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Editorial

Artificial boundaries

The 2024 Nobel prize for Physics 
was awarded for foundational 
contributions to the development of 
artificial neural networks. The award 
reflects a shift in how we understand 
boundaries between scientific  
fields — or whether such boundaries 
are still useful at all.

T
he Nobel Prize committee awarded 
this year’s Physics prize to John J. 
Hopfield and Geoffrey E. Hinton 
“for foundational discoveries and 
inventions that enable machine 

learning with artificial neural networks”. Their 
work, inspired by physics principles and mod-
els, has contributed significantly to machine 
learning with artificial neural networks. But 
the choice of the committee also opens up a 
conversation about the compartmentaliza-
tion of knowledge and the arbitrary bounda-
ries of what we consider physics.

In 1982, Hopfield introduced an approach 
to understanding associative memory by 
applying concepts from statistical physics1. 
His eponymous network used a recurrent 
neural network architecture in which neurons 
functioned as binary units. The strength of the 
connections between neurons determined the 
stability of certain configurations, which can 
be thought of as memories. Hopfield’s main 
insight was to frame memory retrieval as an 
energy minimization process.

When a partially corrupted or incomplete 
input is fed into the network, the neurons 
adjust their states asynchronously to reduce 
the overall system’s energy, guiding the net-
work to a low-energy configuration that cor-
responds to a stored memory. This process 
mimics how physical systems evolve toward 
states of lower energy, such as a magnet set-
tling into a stable configuration. This allowed 
for several properties of the model to be cap-
tured by analytical tools coming from the 
theory of spin glasses2.

Hinton and colleagues extended Hop-
field’s ideas by developing the Boltzmann  
machine3 — a neural network model that incor-
porates stochasticity through a probabilistic 
learning rule. Instead of binary updates, each 
node in the machine is updated according 
to a Boltzmann probability distribution that 

depends on its energy state, with lower-energy 
states being more probable.

The introduction of hidden units — nodes that 
do not directly correspond to the data but help 
capture more general distributions — allowed 
the Boltzmann machine to model intricate 
dependencies within the data. However, the 
machine’s hefty computational demands made 
it mostly impractical for large-scale learning 
tasks until the invention of restricted Boltzmann 
machines, which simplified the original archi-
tecture by limiting the connections between 
visible and hidden layers of neurons. This 
restriction proved instrumental for the efficient 
pre-training of deep networks layer by layer.

This year’s award has raised more than one 
eyebrow among physics researchers and 
commentators. Although the work of the two 
laureates is undoubtedly rooted in statistical 
physics, many argue that the greatest practi-
cal impact of their work has been in computer 
science, where it laid the foundation for what 
Hinton has described as something akin to a 
new Industrial Revolution.

On the other hand, the fruits of Hopfield and 
Hinton’s work have circled back to physics. 
Machine learning techniques are routinely 
employed to sift through the enormous 
datasets generated by particle detectors4. 
Restricted Boltzmann machines and other 
neural network architectures have been used 
as a variational approach to the quantum 
many-body problem5, and convolutional neu-
ral networks have been shown to help identify 
phases and phase transitions in condensed 
matter models6,7. The list goes on, but whether 
the work of Hopfield and Hinton has produced 
a Nobel-worthy advance in our understanding 
of the systems and laws traditionally associ-
ated with physics remains debatable.

The recognition of this work raises broader 
questions about the evolving nature of 

scientific disciplines. For much of the 20th 
century, science moved towards increased spe-
cialization, driven by the institutionalization of 
research into distinct departments and focused 
funding streams. This specialization was highly 
effective in enabling deep expertise and tech-
nological advances. However, the complexity 
of contemporary scientific problems — think 
of climate change — calls for the synthesis of 
knowledge from separate domains.

At Nature Physics, we endorse the interdis-
ciplinary nature of contemporary physics 
research. In recent years, we have discussed 
the benefits and challenges of a multidisci-
plinary approach in biophysics, explored the 
dialogue between physics and economics, 
and network science has been increasingly 
featured on our pages. In the Editorial of our 
previous issue, we highlighted how experi-
mental tools developed in a given field can be 
successfully ported to another. As a journal 
serving the physics community, we adapt to 
how the field evolves and expands. We thus 
welcome the committee’s decision to acknowl-
edge the blurring of the traditional boundaries 
of physics.

Perhaps the debate over the appropriate-
ness of this year’s award stems from the com-
partmentalization of the prize itself. It may 
seem paradoxical that the work of Hopfield and 
Hinton is being recognized from an institution 
that remains formally tied to distinct discipli-
nary categories. The Nobel Prize is not just a 
scientific award; it is a cultural institution that 
carries great symbolic weight. It plays a large 
role in shaping the public perception of what 
constitutes important scientific progress. At 
a time when arbitrarily defined boundaries 
between fields appear less and less produc-
tive, we hope that the award to Hopfield and  
Hinton might signal a decisive shift away from 
a rigidly reductionist view of science.
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 Check for updates
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