Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantum statistics in the minimal Bell scenario

Abstract

In any experimental setting, quantum physics provides the statistical distributions that the observed outcomes are expected to follow. The set formed by all these distributions contains the imprint of quantum theory and captures some of its core properties. So far, only partial explicit descriptions of this set have been found for Bell-type settings in which entangled states can be shared and measured by independent observers. Here we obtain the complete explicit and analytical description of a full set of quantum statistics in terms of its extremal points. This is made possible by finding all bipartite quantum states and pairs of binary measurements that can be self-tested, that is, reconstructed from empirical statistics only. Our description precisely reveals some of the extent and limitations of quantum theory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Measurement of a bipartite system.
Fig. 2: Nonlinear steering of measurements.
Fig. 3: Extreme realizations in the CHSH scenario.

Similar content being viewed by others

Data availability

Data sharing is not applicable to this paper as no datasets were generated or analysed during the current study.

References

  1. Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969).

    Article  ADS  Google Scholar 

  2. Einstein, A., Podolsky, B. & Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935).

    Article  ADS  Google Scholar 

  3. Bell, J. S. On the Einstein Podolsky Rosen paradox. Phys. Phys. Fiz. 1, 195 (1964).

    MathSciNet  Google Scholar 

  4. Bennett, C. H. & Brassard, G. Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 711 (2014).

  5. Pironio, S. et al. Random numbers certified by Bell’s theorem. Nature 464, 1021 (2010).

    Article  ADS  Google Scholar 

  6. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V. & Wehner, S. Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014).

    Article  ADS  Google Scholar 

  7. Born, M. Quantenmechanik der Stoßvorgänge. Z. Phys. 38, 803 (1926).

    Article  ADS  Google Scholar 

  8. Cirel’son, B. S. Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 4, 93 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  9. Landau, L. J. Empirical two-point correlation functions. Found. Phys. 18, 449 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  10. Masanes, L. Necessary and sufficient condition for quantum-generated correlations. Preprint at arxiv.org/abs/quant-ph/0309137 (2003).

  11. Navascués, M., Pironio, S. & Acín, A. Bounding the set of quantum correlations. Phys. Rev. Lett. 98, 010401 (2007).

    Article  ADS  Google Scholar 

  12. Skrzypczyk, P. & Cavalcanti, D. Semidefinite Programming in Quantum Information Science (IOP, 2023).

  13. Mironowicz, P. Semi-definite programming and quantum information. J. Phys. A: Math. Theor. 57, 163002 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  14. Tavakoli, A., Pozas-Kerstjens, A., Brown, P. & Araújo, M. Semidefinite programming relaxations for quantum correlations. Rev. Mod. Phys. 96, 045006 (2024).

  15. Bhardwaj, A., Klep, I. & Magron, V. in Encyclopedia of Optimization (eds Pardalos, P. M. & Prokopyev, O. A.) 1–13 (Springer, 2022).

  16. de Vicente, J. I. Simple conditions constraining the set of quantum correlations. Phys. Rev. A 92, 032103 (2015).

    Article  ADS  Google Scholar 

  17. Scarani, V. The device-independent outlook on quantum physics. Acta Phys. Slovaca 62, 347 (2012).

    Google Scholar 

  18. Popescu, S. & Rohrlich, D. Generic quantum nonlocality. Phys. Lett. A 166, 293–297 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  19. Pawłowski, M. et al. Information causality as a physical principle. Nature 461, 1101 (2009).

    Article  ADS  Google Scholar 

  20. Miguel, N. & Harald, W. A glance beyond the quantum model. Proc. R. Soc. A: Math. Phys. Eng. Sci. 466, 881–890 (2010).

    Article  MathSciNet  Google Scholar 

  21. Fritz, T. et al. Local orthogonality as a multipartite principle for quantum correlations. Nat. Commun. 4, 2263 (2013).

    Article  ADS  Google Scholar 

  22. Acín, A. et al. Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007).

    Article  ADS  Google Scholar 

  23. Barreiro, J. T. et al. Demonstration of genuine multipartite entanglement with device-independent witnesses. Nat. Phys. 9, 559–562 (2013).

    Article  Google Scholar 

  24. Moroder, T., Bancal, J.-D., Liang, Y.-C., Hofmann, M. & Gühne, O. Device-independent entanglement quantification and related applications. Phys. Rev. Lett. 111, 030501 (2013).

    Article  ADS  Google Scholar 

  25. Nadlinger, D. P. et al. Experimental quantum key distribution certified by Bell’s theorem. Nature 607, 682 (2022).

    Article  ADS  Google Scholar 

  26. Zhang, W. et al. A device-independent quantum key distribution system for distant users. Nature 607, 687 (2022).

    Article  ADS  Google Scholar 

  27. Liu, W.-Z. et al. Toward a photonic demonstration of device-independent quantum key distribution. Phys. Rev. Lett. 129, 050502 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  28. Tura, J. et al. Detecting nonlocality in many-body quantum states. Science 344, 1256 (2014).

