Abstract
Recent theoretical and experimental breakthroughs have given rise to the emerging field of free-electron quantum optics, reshaping the understanding of free-electron physics. Traditionally rooted in classical electrodynamics, this field now reveals quantum-mechanical features that necessitate the frameworks of quantum electrodynamics and quantum optics. This shift compels a re-evaluation of well-established areas, bringing quantum-mechanical corrections to accelerator science and to electron-radiation phenomena. Simultaneously, the ability to shape single-electron wavefunctions opens new possibilities in microscopy and spectroscopy. These developments are primarily driven by innovations in electron microscopy and its intersection with laser science, where laser-driven electron modulation substantially influences quantum electron interactions with light and matter. In this Perspective, we review these developments, highlighting the current challenges and future opportunities. We explore the role of the free electron as a quantum resource, complementing conventional two-level systems and harmonic oscillators. In the coming years, free electrons may offer new modalities for reading and writing quantum information on ultrafast timescales, performing quantum-state tomography, and ultrafast quantum gates on the atomic scale.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
Change history
07 February 2025
A Correction to this paper has been published: https://doi.org/10.1038/s41567-025-02816-w
References
García de Abajo, F. J. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–275 (2010).
Roques-Carmes, C. et al. Free-electron–light interactions in nanophotonics. Appl. Phys. Rev. 10, 011303 (2023).
Baum, P. & Zewail, A. H. Attosecond electron pulses for 4D diffraction and microscopy. Proc. Natl Acad. Sci. USA 104, 18409–18414 (2007).
Barwick, B., Flannigan, D. J. & Zewail, A. H. Photon-induced near-field electron microscopy. Nature 462, 902–906 (2009).
García de Abajo, F. J., Asenjo-Garcia, A. & Kociak, M. Multiphoton absorption and emission by interaction of swift electrons with evanescent light fields. Nano Lett. 10, 1859–1863 (2010).
Park, S. T., Lin, M. & Zewail, A. H. Photon-induced near-field electron microscopy (PINEM): theoretical and experimental. New J. Phys. 12, 123028 (2010).
Aidelsburger, M. et al. Single-electron pulses for ultrafast diffraction. Proc. Natl Acad. Sci. USA 107, 19714–19719 (2010).
Lichte, H. & Lehmann, M. Electron holography—basics and applications. Rep. Prog. Phys. 71, 016102 (2007).
McMorran, B. J. & Cronin, A. D. An electron Talbot interferometer. New J. Phys. 11, 033021 (2009).
Feist, A. et al. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature 521, 200–203 (2015).
Bucher, T. et al. Free-electron Ramsey-type interferometry for enhanced amplitude and phase imaging of nearfields. Sci. Adv. 9, eadi5729 (2023).
Mohler, K. J. et al. Ultrafast electron diffraction from nanophotonic waveforms via dynamical Aharonov–Bohm phases. Sci. Adv. 6, eabc8804 (2020).
Turner, A. E., Johnson, C. W., Kruit, P. & McMorran, B. J. Interaction-free measurement with electrons. Phys. Rev. Lett. 127, 110401 (2021).
Priebe, K. E. et al. Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy. Nat. Photon. 11, 793–797 (2017).
Dahan, R. et al. Imprinting the quantum statistics of photons on free electrons. Science 373, eabj7128 (2021).
Kaminer, I. et al. Quantum Cerenkov radiation: spectral cutoffs and the role of spin and orbital angular momentum. Phys. Rev. X 6, 011006 (2016).
Karnieli, A., Rivera, N., Arie, A. & Kaminer, I. The coherence of light is fundamentally tied to the quantum coherence of the emitting particle. Sci. Adv. 7, eabf8096 (2021).
Kfir, O., Di Giulio, V., de Abajo, F. J. G. & Ropers, C. Optical coherence transfer mediated by free electrons. Sci. Adv. 7, eabf6380 (2021).
Ben Hayun, A. et al. Shaping quantum photonic states using free electrons. Sci. Adv. 7, eabe4270 (2021).
Tsesses, S., Bartal, G. & Kaminer, I. Light generation via quantum interaction of electrons with periodic nanostructures. Phys. Rev. A 95, 013832 (2017).
Giulio, V. D. & de Abajo, F. J. G. Optical-cavity mode squeezing by free electrons. Nanophotonics 11, 4659–4670 (2022).
Dahan, R. et al. Creation of optical cat and GKP states using shaped free electrons. Phys. Rev. X 13, 031001 (2023).
Bucher, T. et al. Coherently amplified ultrafast imaging using a free-electron interferometer. Nat. Photon. 18, 809–815 (2024).
Madan, I. et al. Charge dynamics electron microscopy: nanoscale imaging of femtosecond plasma dynamics. ACS Nano 17, 3657–3665 (2023).
Yannai, M. et al. Ultrafast electron microscopy of nanoscale charge dynamics in semiconductors. ACS Nano 17, 3645–3656 (2023).
Gover, A. & Yariv, A. Free-electron–bound-electron resonant interaction. Phys. Rev. Lett. 124, 064801 (2020).
Rätzel, D., Hartley, D., Schwartz, O. & Haslinger, P. Controlling quantum systems with modulated electron beams. Phys. Rev. Res. 3, 023247 (2021).
Ruimy, R., Gorlach, A., Mechel, C., Rivera, N. & Kaminer, I. Toward atomic-resolution quantum measurements with coherently shaped free electrons. Phys. Rev. Lett. 126, 233403 (2021).
Zhao, Z., Sun, X.-Q. & Fan, S. Quantum entanglement and modulation enhancement of free-electron–bound-electron interaction. Phys. Rev. Lett. 126, 233402 (2021).
García de Abajo, F. J., Dias, E. J. C. & Di Giulio, V. Complete excitation of discrete quantum systems by single free electrons. Phys. Rev. Lett. 129, 093401 (2022).
Karnieli, A. et al. Quantum sensing of strongly coupled light–matter systems using free electrons. Sci. Adv. 9, eadd2349 (2023).
Lim, J., Kumar, S., Ang, Y. S., Ang, L. K. & Wong, L. J. Quantum interference between fundamentally different processes is enabled by shaped input wavefunctions. Adv. Sci. 10, 2205750 (2023).
Schattschneider, P. & Löffler, S. Entanglement and decoherence in electron microscopy. Ultramicroscopy 190, 39–44 (2018).
Mechel, C. et al. Quantum correlations in electron microscopy. Optica 8, 70–78 (2021).
Feist, A. et al. Cavity-mediated electron-photon pairs. Science 377, 777–780 (2022).
Adiv, Y. et al. Observation of 2D Cherenkov radiation. Phys. Rev. X 13, 011002 (2023).
Huang, G., Engelsen, N. J., Kfir, O., Ropers, C. & Kippenberg, T. J. Electron–photon quantum state heralding using photonic integrated circuits. PRX Quantum 4, 020351 (2023).
Karnieli, A. & Fan, S. Jaynes–Cummings interaction between low-energy free electrons and cavity photons. Sci. Adv. 9, eadh2425 (2023).
Karnieli, A. et al. Universal and ultrafast quantum computation based on free-electron–polariton blockade. PRX Quantum 5, 010339 (2024).
Baranes, G. et al. Free-electron interactions with photonic GKP states: universal control and quantum error correction. Phys. Rev. Res. 5, 043271 (2023).
Baranes, G., Ruimy, R., Gorlach, A. & Kaminer, I. Free electrons can induce entanglement between photons. npj Quantum Inf. 8, 32 (2022).
Jaynes, E. T. & Cummings, F. W. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89–109 (1963).
Kfir, O. Entanglements of electrons and cavity photons in the strong-coupling regime. Phys. Rev. Lett. 123, 103602 (2019).
Giulio, V. D., Kociak, M. & de Abajo, F. J. G. Probing quantum optical excitations with fast electrons. Optica 6, 1524–1534 (2019).
Meuret, S. et al. Photon bunching in cathodoluminescence. Phys. Rev. Lett. 114, 197401 (2015).
Sola-Garcia, M. et al. Photon statistics of incoherent cathodoluminescence with continuous and pulsed electron beams. ACS Photon. 8, 916–925 (2021).
Fiedler, S. et al. Sub-to-super-Poissonian photon statistics in cathodoluminescence of color center ensembles in isolated diamond crystals. Nanophotonics 12, 2231–2237 (2023).
Arredondo, J. A. & Fernandez-Dominguez, A. I. Electron-assisted probing of polaritonic light-matter states. Nanophotonics 13, 2015–2027 (2024).
Taleb, M. Charting the exciton–polariton landscape of WSe2 thin flakes by cathodoluminescence spectroscopy. Adv. Photon. Res. 3, 2100124 (2021).
Shiloh, R., Lereah, Y., Lilach, Y. & Arie, A. Sculpturing the electron wave function using nanoscale phase masks. Ultramicroscopy 144, 26–31 (2014).
Verbeeck, J. et al. Demonstration of a 2×2 programmable phase plate for electrons. Ultramicroscopy 190, 58–65 (2018).
Madan, I. et al. Ultrafast transverse modulation of free electrons by interaction with shaped optical fields. ACS Photon. 9, 3215–3224 (2022).
Tsesses, S. et al. Tunable photon-induced spatial modulation of free electrons. Nat. Mater. 22, 345–352 (2023).
Garcia de Abajo, F. J. & Konecna, A. Optical modulation of electron beams in free space. Phys. Rev. Lett. 126, 123901 (2021).
Mihaila, M. C. C. et al. Transverse electron-beam shaping with light. Phys. Rev. X. 12, 031043 (2022).
Reinhardt, O., Mechel, C., Lynch, M. & Kaminer, I. Free-electron qubits. Ann. Phys. 533, 2000254 (2021).
Tsarev, M. V., Ryabov, A. & Baum, P. Free-electron qubits and maximum-contrast attosecond pulses via temporal Talbot revivals. Phys. Rev. Res. 3, 043033 (2021).
Ebel, S. & Talebi, N. Inelastic electron scattering at a single-beam structured light wave. Comm. Phys. 6, 179 (2023).
Tsarev, M. et al. Nonlinear-optical quantum control of free-electron matter waves. Nat. Phys. 19, 1350–1354 (2023).
Albert, V. V., Covey, J. P. & Preskill, J. Robust encoding of a qubit in a molecule. Phys. Rev. X 10, 031050 (2020).
Löffler, S. Unitary two-state quantum operators realized by quadrupole fields in the electron microscope. Ultramicroscopy 234, 113456 (2022).
Zimmermann, R., Seidling, M. & Hommelhoff, P. Charged particle guiding and beam splitting with auto-ponderomotive potentials on a chip. Nat. Commun. 12, 390 (2021).
Grillo, V. et al. Measuring the orbital angular momentum spectrum of an electron beam. Nat. Commun. 8, 15536 (2017).
Bendaña, X., Polman, A. & García de Abajo, F. J. Single-photon generation by electron beams. Nano Lett. 11, 5099–5103 (2011).
Kling, P. et al. What defines the quantum regime of the free-electron laser? New J. Phys. 17, 123019 (2015).
Huang, S. et al. Quantum recoil in free-electron interactions with atomic lattices. Nat. Photon. 17, 224–230 (2023).
Eldar, M., Chen, Z., Pan, Y. & Krüger, M. Self-trapping of slow electrons in the energy domain. Phys. Rev. Lett. 132, 035001 (2024).
Talebi, N. Strong interaction of slow electrons with near-field light visited from first principles. Phys. Rev. Lett. 125, 080401 (2020).
Dahan, R. et al. Resonant phase-matching between a light wave and a free-electron wavefunction. Nat. Phys. 16, 1123–1131 (2020).
Reinhardt, O. & Kaminer, I. Theory of shaping electron wavepackets with light. ACS Photon. 7, 2859–2870 (2020).
Yalunin, S. V., Feist, A. & Ropers, C. Tailored high-contrast attosecond electron pulses for coherent excitation and scattering. Phys. Rev. Res. 3, L032036 (2021).
Henke, J.-W. et al. Integrated photonics enables continuous-beam electron phase modulation. Nature 600, 653–658 (2021).
Bezard, M. et al. High-efficiency coupling of free electrons to sub-λ3 modal volume, high-Q photonic cavities. ACS Nano 18, 10417–11042 (2024).
Karnieli, A. et al. Strong coupling and single-photon nonlinearity in free-electron quantum optics. ACS Photon. 11, 3401 (2024).
Kruit, P. et al. Designs for a quantum electron microscope. Ultramicroscopy 164, 31–45 (2016).
Seidling, M. et al. Resonating electrostatically guided electrons. Phys. Rev. Lett. 132, 255001 (2024).
Varkentina, N. et al. Cathodoluminescence excitation spectroscopy: nanoscale imaging of excitation pathways. Sci. Adv. 8, eabq4947 (2022).
Ruimy, R., Gorlach, A., Baranes, G. & Kaminer, I. Superradiant electron energy loss spectroscopy. Nano Lett. 23, 779–787 (2023).
Meier, S., Heimerl, J. & Hommelhoff, P. Few-electron correlations after ultrafast photoemission from nanometric needle tips. Nat. Phys. 19, 1402–1409 (2023).
Haindl, R. et al. Coulomb-correlated electron number states in a transmission electron microscope beam. Nat. Phys. 19, 1410–1417 (2023).
Kumar, S. et al. Strongly correlated multielectron bunches from interaction with quantum light. Sci. Adv. 10, adm9563 (2024).
Okamoto, H. & Nagatani, Y. Entanglement-assisted electron microscopy based on a flux qubit. Appl. Phys. Lett. 104, 062604 (2014).
Karnieli, A., Rivera, N., Arie, A. & Kaminer, I. Superradiance and subradiance due to quantum interference of entangled free electrons. Phys. Rev. Lett. 127, 060403 (2021).
García de Abajo, F. J. & Di Giulio, V. Optical excitations with electron beams: challenges and opportunities. ACS Photon. 8, 945–974 (2021).
Koppell, S. A., Israel, Y., Bowman, A. J., Klopfer, B. B. & Kasevich, M. A. Transmission electron microscopy at the quantum limit. Appl. Phys. Lett. 120, 190502 (2022).
Wang, K. et al. Coherent interaction between free electrons and a photonic cavity. Nature 582, 50–54 (2020).
Kfir, O. et al. Controlling free electrons with optical whispering-gallery modes. Nature 582, 46–49 (2020).
Kurman, Y. et al. Spatiotemporal imaging of 2D polariton wave packet dynamics using free electrons. Science 372, 1181–1186 (2021).
Nabben, D., Kuttruff, J., Stolz, L., Ryabov, A. & Baum, P. Attosecond electron microscopy of sub-cycle optical dynamics. Nature 619, 63–67 (2023).
Gaida, J. H. et al. Attosecond electron microscopy by free-electron homodyne detection. Nat. Photon. 18, 509–515 (2024).
Potapov, P. L., Lichte, H., Verbeeck, J. & van Dyck, D. Experiments on inelastic electron holography. Ultramicroscopy 106, 1012–1018 (2006).
Verbeeck, J., Tian, H. & Schattschneider, P. Production and application of electron vortex beams. Nature 467, 301–304 (2010).
Guzzinati, G. et al. Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams. Nat. Commun. 8, 14999 (2017).
Gaida, J. H. et al. Lorentz microscopy of optical fields. Nat. Commun. 14, 6545 (2023).
Gorlach, A. et al. Ultrafast non-destructive measurement of the quantum state of light using free electrons. Preprint at https://arxiv.org/abs/2012.12069 (2020).
Christopher, J. et al. Electron-driven photon sources for correlative electron–photon spectroscopy with electron microscopes. Nanophotonics 9, 4381–4406 (2020).
Taleb, M., Hentschel, M., Rossnagel, K., Giessen, H. & Talebi, N. Phase-locked photon–electron interaction without a laser. Nat. Phys. 19, 869–876 (2023).
Giulio, V. D. et al. Toward optimum coupling between free electrons and confined optical modes. ACS. Nano 18, 14255 (2024).
Shiloh, R., Chlouba, T. & Hommelhoff, P. Quantum-coherent light–electron interaction in a scanning electron microscope. Phys. Rev. Lett. 128, 235301 (2022).
Sorensen, A. & Molmer, K. Quantum computation with ions in thermal motion. Phys. Rev. Lett. 82, 1971 (1999).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Ruimy, R., Karnieli, A. & Kaminer, I. Free-electron quantum optics. Nat. Phys. 21, 193–200 (2025). https://doi.org/10.1038/s41567-024-02743-2
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41567-024-02743-2