubits, we have nine different estimates of Stopo, which will converge to each 
other in the thermodynamic limit. b, Distribution of the rescaled second Rényi 
entropy S2 measured for all the involved subsystems. The pentagon dots show 
the experimental data and lines indicate the corresponding ideal theoretical 
values. The entropies of subsystems with boundary lengths of three and four are 
coloured in blue and orange, respectively. The data are rescaled to reflect the 
area-law entanglement, where α ≈ 0.94 is the rescaling factor specified by the 
Fibonacci string-net model46. c, Distribution of the nine extracted topological 
entanglement entropies, with an average value of −0.82 (green dashed line). The 
error bar denotes the standard error of the mean. The black dashed line indicates 
the ideal theoretical value. Supplementary Section III.C provides more detailed 
error analyses of the data.
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Fibonacci anyons once: this will change the fusion output for both  
pairs, resulting in a superposition state in the logical space as 
σ2 ||0̄⟩ = ϕ−1e4πi/5 ||0̄⟩ + ϕ−1/2e−3πi/5 || ̄1⟩. In our experiment, the measured 
probabilities of the two pairs after braiding fusing to 1 and τ are 0.32 
and 0.56, respectively. This agrees with the theoretical prediction and 
verifies the non-Abelian fusion rule in equation (2); (3) and (4) prepara-
tion and verification of a logical eigenstate of σ2 through braidings: 
from the Yang–Baxter equation51,52, σ1σ2 ||0̄⟩  is an eigenstate of σ2. This 
is verified by our experimental result that the difference between the 
fusion results before and after implementing an additional σ2 on σ1σ2 ||0̄⟩ 
is negligible (Fig. 4d(iii),(iv)); (5) braiding of the middle two Fibonacci 
anyons twice, which provides information about the monodromy 
matrix M that characterizes the mutual statistics of Fibonacci anyons 
from the perspective of modular tensor category theory40. The ele-
ments of M can be written in the form of a logical observable as 
Mττ = ⟨0̄||σ2σ2 ||0̄⟩ , where M11, M1τ and Mτ1 equal 1 since the braiding with 
vacuum 1 does not change the fusion results. From the experimental 
result shown in Fig. 4d(v), we obtain that Mττ = −0.39, which agrees well 
with the theoretical value of −1/ϕ2 ≈ −0.38. The measured quantum 
dimension of the Fibonacci anyon is ϕexp = 1.60, very close to the ideal 

value of dτ = ϕ ≈ 1.618. This gives a piece of clear evidence that the 
quasiparticle excitations we created in the experiment are indeed 
Fibonacci anyons. We note that a logical Hadamard gate has recently 
been implemented by simulating braiding sequences of boundary 
Fibonacci anyons with two nuclear spin qubits53.

We mention that the braidings carried out in our experiment 
involve no Hamiltonian dynamics of quasiparticle excitations. 
As a result, they are not endowed with topological protection that  
naturally arises from an energy gap separating the many-body degen-
erate ground states from the low-lying excited states. This is distinct 
from conventional protocols for braiding anyons8, and therefore, our 
experiment is more of a quantum simulation of braiding Fibonacci 
anyons in this sense. This also explains the evident small deviations 
between the experimentally measured fusion results after braidings 
and the ideal theoretical predictions. Without topological protec-
tion, inevitable experimental imperfections including gate errors and  
limited coherence time would cause a sizable infidelity for the final 
states after braidings. To leverage the Fibonacci anyons in our experi-
ment for topologically protected quantum computing, an active error 
correction procedure such as the Fibonacci Turaev–Viro code54 must 
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Fig. 4 | Braiding statistics. a, Creation and fusion of Fibonacci anyons, which 
can be described by the world lines (top), with time flowing from down to up. 
The corresponding operations in the string-net picture are shown in the bottom 
panel, where two pairs of Fibonacci anyons can be created and fused with 
two F moves and their inverses, respectively. The four anyons are labelled as 
τ1,2,3,4 and the fan sectors sketch the original hexagon plaquettes. b, World-line 
representation and the corresponding string-net picture for the two braiding 
operations σ1 (up) and σ2 (down). We use R moves to transfer the anyons across 
different plaquettes, and F moves to move them along the edge (right panel). 
c,d, Five braiding sequences (c) and the fusion results of Fibonacci anyon pairs 
at the end of each braiding (d). To demonstrate the braiding statistics, we create 

two pairs of Fibonacci anyons from vacuum, braid them along five different 
paths and then fuse them. Although the direct fusion of two anyon pairs right 
after their creation would lead the system back to vacuum (i), other braiding 
sequences will result in non-trivial fusion results ((ii)–(v)). In particular, we 
prepare the system into an eigenstate of σ2 by applying σ1σ2 on the ground state 
(iii), which is verified by the similar fusion results observed after applying σ2σ1σ2 
on the ground state (iv). In addition, we can also extract the monodromy matrix 
by applying σ2σ2 and measuring the fusion result (v). The fusion results are 
obtained by measuring the two physical qubits (Q(5,13) and Q(5,9); Extended Data 
Fig. 1) corresponding to the two string types (top-right corner in d) (Methods 
and Supplementary Section I.E).
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be enforced during the braiding process. We leave this interesting and 
important topic for future study.

Conclusion and outlook
In summary, we have experimentally prepared the ground state of 
the Fibonacci string-net model with non-Abelian topological order 
on a programmable superconducting quantum processor. We dem-
onstrated the creation, braiding and fusion of Fibonacci anyons by 
applying appropriate string operators on the prepared ground state. 
Unlike Ising-type anyons35,36 and those related to the D4 topological  
order37, the Fibonacci anyons demonstrated in our experiment  
support universal topological quantum computing. Combined with the 
potential inclusion of the error correction procedure54 in the future, 
our results pave an alternative path towards fault-tolerant quantum 
computation.

The controllability of the superconducting platform and the 
effectiveness of our variational approach in simplifying the quantum 
circuits demonstrated in our experiment open up several new avenues 
for future studies of other exotic topologically ordered states of mat-
ter, as well as their related non-Abelian quasiparticle excitations with 
peculiar braiding statistics. In particular, it would be interesting and 
important to implement the generalized string-net models that break 
tetrahedral55 or time-reversal symmetry40, admit symmetry-enriched 
topological orders56 and others described by unitary fusion catego-
ries with fusion multiplicities57. Experimental realizations of such 
topologically ordered non-Abelian states would not only deepen our 
understanding of these unconventional phases of matter but also 
provide valuable guidance for potential applications.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41567-024-02529-6.
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Methods
Fixed-point wavefunction
The Hamiltonian in equation (1) of the string-net model is designed to 
capture the most essential fixed-point wavefunctions, which are super-
positions of various string-net configurations. These configurations are 
characterized by the geometry and the types of an ensemble of strings. 
The fixed-point wavefunction captures the universal properties of the 
string-net condensed phases in (2+1) dimensions, which can describe 
all the so-called ‘doubled’ topological phases. Here we present the exact 
ground-state wavefunction in the string-net picture and the correspond-
ing quantum state simulated on physical qubits. Denoting the wavefunc-
tion as Φ, it is uniquely specified by the following four local constraints6:

where the shaded regions represent arbitrary string-net configura-
tions. da is the quantum dimension of string type a and the six-index 
tensor F has a one-to-one correspondence to the doubled topological 
phases. Since we only consider the self-dual model in this work, all the 
string configurations discussed here are unoriented. The wavefunc-
tion Φ is precisely the ground state of the Hamiltonian in equation (1).

According to these local constraints, the general value of Φ 
can be exactly calculated for any string-net configurations. For a 
given geometry g, the wavefunction Φ becomes a function of string  
types {s}. For example,

where Φ(vacuum) = 1 following the notation from another work40. 
One can also calculate the amplitudes of different string types on two 
independent loops:

From these two examples, we see that the wavefunction Φ can be recog-
nized as a function to represent the linear relations between different 
string-net configurations. Once the geometry of the configuration is 
determined, it becomes a function of string types.

In the quantum circuit scheme, we simulate the linear relations 
described by symbol F, which corresponds to multi-controlled unitary 
gates (Fig. 2b). From equation (5d), the F move changes the type of one 
string according to its four connected strings, which is a five-qubit gate. 
We can use a simplified quantum circuit to realize the F move when there 
is some prior information on the string-net configuration (Fig. 2). Here 
we denote the quantum circuit corresponding to the complete and 
simplified F move as CF for brevity, whereas a detailed description can 

be found in Supplementary Section II.B. Now we give the quantum state 
that simulates the state Φ with the geometry g = 1 loop. For the Fibonacci 
string-net model, Φ1(s1 = 0) = d0 = 1 and Φ1(s1 = 0) = d1 = ϕ according to 
equation (6). The corresponding normalized quantum state reads60,61

|G1⟩ =
1

√1 + ϕ2
(|0⟩ + ϕ |1⟩) = US |0⟩ , (8)

where US =
1

√1+ϕ2
( 1 ϕ
ϕ −1 ). More precisely, the state Φ under the geom-

etry of one isolated loop is

where 〈0|G1〉 on the denominator is for the consistence with 
Φ(vacuum) = 1 (ref. 40).

Similarly, we can simulate the wavefunction Φ of two independ-
ent loops with |G2〉 = US|0〉 ⊗ US|0〉. Now, we consider a more complex 
geometry of the two connected loops:

The corresponding quantum state in the quantum circuit scheme is
|Gabc⟩ = CF |G3⟩ = CF (|G2⟩ ⊗ |0⟩)

= CF (US |0⟩ ⊗ US |0⟩ ⊗ |0⟩) ,
(11)

where |G2〉 corresponds to the configuration of two isolated string loops 
a and b, |G3〉 corresponds to the configuration of two string loops a  
and b connected by string j and CF is the quantum circuit corresponds 
to Fbacab0 in equation (10).

A simplified string-net wavefunction representation under the 
geometry shown in Fig. 2 can be expressed as
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In the quantum circuit scheme, the initialization of an independent 
polygon can be realized by implementing US first, and then entangling 
the remaining strings of this polygon by CNOT gates controlled by the 
qubits to which US applies. We call this operation as a ‘copy’ since this 
operation prepares multiple qubits to the same quantum state cor-
responding to the same string type. To merge the separated hexagons, 
we use the type-0 strings to connect them and use F moves to obtain 
the desired geometry, similar to the process shown in equation (10). 
As shown in Fig. 2, the first F move Fbai1ab0 and the second F move Fcbi2bc0   
are realized by a three-qubit gate since there are two repetitive indexes 
for each of them. The last F move Fcai3i1 i2b

 is realized by a five-qubit gate as 
the general case. The number of edges changes in equation (12), where 
we add/remove auxiliary qubits to/from the corresponding quantum 
circuit accordingly. The decomposed circuits of the other multi-qubit 
gates corresponding to the F move and the methods to remove qubits 
are described in Supplementary Section II.B.

Fixed-point Hamiltonian
An exactly solvable lattice spin Hamiltonian has been introduced6 in  
the form of equation (1) with the fixed-point wavefunction Φ as the 
ground state. In this Hamiltonian, the Qv operator is defined as

Qv||ijk⟩v = δijk||ijk⟩v, (13)

where the wavefunction |ijk〉v represents the types of three strings 
meeting at vertex v, and the tensor δijk corresponds to the fusion rules 
for specific anyons. For the Fibonacci anyon, valid fusion rules are

1 × 1 = 1, 1 × τ = τ × 1 = τ, τ × τ = 1 + τ, (14)

which gives δijk = 1 if ijk ∈ {000, 011, 101, 110, 111} and δijk = 0 otherwise54.
Meanwhile, Bp corresponds to the local constraints in equations (5a)– 

(5d) that uniquely specify the wavefunction capturing the properties 
of topologically ordered states. It is a sum of closed string operators 
describing particle and antiparticle pairs created from vacuum, moved 
along the edges of a plaquette (Fig. 1b), and annihilated back to vacuum. 
In the Fibonacci string-net model, Bp is defined as

Bp =
1

1+ϕ2
(B0p + ϕB1p) , (15)

where s ∈ {0, 1} represents the string types. Bsp changes the state on the 
six edges of the plaquette p controlled by the state on the six outer links 
of p. The explicit algebraic form of Bsp is presented in the ‘String opera-
tors’ section as the smallest closed string operator along the edge of 
one plaquette, which describes the process of creating a pair of type-s 
anyons, moving around this plaquette and fusing to vacuum.

String operators
The quasiparticle excitations live at the endpoints of the string opera-
tors. In Fig. 1c, we illustrate how the F and R moves extend the string 
operator and turn its direction. Here we give the explicit algebraic 
form to create, move and fuse these quasiparticle excitations in the 
string-net picture. In the main text, we have mentioned that we use the 
tailed string-net picture42 where the tails represent the quasiparticle 
excitations located at the endpoints of the string operator. We also 
use this picture to conveniently describe the creation and fusion of 
these excitations.

As shown in Extended Data Fig. 3a, the creation of a pair of type-s 
excitations from vacuum can be described as adding a short type-s 
open string. Since one can erase or add the null (vacuum) strings at 
will40,52, the type-s open string is connected to the string net by the null 
string. Then, we use one F move to turn this configuration into a tailed 
string net where the endpoints of the string operator are well defined. 
The fusion of these excitations can be implemented by connecting the 
tails with F move (Extended Data Fig. 3b). Under this framework, the 

algebraic form of the string operator is the same as that in ref. 6 for 
moving quasiparticles. The creation and fusion are defined near the 
endpoints of the string operator and exhibit some ambiguity, which 
is not important for our purposes since it does not affect the braid-
ing statistics of the excitations40. For the closed string operators, the 
creation and fusion operation will introduce a constant factor related 
to the quantum dimension of type-s string, as discussed in more detail 
subsequently.

We consider the closed string operator Bsp, which can be regarded 
as creating a pair of type-s excitations from vacuum, winding them 
around in this plaquette, and then annihilating them to the vacuum. 
As shown in Extended Data Fig. 4, we create a pair of type-s excitations 
at string a with Fss0aaa′. Then, we move the tail on the left around this 
plaquette with F gbasa′b′⋯F lafsf′a′. Finally, we annihilate these two excitations 
to vacuum with Fsa′aa′s0 . According to the normalization convention6, 
Fss0aaa′ =

va′
vsva

δsaa′  and Fsa′aa′s0 = va
vsva′

δsaa′ , where v represents the square  
root of the quantum dimension d. The product of these two terms is a 
constant factor 1/ds, which is eliminated by equation (5b) considering 
the fact that Bsp create a type-s closed loop. The type-s string operator 
on this plaquette can be expressed as

where Bsp  does not change the types of the six outgoing strings  
connected to the hexagon.

As the endpoints of the string operator, the tails always have a 
definite string type that matches the type of the corresponding string 
operator. Consequently, we do not attach physical qubits to the tails 
since there is no degree of freedom for their types. However, the tails 
representing the fusion results have multiple values for non-Abelian 
anyons and require to be captured by physical qubits (Fig. 4 and 
Extended Data Fig. 3). For example, in the implementation of (closed) 
string operator Bsp, the first movement of excitation is implemented 
by F gbasa′b′. Although it has six indexes, the value of s is predetermined as 
the type of the simple string operator and does not occur in the quan-
tum circuit scheme. The most complicated part in the circuit imple-
mentation of simple string operators is to apply four-qubit gates, 
different from the cases of preparing the ground state and the projec-
tive measurement of the plaquette operator Bp where five-qubit gates 
are involved44,62. A more detailed description to implement these 
multi-qubit gates is given in Supplementary Section II.

Fusion space
Non-Abelian anyons have multiple fusion outputs and can be used 
for constructing the topologically protected logical qubits. In this 
work, we use four Fibonacci anyons with the vacuum total charge to 
encode one logical qubit. The measurement results of the logical 
qubit can be obtained by measuring the fusion outcomes of the first 
or last two anyons. The fusion results of the first and last two anyons 
should be the same according to charge conservation36. The quantum 
gates implemented on logical qubits are realized by the braiding 
operators, whose matrix representations are associated with the 
encoding scheme. A common calculation method is through the 
fusion tree notation63.

The braiding operator σ1 in our encoding scheme of 
||0̄⟩ = ||(τ × τ)1, (τ × τ)1⟩ and || ̄1⟩ = ||(τ × τ)τ, (τ × τ)τ⟩ can be calculated by the 
R matrix of Fibonacci theory as
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Furthermore, the braiding operator σ2 is calculated by the F and R 
matrices of Fibonacci theory as

According to the matrix representations of the F and R move, 

σ1 = ( e
−4πi/5 0
0 e3πi/5 )  and σ2 = ( ϕ−1e4πi/5 ϕ−1/2e−3πi/5

ϕ−1/2e−3πi/5 −ϕ−1 ) . In the logical 

space, processes (2)–(5) (Fig. 4c(ii)–(v), respectively) are expressed as

σ2 ||0̄⟩ = ϕ−1e4πi/5 ||0̄⟩ + ϕ−1/2e−3πi/5 || ̄1⟩ , (19a)

σ1σ2 ||0̄⟩ = ϕ−1 ||0̄⟩ + ϕ−1/2 || ̄1⟩ , (19b)

σ2σ1σ2 ||0̄⟩ = ϕ−1e−4πi/5 ||0̄⟩ + ϕ−1/2e−4πi/5 || ̄1⟩ , (19c)

σ22 ||0̄⟩ = −ϕ−2 ||0̄⟩ + √3ϕ − 4e3πi/10 || ̄1⟩ , (19d)

respectively.
We notice that equation (19d) describes a three-step process defin-

ing the elements Mab of the monodromy matrix40: (1) create two particle– 
antiparticle pairs (a, ā,b, b̄) from vacuum; (2) braid particle a around 
particle b; and (3) annihilate both pairs to the vacuum, which is exactly 
the process shown in Fig. 4c(v). In the Fibonacci string-net model, the 
amplitude of the logical ||0̄⟩ measured in process (5) gives the value of 
Mττ, denoted as Mττ = ⟨0̄||σ2σ2 ||0̄⟩. By the theory of modular tensor cat-
egory64, the element Mττ is a real negative value taking the form of −1/d2, 
where d is the quantum dimension of the quasiparticle excitation. In 
our experiment, we obtain Mττ ≈ −0.39, which is the negative square 
root of the experimentally measured probability for the state |00〉 in 
Fig. 4d(v). Consequently, an experimental estimation for the quantum 
dimension of the Fibonacci anyon is dτ = √−1/Mττ ≈ 1.60.

Circuit implementation
The original circuits for preparing the ground state and realizing dif-
ferent types of F move are compiled to fit the native gate set (that is, 
arbitrary single-qubit gates and two-qubit CZ gates) and the layout 
geometry of the processor. We tackle this problem by exploiting the 
variational unitary synthesis technique, which can be divided into a 
discrete optimization part searching for the best circuit architecture 
and a continuous optimization part finding the best set of single-qubit 
rotation angles. In practice, we adopt the recently introduced CPFlow 
package43 to design the desired circuits.

The circuits for ground-state preparation and anyon braiding in 
this work are composed of scalable modules and can be optimized by 
blocks. In addition, for the ground-state preparation, we can further 
set the state vector of the ground state as the target and optimize the 
circuit as a whole, which further reduces the circuit depth. Before run-
ning the circuit, further alignments are executed to reduce the impact of 
decoherence errors, and Carr–Purcell–Meiboom–Gill gates are inserted 
to echo low-frequency noises. The experimental circuits for preparing 
the ground state are explicitly displayed in Supplementary Section III.B.

Randomized measurement
In our experiment, we adopt the randomized measurement method to 
obtain the second-order Rényi entropies and calculate the topologi-
cal entanglement entropy33,48,49. This method is achieved by applying 
random unitaries, which are products of single-qubit unitaries sampled 
from the circular unitary ensemble, to the system and measuring the 
final states on the computational basis. For each instance of random 
unitaries, we repeat the measurement many times to sample the prob-
abilities of the bit strings. The second-order Rényi entropy can be 
computed as

S2( ρA) = − ln(Tr (ρ2A))

= − ln(2NA ∑
w,w′

(−2)−H(w,w
′)P(w)P(w′)),

(20)

where NA and ρA are the qubit number and density matrix of system 
A, respectively. Here w and w′ are the binary strings and H(w, w′) is 
the Hamming distance between them. P(w) denotes the probability 
of observing w. The average is over different instances of random 
unitaries in randomized measurement. During the calculation, we 
also use the iterative Bayesian unfolding scheme to mitigate meas-
urement errors and alleviate undersampling bias (Supplementary 
Section III.D).

After preparing the ground state, we apply random unitaries to an 
18-qubit system and measure its final state, from which we can obtain 
the second-order Rényi entropies of all the subsystems described in 
the main text. In practice, we find that an instance number of 1,500 
and a sampling number of 300,000 for each instance are required 
to provide a reliable estimate of the second-order Rényi entropy of 
an 11-qubit subsystem. Supplementary Section III.C provides more 
details on the choices of the number of instances as well as the tomog-
raphy verification of the randomized measurement method with 
small systems.

Data availability
The data presented in the figures and that support the other findings of 
this study are publicly available via Figshare at https://doi.org/10.6084/
m9.figshare.24947646 (ref. 65).

Code availability
The data analysis and numerical simulation codes for this study 
are publicly available via Figshare at https://doi.org/10.6084/
m9.figshare.24947646 (ref. 65).
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Extended Data Fig. 1 | The layout of the 27 qubits (blue circles) used in our experiments, based on which we construct the desired honeycomb lattice. The 
neighboring qubits are connected with tunable couplers denoted as bars. Each physical qubit is labeled by Q(i, j) with i(j) being the row (column) index.
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Extended Data Fig. 2 | The measured expectation values of the vertex (Qv) 
and plaquette (Bp) operators after step 1 (left), 2 (middle) and 3 (right). 
A repetition number of 3000 (300,000) is used to obtain the probability 

distributions in the computational basis, which are corrected with iterative 
Bayesian unfolding methods58,59 to mitigate readout error for calculating 〈Qv〉 
(〈Bp〉) (Fig. 2a).

http://www.nature.com/naturephysics


Nature Physics

Article https://doi.org/10.1038/s41567-024-02529-6

Extended Data Fig. 3 | Creation and fusion of the quasiparticle excitations. 
a, To create a pair of quasiparticles, we add a short string on the string-net 
configuration. It can be regarded as connected to the honeycomb lattice with 
the vacuum string, which can be arbitrarily added and removed. One F-move 
acting on the type-s string, the type-0 connecting string, and the nearby edge 

can change the fattened lattice picture6 to the tailed string-net picture. b, To 
annihilate (fuse) two quasiparticles, we detach the two tails with one F-move to 
directly connect them. The string connecting these two detached tails indicates 
the fusion result of these two quasiparticles.
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Extended Data Fig. 4 | The process described by Bs
p as a closed string 

operator. The effect of Bsp can be understood as creating a pair of type-s 
excitations from vacuum, moving the excitations around this plaquette, and 
annihilating them to vacuum. Under the tailed string-net picture, the positions of 

the tails clearly reveal this process. In this figure, we only move the tail initialized 
on the left. However, different schemes of moving these tails along this path do 
not change the algebraic representation of the closed string operator Bsp 
according to Mac Lane’s coherence theorem52.
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