    Article  ADS  Google Scholar 

  29. Bravyi, S., Gosset, D. & König, R. Quantum advantage with shallow circuits. Science 362, 308 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  30. Goh, K. T. et al. Geometry of the set of quantum correlations. Phys. Rev. A 97, 022104 (2018).

    Article  ADS  Google Scholar 

  31. Rai, A., Duarte, C., Brito, S. & Chaves, R. Geometry of the quantum set on no-signaling faces. Phys. Rev. A 99, 032106 (2019).

    Article  ADS  Google Scholar 

  32. Chen, K.-S. et al. Quantum correlations on the no-signaling boundary: self-testing and more. Quantum 7, 1054 (2023).

    Article  Google Scholar 

  33. Barizien, V., Sekatski, P. & Bancal, J.-D. Custom Bell inequalities from formal sums of squares. Quantum 8, 1333 (2024).

    Article  Google Scholar 

  34. Barizien, V. & Bancal, J.-D. Extremal Tsirelson inequalities. Phys. Rev. Lett. 133, 010201 (2024).

  35. Rai, A. et al. Self-testing quantum states via nonmaximal violation in Hardy’s test of nonlocality. Phys. Rev. A 105, 052227 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  36. Liu, Y., Chung, H. Y. & Ramanathan, R. (Almost-)quantum Bell inequalities and device-independent applications. Quantum 8, 1489 (2024).

  37. Ishizaka, S. Necessary and sufficient criterion for extremal quantum correlations in the simplest Bell scenario. Phys. Rev. A 97, 050102 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  38. Mikos-Nuszkiewicz, A. & Kaniewski, J. Extremal points of the quantum set in the CHSH scenario: conjectured analytical solution. Preprint at https://doi.org/10.1103/PhysRevA.108.012212 (2023).

  39. Mayers, D. & Yao, A. Self testing quantum apparatus. Quantum Inf. Compt. 4, 273–286 (2004).

    MathSciNet  Google Scholar 

  40. Šupiç, I. & Bowles, J. Self-testing of quantum systems: a review. Quantum 4, 337 (2020).

    Article  Google Scholar 

  41. Ji, Z., Natarajan, A., Vidick, T., Wright, J. & Yuen, H. MIP* = RE. Commun. ACM 64, 131–138 (2021).

    Article  Google Scholar 

  42. Magniez, F., Mayers, D., Mosca, M. & Ollivier, H. in Automata, Languages and Programming (eds Bugliesi, M. et al.) 72–83 (Springer, 2006).

  43. Sekatski, P., Bancal, J.-D., Wagner, S. & Sangouard, N. Certifying the building blocks of quantum computers from Bell’s theorem. Phys. Rev. Lett. 121, 180505 (2018).

    Article  ADS  Google Scholar 

  44. Reichardt, B. W., Unger, F. & Vazirani, U. Classical command of quantum systems. Nature 496, 456–460 (2013).

    Article  ADS  Google Scholar 

  45. McKague, M. Interactive proofs for \({\mathsf{BQP}}\) via self-tested graph states. Theory Comput. 12, 1–42 (2016).

    Article  MathSciNet  Google Scholar 

  46. Coladangelo, A., Goh, K. T. & Scarani, V. All pure bipartite entangled states can be self-tested. Nat. Commun. 8, 15485 (2017).

    Article  ADS  Google Scholar 

  47. Wang, Y., Wu, X. & Scarani, V. All the self-testings of the singlet for two binary measurements. New J. Phys. 18, 025021 (2016).

    Article  ADS  Google Scholar 

  48. Le, T. P., Meroni, C., Sturmfels, B., Werner, R. F. & Ziegler, T. Quantum correlations in the minimal scenario. Quantum 7, 947 (2023).

    Article  Google Scholar 

  49. Rockafellar, R. T. Convex Analysis (Princeton Univ. Press, 1970).

  50. Donohue, J. M. & Wolfe, E. Identifying nonconvexity in the sets of limited-dimension quantum correlations. Phys. Rev. A 92, 062120 (2015).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank V. Scarani and A. Rai for their comments on the paper. We acknowledge funding from the Commissariat à l’Energie Atomique et aux Energies Alternatives.

Author information

Authors and Affiliations

Authors

Contributions

V.B. and J.-D.B. contributed equally to this work.

Corresponding author

Correspondence to Victor Barizien.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barizien, V., Bancal, JD. Quantum statistics in the minimal Bell scenario. Nat. Phys. 21, 577–582 (2025). https://doi.org/10.1038/s41567-025-02782-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41567-025-02782-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing