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Simulating two-dimensional lattice gauge 
theories on a qudit quantum computer
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Particle physics describes the interplay of matter and forces through 
gauge theories. Yet, the intrinsic quantum nature of gauge theories makes 
important problems notoriously difficult for classical computational 
techniques. Quantum computers offer a promising way to overcome these 
roadblocks. We demonstrate two essential requirements on this path: first, 
we perform a quantum computation of the properties of the basic building 
block of two-dimensional lattice quantum electrodynamics, involving both 
gauge fields and matter. Second, we show how to refine the gauge-field 
discretization beyond its minimal representation, using a trapped-ion qudit 
quantum processor, where quantum information is encoded in several states 
per ion. Such qudits are ideally suited for describing gauge fields, which 
are naturally high dimensional, leading to reduced register size and circuit 
complexity. We prepare the ground state of the model using a variational 
quantum eigensolver and observe the effect of dynamical matter on 
quantized magnetic fields. By controlling the qudit dimension, we also show 
how to seamlessly observe the effect of different gauge-field truncations. 
Finally, we experimentally study the dynamics of pair creation and 
magnetic energy. Our results open the door for hardware-efficient quantum 
simulations of gauge theories with qudits in near-term quantum devices.

Computing today relies almost exclusively on binary information 
encoding. This holds true for classical computers operating with bits, 
as well as for the emerging area of quantum computing that uses qubits 
to exploit quantum superposition and entanglement for information 
processing. However, the quantum systems underpinning today’s quan-
tum computers offer the possibility of processing information in several 
energy levels1–7, so-called qudits. A key to unlocking the potential of this 
approach and to realizing qudit algorithms8 in practice is the availability 
of programmable, high-fidelity qudit entangling gates. We realize this 

capability in a linear ion-trap quantum processor with all-to-all connec-
tivity9 by extending qubit entangling gates10–12 to mixed-dimensional 
qudit systems. These resources open up exciting avenues for native 
quantum simulation of d-level systems (for example, in chemistry13–15 
or condensed matter physics16,17) with smaller registers and reduced 
gate depth compared to a qubit approach.

A natural application for qudit quantum hardware is calculations 
for lattice gauge theory (LGT), in which qudits naturally represent 
high-dimensional gauge fields. Gauge theories are the backbone of the 
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relevant physics, which is most naturally achieved by encoding them 
into qudits45–48.

Specifically, we consider quantum electrodynamics in two spatial 
dimensions (2D-QED) and simulate the basic building block of the 
lattice—a single plaquette—on a qudit quantum computer9. We observe 
the ground-state plaquette expectation value19, which is a central 
quantity in LGT calculations related to magnetic fields. The latter are a 
defining feature of 2D physics and physics in three spatial dimensions 
(3D) and have no analogue in 1D. The plaquette expectation value is 
also relevant for the so-called running coupling49,50 in gauge theories, 
which is absent in 1D-QED. Notably, our approach is directly adaptable 
to digital quantum simulations of real-time dynamics and offers an 
intriguing perspective for the quantum simulations of LGT dynam-
ics. In all demonstrated cases, our qudit encodings with high-fidelity 
entangling gates natively allow for gate sequences with smaller register 
sizes and fewer entangling gates. By providing an order of magnitude 
improvement in circuit complexity for the simplest instance, our work 
establishes a new approach for highly efficient quantum simulations 
of gauge theories and beyond and sets the stage for addressing open 
problems in the study of these systems.

LGT simulations with qudits
We simulated lattice QED on a two-dimensional discretization of space, 
where matter (electrons and positrons) resides on the sites of the lattice 

standard model of particle physics. Studying them on a lattice through 
computer simulations has been key in the quest for a more complete 
understanding of the phenomenology within the standard model 
and for discovering physics beyond it. Yet, despite the tremendous 
success of LGT classical simulations18, this endeavour is increasingly 
hindered because important problem classes, such as real-time evolu-
tion and problems involving high matter densities, are plagued by sign 
problems19–21, which are believed to be classically intractable22,23. Quan-
tum computations are by design not affected by sign problems and, 
thus, offer a unique scientific opportunity for advancing the frontier of 
gauge theory simulations (see refs. 24–30 for in-depth discussions and 
Supplementary Note I for key points). Although LGT quantum simula-
tions for particle physics have seen impressive advances, experimental 
demonstrations have been limited to either one spatial dimension (1D) 
or targeted theories beyond 1D where either gauge fields or matter 
are trivial31–38.

Here we address two major challenges in quantum computing for 
gauge theory calculations: (1) performing LGT quantum computations 
beyond 1D including both gauge fields and matter and (2) controlling 
the gauge-field dimension. Both of these essential ingredients demand 
the efficient representation of the formally infinite-dimensional 
gauge fields on quantum computers, which requires discretization 
and truncation to a finite number of levels32,39–44. Crucially, truncated 
gauge fields must remain sufficiently high dimensional to capture the 
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Fig. 1 | Simulating two-dimensional lattice QED with matter fields. a, The lattice 
for 2D-QED comprises vertices containing matter particles (blue) connected by 
links carrying the gauge field (red). b, The gauge field at each link has an infinite 
discrete spectrum, simulated using a truncated representation using a d-level 
qudit. c, Qudits (red) are encoded in different Zeeman levels of the S1/2 ground 
state and the D5/2 excited state of trapped 40Ca+ ions. Matter particles are faithfully 
represented by qubits (blue). d, By employing Gauss’s law on a plaquette with 
open boundary conditions, three of the four gauge fields can be eliminated. The 
remaining field is truncated to at most one energy quantum. Our variational 
ansatz is a mixed-dimensional circuit in which the quantum register contains one 
qutrit (red) and four qubits (blue). A fanning out of the qudit circuit line 
illustrates the action of the qudit entangling gates (‘Variational circuit’ in 
Methods). A classical optimizer varies the gate angles θj to minimize the energy of 
the quantum state. e, An exemplary optimization run for Ω = 5, m = 0.1 and 

g−2 = 102. The red line highlights the current lowest energy found by the algorithm. 
The initial evaluations explore the variational landscape. Subsequent blocks of 
evaluations ((1), (2), …) optimize for decreasing values of the coupling (‘A VQE for 
qudits’ in Methods). Shaded regions correspond to one standard deviation of 
statistical uncertainty from Monte Carlo resampling around the measured value, 
averaged over 150 repetitions. f, Expectation value of the plaquette operator ⟨�̂⟩. 
The triangular data points were measured for VQE-optimized states, with error 
bars representing one standard deviation of statistical uncertainty from Monte 
Carlo resampling around the measured value, averaged over 150 repetitions. The 
squares are from a simulation of an ideal VQE, with an experimentally motivated 
noise model applied to the final state (Supplementary Note V). The line shows the 
ground state from exact diagonalization. The dashed line was obtained from the 
pure gauge model g2 ̂HE + (1/g2) ̂HB: the presence of dynamical matter noticeably 
affects the slope of ⟨�̂⟩ when varying g−2.
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and gauge bosons (photons) on the links (Fig. 1a). For the fermionic 
matter fields, we used a staggered formulation51 where lattice sites 
host electrons (even sites) or positrons (odd sites), as depicted in 
Extended Data Fig. 1. The gauge fields residing on the links between 
each pair of sites are each described by electric field operators ̂E  that 
have an infinite, but discrete, spectrum ̂E |E ⟩ = E |E ⟩, where E = 0, ±1, 
±2, … The total Hamiltonian is then given by the sum51

̂H = g2 ̂HE +
1
g2

̂HB +m ̂Hm +Ω ̂Hk, (1)

which describes the free electric (E), magnetic (B) and matter (m) field 
energies and the kinetic energy term (k) responsible for pair-creation 
processes. See equation (4) in Methods for the definition of the Ham-
iltonian terms.

The bare coupling strength g is determined by the charge of the 
elementary particles with bare mass m. Both parameters enter into 
the energy cost associated with the creation of an electron–positron 
pair and the associated electromagnetic field. The rate of these pair- 
and field-creation processes is characterized by Ω. We employed the 
Kogut–Susskind Hamiltonian formulation51 in natural units ℏ = c = 1 
and with lattice spacing a = 1.

Importantly, not all quantum states in the considered Hilbert space 
are physical. In particular, the gauge field and charge configurations 
of physical states |Ψphys〉 have to fulfil Gauss’s law at each site. The famil-
iar law from classical electrodynamics ∇E(r) − ρ(r) = 0, where ρ(r) is 
the charge density at point r, takes the form ̂Gn ||Ψphys⟩ = 0, with the 
Gauss operator ̂Gn at lattice site n given in equation (6) in Methods.

To observe 2D effects in this model, we study the local plaquette 
operator �̂ = −(1/V ) ̂HB , where V is the number of plaquettes. The 
plaquette operator involves four gauge fields forming a closed loop 
along a single plaquette (equation (5) and Extended Data Fig. 1b). As 
this observable is related to the curl of the vector potential, it is defined 
in at least two spatial dimensions and has no analogue in 1D-QED. The 
dependence of the plaquette ground-state expectation value ⟨�̂⟩ on 
g−2 can be related to the running of the coupling52, which is a fundamen-
tal feature of gauge theories in particle physics and captures the  
dependence of the charge on the distance (energy scale) on which it  
is probed.

Quantum simulations of 2D-LGTs face the difficulty of finding an 
adequate representation for the gauge-field operators ̂E. Although the 
fermionic field can be mapped straightforwardly to qubits53, whose 
states represent either the presence or absence of a particle (‘Encoded 
Hamiltonian’ in Methods and Extended Data Fig. 1c), the gauge field 
requires a truncation of its spectrum and a description containing at 
least three quantum states representing positive, zero and negative 
flux values.

In principle, such a representation could be constructed from 
qubits. However, in practice, using qubits drastically increases the 
quantum register size and immediately results in complex many-body 
interactions54 (see Supplementary Note II for details). For example, 
encoding d-level gauge fields requires at least ⌈log2(d)⌉ qubits, and 
even the application of local gauge-field operators involves 𝒪𝒪(d 2) 
two-qubit gates17. Gauss’s law requires that the creation or annihilation 
of particles occurs with the corresponding change in flux, which neces-
sitates the application of gauge-field rising or lowering operators that 
are controlled by the state of the matter configuration. Implementing 
such controlled gauge-field operations requires an even higher qubit 
gate count than the local gauge-field operators. We circumvented this 
issue by representing each gauge field with a qudit system that contains 
exactly as many levels as required for the chosen truncation. This 
ensured that local operations on the gauge fields remained local in the 
quantum computer, and the coupling between a matter site and a gauge 
field was realized as a two-body qubit–qudit interaction. We achieved 
an efficient implementation of these interactions through explicit 

entanglement between the internal state of an ion and the common 
motional mode in the spirit of the Cirac–Zoller gate10. Conditional on 
the state of one ion (regardless of qudit dimension), a phonon was 
injected into the motional mode. A local operation was performed on 
the second ion only when the phonon was present. The phonon was, 
therefore deterministically, removed from the motional mode, and 
the internal states of the two ions were left entangled. See ‘Realizing 
controlled rotations in qudits’ in Methods and Extended Data Fig. 2 for 
details. We realized the qubits for the matter fields and qudits for the 
gauge fields within the 4S1/2 ground state and the 3D5/2 excited state 
manifolds of trapped 40Ca+ ions9, and thereby, we demonstrated quan-
tum computations with tailored mixed-dimensional quantum systems. 
As shown in Fig. 1d and ‘A VQE for qudits’ in Methods, we performed a 
variational ground-state search55–59 using a suitable ansatz in the form 
of a quantum circuit with gates that were parameterized by a set θ (see 
‘Simulating gauge fields and matter’ below). A classical optimizer then 
varied the gate parameters to minimize the energy ⟨ ̂H⟩ of the prepared 
states, which served as a cost function and was measured by the quan-
tum computer. This optimization loop was repeated until the energy 
was minimized, resulting in a parameter set θ* to achieve an approxi-
mate ground state of ̂H .

Simulating gauge fields and matter
In our first experiment, we studied 2D-QED on a lattice with open 
boundary conditions and including both matter and gauge fields. 
Unlike previous experiments (simulating LGTs in 1D or without matter), 
we observed the effects of virtual pair creation, electromagnetic fields 
and their interplay54 by studying the ground-state expectation value 
of the plaquette operator ⟨�̂⟩ = −(1/V )⟨ ̂HB⟩. We considered the basic 
building block of the two-dimensional lattice, that is a single plaquette 
with open boundary conditions and consisting of four matter sites and 
four gauge fields (inset in Fig. 1f). The gauge and matter degrees of 
freedom were constrained by Gauss’s law in equation (6) at each vertex. 
These constraints were encoded explicitly into the Hamiltonian by 
eliminating redundant gauge degrees of freedom, as shown in ‘Encoded 
Hamiltonian’ in Methods. This reduced the resource requirements 
while ensuring that the simulated states obeyed Gauss’s law. The result-
ing Hamiltonian per plaquette involves only one gauge field. Employ-
ing the minimal gauge-field truncation using three levels (d = 3), our 
ansatz for the variational quantum eigensolver (VQE) is given by a 
hybrid qudit–qubit approach with one qutrit representing the gauge 
degree of freedom and four qubits representing electrons and positrons 
residing on the four vertices (Fig. 1d). Note that these requirements 
for 2D connectivity and two different constituents are most easily sat-
isfied in an all-to-all connected mixed-dimensional digital quantum 
processor rather than analogue Ising-type simulators60.

Our VQE ansatz is based on the Hamiltonian given in equation (9) 
and reflects the underlying physics of pair-creation processes: the qubit 
states |↓〉/|↑〉 represent vacuum/electrons on even lattice sites and posi-
trons/vacuum on odd lattice sites, as shown in Extended Data Fig. 1. The 
qutrit states {|−1〉, |0〉, |+1〉} represent the electric field eigenstates of the 
gauge field. The circuit was initialized in the qudit–qubit state |↓↑↓↑, 0〉,  
representing the bare vacuum |vvvv, 0〉, where no particles (first four 
entries) or gauge-field excitations (last entry) are present. As shown in 
Fig. 1d, the two-qubit gates on the matter qubits (blue) first populated 
the plaquette with electrons and positrons. When the two lattice sites 
directly next to the remaining gauge field were populated (see inset 
of Fig. 1f), Gauss’s law requires the gauge-field excitation to change, 
which was achieved by the qubit–qutrit controlled-rotation gates (red). 
In the final part of the circuit, four two-qubit gates (blue) adjusted the 
matter state without modifying the qutrit, as the matter fields can 
have gauge-field-independent dynamics. This Hamiltonian-based VQE 
circuit design is extendable to larger lattices, as explained in ref. 54.

Figure 1e shows the results of a typical experimental run of the 
variational circuit. The resulting measured plaquette expectation 
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values as a function of the parameter g−2 are shown in Fig. 1f for Ω = 5 
and m = 0.1 (see ‘2D-QED with matter’ in Methods for details of the 
parameter choice). The experimental data match the ideal result well 
and agree with theoretical predictions using a simple error model, as 
explained in Supplementary Note V. In the large-coupling regime 
(g−2 ≪ 1), the electric field energy term ̂HE dominates the Hamiltonian 
of equation (1), thus favouring the ground state |vvvv, 0〉 with ⟨�̂⟩ = 0. 
In the weak-coupling regime, on the other hand, the magnetic field 
energy term ̂HB dominates the Hamiltonian, thus favouring a positive 
vacuum plaquette expectation value (⟨�̂⟩ = 1/√2 ≈ 0.707 for the cho-
sen truncation). In the intermediate regime where g−2 ≈ 1, there is com-
petition between the field energy terms and ̂Hk. The ground state of 
the kinetic term has a positive plaquette expectation value. The pres-
ence of dynamical matter and the pair-creation effect described by ̂Hk 
leads, therefore, to an increase of ⟨�̂⟩ in the intermediate-coupling 
regime, as shown in Fig. 1f. This effect results in a change to the slope 
of the plaquette expectation value as a function of g−2. An alternative 
lattice QED model41,52,61–64 is studied in Supplementary Note VI. In both 
cases, the relevant physics is captured for the minimal truncation of 
d = 3. In general, however, realizing LGT quantum computations beyond 
1D will require the ability to control the gauge-field dimension, which 
we will study in the next section.

Towards refining the gauge-field discretization
The hardware-efficient representation of gauge fields allowed us to 
experimentally address a second prerequisite on the path towards 
simulating Nature through LGT quantum computations: controlling the 
number of gauge-field levels. We demonstrated how our qudit platform 
allows the seamless improvement of the gauge-field discretization from 
qutrits (d = 3) to ququints (d = 5). As a concrete example, we studied the 
dependence of the plaquette expectation value on the bare coupling at 
different discretizations, as a first step towards quantum computations 
of the running of the coupling. To this end, we considered QED on a 2D 
lattice with periodic boundary conditions (torus) (Fig. 2a).

For our proof-of-concept demonstration, we considered a pure 
gauge theory ̂H = g2 ̂HE + (1/g2) ̂HB (equation (4)). Figure 2b shows the 
minimal system consisting of four vertices and eight gauge fields (one 
per link). Using Gauss’s law, we reduced the number of independent 
gauge fields to five. It can be shown that three of these are sufficient to 
describe the ground-state properties41. Instead of individual link fields, 
we described the gauge degrees of freedom using ‘rotators’. As 
explained in ref. 41, each of the three rotators in our simulation can be 
visualized as loops around a different plaquette (Fig. 2b).

We previously truncated the gauge field in the electric field eigen-
basis. That is, in our first experiment, we included eigenstates |E〉 of the 
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Fig. 2 | Refining the gauge-field discretization. a, We consider pure gauge QED 
in two spatial dimensions with periodic boundary conditions, that is on a lattice 
on the surface of a torus. As before, the gauge field resides on the links of the 
lattice, although the vertices remain empty. b, We consider the smallest instance 
of such a torus. It has four empty sites and eight gauge-field links. The ground 
state of this particular system can be described with three separate circulation 
paths of the gauge field, which are called rotators, as discussed in ‘Pure gauge 
2D-QED’ in Methods. Each rotator satisfies an eigenvalue equation equivalent to a 
single-link gauge field and can, thus, be subject to the same truncation rules as 
discussed in the main text by employing a d-level qudit. Here, we demonstrate the 
difference between a realization employing qutrits and ququints. c, The 
variational circuit in the electric representation (see main text) for the qutrit 
truncation (solid lines) and the ququint truncation (all, except shaded box 
marked with qutrit symbol). The explicit form of the gates employed is given in 
‘Variational circuit’ in Methods. d, Experimentally measured expectation values 
of the plaquette operator �̂ in the VQE-optimized ground states using qutrits 

(light blue and orange triangles) compared to ququints (dark blue and red 
pentagons). The error bars indicate one standard deviation of statistical 
uncertainty from Monte Carlo resampling around the measured value, averaged 
over 150 (300) repetitions for qutrits (ququints). The black line represents 
numerical results obtained for d = 21 using the electric (magnetic) representation 
for small (large) values of g−2. The dashed lines are exact numerical results for 
qutrits and ququints. e, The duality between the electric representations (orange 
bars) and the magnetic representations (blue bars) is clearly seen in the 
experimentally measured populations of the eigenvectors of the yellow rotator 
from b for the qutrit VQE experiment and ququint experiment. The grey bars 
were obtained with exact diagonalization. In the regime dominated by the 
electric Hamiltonian (small g−2), a qutrit representation (light orange) is enough 
to approximate the correct ground state, whereas for larger g−2, truncation errors 
become more relevant and a ququint representation (dark orange) becomes 
advantageous. A complementary argument applies to the magnetic qutrit (light 
blue) and ququint (dark blue) representations.
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electric field operator ̂E  with ̂E |E ⟩ = E |E ⟩ and E = 0, ±1. To efficiently 
determine the plaquette expectation value across all couplings, we 
now employ the better truncation scheme introduced in ref. 41. Our 
method is based on a Fourier transformation: for large couplings 
(g−2 ≪ 1), the Hamiltonian is dominated by the electric field contribution 
̂HE, and a gauge-field truncation in the electric (E) field basis is suitable, 

which we refer to as the electric representation. For small couplings 
(g−2 ≫ 1), the magnetic field term dominates, and accordingly, a mag-
netic (B) field basis (using B-field eigenstates) is more efficient. The 
VQE circuits for the E and B representations are shown in Fig. 2c and 
Supplementary Note III, respectively. As explained in more detail in 
Supplementary Note III, their construction was inspired by the form 
of the Hamiltonian.

Figure 2d shows the ground-state plaquette expectation values 
versus g−2, along with our theoretical predictions that include a simple 
noise model, as described in Supplementary Note V. For qutrits and 
ququints, we performed the full VQE as in Fig. 1. Note that we show the 
results for both representations across all values of the coupling g−2, 
even though the validity of the electric (magnetic) representation was 
restricted to the large (small) coupling regime where g−2 ≪ 1 (g−2 ≫ 1). 
The gap between the curves in the intermediate region g−2 ≈ 1, where 
the electric and magnetic representations performed equally well, 
stemmed from the truncation of the gauge fields41. As the truncation 
was increased, the two curves rapidly approached each other and 
eventually agreed for some intermediate value of g−2, as indicated by 
the experimental data and confirmed by a numerical simulation at 
d = 21 (Fig. 2d). The value of g−2 where the curves are closest indicates 
the point at which the representation should be switched.

This effect can also be observed in Fig. 2e, where we depict the 
measured populations of the gauge fields in the ground state. In the 
large-coupling regime (g−2 ≪ 1), the distribution of electric field states 
is narrow, making truncation in the E-basis efficient. By contrast, this 
distribution becomes very broad in the small-coupling regime, where 
it tends to an equally weighted superposition of infinitely many E-field 
levels in the limit g−2 ≫ 1. As a result, the accurate approximation of the 
ground state in the E-basis implies exploding resource costs without 
a basis change41. The behaviour of the B representation is comple-
mentary. The aforementioned closing gap between the plaquette 
expectation values in the E representation (red) and the B representa-
tion (blue) in Fig. 2d thus corresponds to a better representation of 
the ground state in Fig. 2e. The closing gap for intermediate g−2 values 
provides an indication of how well finite-d computations approximate 
the untruncated results41.

Similarly, the so-called freezing of the truncated plaquette expec-
tation value in the weak-coupling regime g−2 ≫ 1 indicates how well the 
ground state is approximated. Freezing occurs in both classical and 
quantum computations if the number of levels d is too small to accurately 
reflect the spread of the ground-state wavefunction. As there are too few 
‘bins’ for the population of the gauge field, the truncated state cannot 
capture the changes in the ground state, which is visible as a premature 
flattening of the plaquette expectation value versus g−2 (the dashed blue 
lines for d = 3 or 5 in Fig. 2d flatten out earlier than the solid black line for 
d = 21). A detailed analysis is provided in ref. 41, showing fast convergence 
of the plaquette expectation value to the true value already for d ≤ 10. In 
general, different problems will permit different degrees of truncation. 
Yet, the moderate values of d available in typical atomic systems are 
expected to be sufficient for addressing a range of interesting problems, 
particularly those involving local observables for the ground-state sector 
of the theory28,29. Notably, improving the gauge-field discretization was 
achieved in our set-up with only minor modifications that involved the 
same number of ions and entangling gates (Supplementary Note III).

Towards real-time dynamics
We complete our study of qudit LGT quantum computations by inves-
tigating the prospect of simulating real-time evolutions. We took a first 

step in this direction by using mixed-dimensional entangling gates 
for a digital quantum simulation (in the form of a Trotter protocol65) 
for the model used in ‘Simulating gauge fields and matter’, that is a 
plaquette with open boundary conditions including gauge fields and 
dynamical matter.

As in the VQE demonstration in Fig. 1, we studied this model with 
a hybrid qubit–qutrit system. Starting from the bare vacuum ∣vvvv, 
0〉 as the initial state, we studied the dynamics of the system under 
the Hamiltonian in equation (9) using a single Trotter step of various 
lengths. See ‘Real-time evolution’ in Methods and Extended Data Fig. 3 
for details. This time evolution can be interpreted as a quench from 
the strong-coupling regime (g−2 ≪ 1), where the bare vacuum is the 
ground state, to an intermediate-coupling value. In the latter regime, 
the kinetic term of the Hamiltonian drives particle–antiparticle pair 
creation and annihilation, first increasing the mean particle number 
density ν followed by oscillatory behaviour. Because of Gauss’s law, 
the creation of charged particles affected the electromagnetic fields 
in the system, which we observed as the corresponding dynamics of 
the plaquette expectation value in Fig. 3b.

Outlook
Qudits provide a hardware-efficient approach for quantum-simulating 
gauge theories. Using a universal trapped-ion qudit quantum computer 
with all-to-all connectivity enabled us to simulate arbitrary geometries, 
thus enabling quantum simulations of 2D-LGTs. Unlike 1D models, 
gauge fields must be included explicitly, and unlike condensed mat-
ter models, the gauge fields in particle physics are described by more 
complicated gauge groups and must have more than two states. In 
particular, we simulated a basic building block of 2D-QED with both 
dynamical matter and gauge fields (Fig. 1), and we studied different 
gauge-field discretizations (Fig. 2). These complex computations were 
rendered possible by high-fidelity qudit control combined with VQE 
circuits that are much shallower than comparable qubit-based imple-
mentations of gauge theory calculations. Although we exploited native 
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magnetization subsector on the matter sites. Insets, examples of the dominant 
states at different times of the evolution.
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qudit circuits to study the equilibrium properties, the techniques we 
developed are directly adaptable to digital quantum simulations of 
real-time dynamics (Fig. 3).

The ultimate goal is LGT quantum simulations in 3D. Impor-
tantly, the simulation requirements shift dramatically in going from 
1D to 2D but require minimal changes from 2D to 3D66,67. Although 
the high-dimensional gauge fields can be integrated out in 1D mod-
els, they are dynamic degrees of freedom in 2D and 3D and must be 
simulated explicitly. Our results for QED simulations beyond 1D thus 
represent a major step towards simulating 3D LGTs. In particular, our 
protocol based on eliminating redundant gauge degrees of freedom 
employed here can be directly extended to 3D (for QED, see ref. 66). 
Our qudit techniques can be applied to virtually all other quantum 
computing architectures and hardware platforms. For all of these, 
the main remaining task is scaling up the system sizes, which makes 
an efficient gauge-field representation even more important. Beyond 
just programmable local dimensions, qudit-based systems have more 
freedom for designing interactions that optimally match the target 
problem. Notably, quantum error correction schemes, which are mak-
ing great progress in conventional qubit systems68–70, are compatible71 
with our hardware-efficient qudit approach. Our demonstration of a 
qudit-based quantum simulation of high-energy physics phenomena 
thus paves the way to a new generation of qudit-based applications in 
all areas of quantum technology.
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maries, source data, extended data, supplementary information, 
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butions and competing interests; and statements of data and code avail-
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Methods
Realizing controlled rotations in qudits
We encoded each qudit in Zeeman states of trapped 40Ca+ ions and 
manipulated their quantum state by sequences of laser pulses. Doppler 
cooling and state detection were performed by driving the short-lived 
S1/2 ↔ P1/2 transition and monitoring the fluorescence of the individual 
ions on a CCD camera. A simplified level scheme of the relevant states is 
shown in Extended Data Fig. 2a. Quantum gate operations were imple-
mented by selectively addressing single—or arbitrary pairs of—ions with 
a high numerical aperture objective, which coupled the D5/2 manifold 
with the S1/2 ground states72. Owing to the geometry of our ion trap, the 
beam was aligned at an angle of 22.5° with respect to the trap axis, lead-
ing to a Lamb–Dicke factor of η = 0.041 for an axial trap frequency of 
ωz = 0.77 MHz. We measured a heating rate of 2.7(2) phonons per second 
and a motional coherence time τ = 27.4(4) ms.

Qudits with dimension d = 2 (qubits) were encoded, such that 
|0〉 = S1/2(m = −1/2) and |1〉 = D5/2(m = −1/2), as shown in Extended Data 
Fig. 2a. For d > 2, only the D5/2 manifold of 40Ca+ was used to encode the 
qudit, whereas the S1/2 ground states acted as auxiliary levels |g〉, which 
were populated only during gate operations and read-out.

Mixed-dimensional qudit–qudit interactions were engineered 
by controllably coupling qudits to a single phonon mode. Thus, we 
effectively used an anti-Jaynes–Cummings Hamiltonian described by

̂Hj = iηΩj( ̂a†σ̂+j + ̂aσ̂−j )
|g⟩↔||k⟩

, (2)

on the jth ion with Rabi frequency Ωj. Here, † indicates the conjugate 
transpose of an operator so that ̂a†σ̂+j  excites the qudit from the (aux-
iliary) ground state |g〉 from the S1/2 manifold to a state |k〉 in the D5/2 
manifold, simultaneously injecting a phonon into the motional mode; 
̂aσ̂−j  has the opposite effect. In our set-up, we realized this interaction 

by driving controlled laser pulses B(θ, ϕ) tuned to the first blue side-
band (BSB) of the axial centre-of-mass motional mode, where θ defines 
the rotation angle, and ϕ the phase. This mode was favourable because 
of the parameters for all qudits.

Envisioned to realize the Cirac–Zoller controlled-NOT quantum 
gate in trapped ions10, sequences of local B(θ, ϕ) pulses are well suited 
for implementing mixed-dimensional controlled rotations in qudits, 
as shown in Extended Data Fig. 2b. We considered a two-level subspace 
of a qudit, described by the states |0〉 and |1〉, which can be coupled to 
the motional mode |n〉 through the auxiliary ground state |g〉. Condi-
tioned on the control state—here |1〉–the control qudit was entangled 
with the motion by the interaction in equation (2) to create a phonon, 
as indicated by the upward-pointing triangle in Extended Data Fig. 2b. 
To test the control state, a resonant π pulse transferred the population 
in |1〉 to |g〉 before a second π pulse was applied on the blue sideband. 
It is evident that this operation had no effect if the control qudit was 
initially not in the state |1〉. On the target qudit, we applied a sequence 
of three sideband pulses (blue boxes), namely

B(π,0)|g⟩→|1⟩B(θ,ϕ)|g⟩↔|0⟩B(−π,0)|1⟩→|g⟩,

where the superscripts indicate the respective coupling between the 
state |g〉 and the states |0〉 and |1〉. Crucially, these operations affected 
the target qudit only when the phonon mode was excited. In the final 
step, the operations on the control qudit were applied in reverse order 
to disentangle the control qudit from the centre-of-mass mode, thus 
annihilating the phonon depicted by the downward-pointing triangle.

We extended the well-established circuit representation of quan-
tum gates in qubits by introducing a way to draw interactions in qudits 
in a similar manner. As shown in the inset in Extended Data Fig. 2b,  
we expanded the line representing each qudit into d individual rails, 
which allowed us to draw gates acting on subspaces of the qudit 
unambiguously. We contracted the rails back to a single line after the 

subspace gate. For controlled rotations, the control state is indicated 
in the usual fashion.

As the sideband Rabi frequency is proportional to the Lamb–
Dicke factor η, driving the blue sideband required substantially more 
laser power than carrier transitions do. Each B(θ, ϕ), thus, intro-
duced unwanted AC Stark shifts ΔAC of the order of a few kilohertz9, 
which must be carefully taken into account to achieve high-fidelity 
controlled-rotation gates. We compensated for these shifts using a 
twofold approach: (1) shifts on the actively driven transition were com-
pensated for by an off-resonant second-beam technique12,73, whereas 
(2) other shifts on spectator carrier transitions |l ≠ k〉 were measured 
and compensated for in software by frame updates on subsequent 
operations. An example of shifted spectator states is shown in Extended 
Data Fig. 2c for B(θ, ϕ) on the blue sideband of the transition S−1/2 ↔ D−1/2 
with a Rabi frequency 2π × 4 kHz. For each state, ΔAC was obtained by 
a Ramsey measurement.

2D-QED Hamiltonian
The models we simulated are instances of lattice QED and are defined 
on a two-dimensional discretization of space. Matter (electrons and 
positrons) and gauge bosons (photons) are defined on the sites and 
on the links of this lattice respectively, as shown in Fig. 1a.

Here, matter is described by fermionic field operators ϕ̂n with 
spatial label n = (nx,ny). We employed the staggered formulation51 in 
which lattice sites can either be in the vacuum state or host electrons 
(positrons) residing on even (odd) lattice sites, carrying a +1 (−1) 
charge. The charge in terms of the fermionic field is given by 
̂qn = ϕ̂

†
nϕ̂n − (1 − (−1)nx+ny )/2.

The gauge field residing on the links between each pair of sites is 
described by an electric field operator ̂En,eμ (eμ indicates the unit vector 
in the direction μ ∈ {x, y}) that possesses an infinite but discrete spec-
trum ̂En,eμ ||En,eμ ⟩=En,eμ ||En,eμ ⟩, where En,eμ = 0, ±1, ±2,…. The link operator ̂Un,eμ 
acts as a lowering operator for the electric field:

̂Un,eμ
||En,eμ ⟩ = ||En,eμ − 1⟩ . (3)

The total Hamiltonian

̂H = g2 ̂HE +
1
g2

̂HB +m ̂Hm +Ω ̂Hk

is then given by a sum of four parts as shown in equation (1). Note that 
compared to the convention used in refs. 41,54, we opted to redefine 
the four Hamiltonians such that they are independent of the mass and 
coupling constant. Moreover, we consider here another formulation of 
lattice QED74,75, in which the signs in the kinetic term are different from 
those used in refs. 41,54. For a discussion of the experimental results 
for the model employed in refs. 41,54, see Supplementary Note IV. By 
employing the Kogut–Susskind formulation in natural units ℏ = c = 1 
and with lattice spacing a = 1, the terms in the Hamiltonian read75

̂HE =
1
2 ∑n

( ̂E
2
n,ex + ̂E

2
n,ey) , (4a)

̂HB = − 1
2 ∑n

( ̂Pn + ̂P
†
n) , (4b)

̂Hm = ∑
n

(−1)nx+ny ϕ̂†
nϕ̂n, (4c)

̂Hk = ∑
n

(iϕ̂†
n

̂U
†
n,ex ϕ̂n+ex+

(−1)nx+ny+1ϕ̂†
n

̂U
†
n,ey ϕ̂n+ey +H.c.) .

(4d)
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̂HE and ̂HB represent the free electric and magnetic fields, whereas 
̂Hm and ̂Hk describe the free matter field and its interaction with the 

gauge field. The operator ̂Pn is defined on an anticlockwise closed loop 
around the plaquette with origin n (Extended Data Fig. 1b) as

̂Pn = ̂Un,ex
̂Un+ex ,ey

̂U
†
n+ey ,ex

̂U
†
n,ey . (5)

Noting that the link operator ̂Un,eμ is expressed in terms of the vector 
potential of the gauge fields ̂An,eμ, that is ̂Un,eμ ≈ exp{ig ̂An,eμ }, the expo-
nent of ̂Pn forms a discrete lattice curl of the vector potential. The 
plaquette operator �̂ = (1/2V)∑

n
( ̂Pn+ ̂P

†
n), where V is the number of pla-

quettes, is, therefore, proportional to the magnetic field energy. It is a 
true multi-dimensional quantity that has no analogue in 1D-QED. In 
quantum field theories, the spontaneous creation of particle–antipar-
ticle pairs in vacuo means that, when measuring the strength of a 
charge, the result can depend on the distance and energy scale at which 
it is probed. As the coupling is proportional to the charge76, the physical 
coupling, which is an important parameter in phenomenological 
high-energy physics models, also depends on the energy scale. This 
phenomenon is known as the running of the coupling. The dependence 
of the ground-state plaquette expectation value ⟨�̂⟩ on g−2, where g is 
the bare coupling, can be related to the running of the coupling, which 
is discussed in more detail in ref. 52.

Importantly, not all quantum states in the considered Hilbert space 
are physical. The gauge field and charge configurations of physical 
states |Ψphys〉 have to fulfil Gauss’s law at every site. Here, the familiar 
law from classical electrodynamics ∇E(r) − ρ(r) = 0, where ρ(r) is the 
charge density at point r, takes the form

̂Gn ||Ψphys⟩ = 0, (6)

where the Gauss operator is defined as

̂Gn = ∑
μ
( ̂En,eμ − ̂En−eμ ,eμ ) − ̂qn. (7)

In general, Gauss’s law requires physical states to be eigenvectors of 
the Gauss operator. For equation (6), we chose to consider the eigen-
values to be zero, which describes a model with no external charges. 
The total charge ∑n

̂qn can also be shown to be a symmetry of the Ham-
iltonian. In this work, we chose to study states that have zero total 
charge.

Encoded Hamiltonian
In the following, we provide the Hamiltonians studied with the VQE 
circuits given in Figs. 1d and 2c.

2D-QED with matter. Let us consider a single plaquette with open 
boundary conditions with origin in n = (0, 0) and extending in the posi-
tive directions, as shown in the inset of Fig. 1f. As was discussed in ref. 
54, Gauss’s law, as given in equation (6), can be used to eliminate three 
gauge fields, resulting in an Hamiltonian that contains four fermionic 
fields and one gauge field, which we chose to be the one between sites 
(0, 0) and (0, 1). We encode the fermions i, …, iv (conventionally ordered 
clockwise around the plaquette starting from (0, 0)) into a chain of  
qubits indexed by 1, …, 4, respectively, by applying the following  
Jordan–Wigner transformation:

ϕ̂i =∏
j<i

(eiαj σ̂zj ) σ̂
−
i , ϕ̂†

i =∏
j<i

(e−iαj σ̂zj ) σ̂
+
i , (8)

with α1 = α3 = 0 and α2 = π/2. Note that this choice of phases generates 
a qubit Hamiltonian with only real coefficients.

In particular, the charge associated with each site is now given  
by ̂qi = (σ̂zi + (−1)i+1)/2 . A table summarizing how the spin states are 

related to the fermionic states is given in Extended Data Fig. 1c.  
The Hamiltonian

̂H = g2 ̂HE +
1
g2

̂HB +m ̂Hm +Ω ̂Hk,

after the Jordan–Wigner transformation reads

̂HE =
1
4 (8 ̂E

2
+ 2 ̂E (−2σ̂z1 + σ̂

z
2 − σ̂

z
4 − 2)

+σ̂z1 − σ̂
z
2 + σ̂

z
1 σ̂
z
4 + 3) ,

(9a)

̂HB = − 1
2 (

̂U + ̂U
†
) , (9b)

̂Hm = 1
2 (σ̂

z
1 − σ̂

z
2 + σ̂

z
3 − σ̂

z
4) , (9c)

̂Hk = σ̂+1 ̂U
†
σ̂−2 + σ̂

+
2 σ̂

−
3 − σ̂

+
4 σ̂

−
3 − σ̂

+
1 σ̂

−
4 + H.c., (9d)

where we have simplified terms in the kinetic Hamiltonian because we 
consider only states with zero total charge (and, therefore, zero total 
magnetization for the qubits), as discussed below equation (6). The 
gauge degree of freedom is encoded in a qutrit, and following ref. 54, 
we truncate the gauge-field operators as

̂E =
⎛
⎜
⎜
⎝

1 0 0

0 0 0

0 0 −1

⎞
⎟
⎟
⎠

, ̂U =
⎛
⎜
⎜
⎝

0 0 0

1 0 0

0 1 0

⎞
⎟
⎟
⎠

. (10)

For the experiment illustrated in Fig. 1, we chose the parameter values  
m = 0.1 and Ω = 5. This choice positions our demonstration in the 
non-perturbative regime where pair creation has a substantial effect. 
The definition of the different prefactors of the individual terms in the 
Hamiltonian can be found in Appendix A in ref. 41.

Pure gauge 2D-QED. The second simulated model is based on pure 
gauge theory with periodic boundary conditions, as shown in Fig. 2a. 
We consider here the minimal instance consisting of four vertices, as 
depicted in Fig. 2b. As discussed in ref. 41, Gauss’s law can be used to 
reduce the system to three independent degrees of freedom. These 
are described by three operators ̂Pi (i = 1, 2, 3), which are defined in 
equation (5) and are each associated with the magnetic energy of a 
plaquette depicted in the lower part of Fig. 2b. For each plaquette, we 
define the corresponding rotator operator as the circulation of the 
gauge field going anticlockwise. It can be shown that the rotators have 
integer spectrum:

̂Ri |ri⟩ = |ri⟩ , ri ∈ ℤ, (11)

and that the operators ̂Pi act as lowering operators on these states, that 
is ̂Pi |ri⟩ = |ri − 1⟩.

To study this model on a quantum computer, the infinite- 
dimensional Hilbert spaces of the rotators need to be truncated with a 
strategy that allows one to systematically increase the truncation size 
and approach the continuum limit, as discussed in detail in ref. 41. We 
summarize here the essential points of the derivation. As a first step, the 
gauge group U(1) is substituted by the discrete group ℤ2L+1, and the Hilbert 
space is then truncated for each rotator to the 2l + 1 eigenstates |−l〉, …, 
|l〉, for some l ≤ L. The action of the truncated ̂Pi operator is then given by

̂Pi |ri⟩ = {
l |ri − 1⟩ , if r j > −l,

δlL ||l⟩ , if r j = −l.
(12)
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The Hamiltonian in terms of the rotators reads

̂H
(e)

= g2 ̂H
(e)
E + 1

g2
̂H
(e)
B , (13a)

̂H
(e)
E = 2 [ ̂R

2
1 + ̂R

2
2 + ̂R

2
3 − ̂R2 ( ̂R1 + ̂R3)] , (13b)

̂H
(e)
B = − 1

2 (
̂P1 + ̂P2 + ̂P3 + ̂P1 ̂P2 ̂P3 + H.c.) , (13c)

where we have used the superscript (e) to indicate that we are using the 
so-called electric representation, in which the electric Hamiltonian ̂H

(e)
E  

is diagonal. The parameter g is the bare coupling and is proportional 
to the bare electric charge76.

In the regime where g ≪ 1, it is more convenient to apply a discrete 
Fourier transform to the Hamiltonian, which leads to a magnetic rep-
resentation where ̂H

(b)
B  is diagonal. For the calculations, let us define 

the following coefficients, defined in terms of the polygamma func-
tions ψν(x):

f sν =
(−1)ν+1

2π [ψ0 (
2 + L1 + ν
2(2L + 1) ) − ψ0 (

ν
2(2L + 1) )] , (14a)

f cν =
(−1)ν

4π2 [ψ1 (
ν

2(2L + 1) ) − ψ1 (
2L + 1 + ν
2(2L + 1) )] , (14b)

and introduce the notation |r〉 = |r1〉|r2〉|r3〉. The Hamiltonian in the 
magnetic representation is then given by

̂H
(b)

= g2 ̂H
(b)
E + 1

g2
̂H
(b)
B , (15a)

̂H
(b)
E = ∑2L

ν=1 [f
c
ν ( ̂P

ν
1 + ̂P

ν
2 + ̂P

ν
3)

+ fν
2
( ̂P

ν
2 − ( ̂P

†
2)
ν
)∑2L

μ=1 f
s
μ ( ̂P

μ
1 + ̂P

μ
3 ) ] +H.c.,

(15b)

̂H
(b)
B = −

L

∑
r=−L

[cos ( 2πr1
2L + 1 ) + cos ( 2πr2

2L + 1 )

+ cos ( 2πr3
2L + 1 ) + cos (2π(r1 + r2 + r3)2L + 1 )] |r⟩ ⟨r| .

(15c)

For our quantum calculations shown in Fig. 2 we chose (L, l) = (2, 1) for 
the qutrit experiment and (L, l) = (3, 2) for the ququint experiment. 
Throughout the paper, we use L = l + 1.

A VQE for qudits
Variational circuit. As explained in the main text, the variational circuit 
shown in Fig. 1d was based on the form of the target Hamiltonian given 
in equation (9). As all the coefficients of the Hamiltonian are real, it was 
convenient to use gates in the variational circuit that rotate between 
states with real coefficients only. This approach also allowed us to 
formulate a circuit that is more efficient in terms of the number of 
variational parameters. In particular, the square blue gates between 
the qubits in Fig. 1d are the magnetization-conserving gates studied 
in ref. 77, which are defined as

̂A(θ,ϕ) =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 cosθ eiϕ sinθ 0

0 e−iϕ sinθ − cosθ 0

0 0 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (16)

We chose ϕ = 0 for all gates, which resulted in a transformation with 
real coefficients. The qubits on which ̂A acts were ordered by decreas-
ing index.

The entangling gates in Figs. 1d and 2c and Supplementary Figs. 1 
and 2 marked by the rounded box are controlled rotations. When the 
control is active, the rotation on the target qudit is given by

̂R
i, j
y (θ) = exp (−iθσ̂i, jy /2) , (17)

where i and j are the levels addressed in the target qudit and σ̂i, jy  is the 
corresponding Pauli y matrix. This choice ensures that the rotation has 
real coefficients. In the qubit–qudit configuration, the rotation is active 
when the control qubit is in the |↓〉 state, whereas for the qudit–qudit 
gate, the control state is explicitly marked in the corresponding circuits. 
The experimental implementation of these gates is discussed in more 
detail in ‘Realizing controlled rotations in qudits’. The last type of gate 
used in our variational circuit is the qudit-internal rotation shown in 
Fig. 2c and Supplementary Fig. 2 as square boxes. They are given by the 
x rotation between the addressed states i and j:

̂R
i, j
x (θ) = exp (−iθσ̂i, jx ) . (18)

Optimization algorithm. For our VQE experiments, we employed two 
optimization strategies, which are both based on Bayesian optimization 
(BO)78. Here, the algorithm collects evaluations of the cost function 
⟨ ̂H(θ)⟩ for proposed sets of n input parameters θ = {θi}i=1,…,n and con-
structs a surrogate model by a Gaussian process to represent the cost 
function. This allowed us to quantify how likely further evaluations of 
the cost function are to achieve an improvement over the best-found 
value so far and, hence, reduced the overall number of evaluations to 
be performed. Importantly, the method does not require gradient 
evaluations and can tolerate noisy input data.

For the system with periodic boundary conditions in Fig. 2, our 
BO strategy is very close to the one described in ref. 78. We initialized 
the optimizer by evaluating ⟨ ̂H ⟩ at the corners of the parameter space 
to create an n × n grid. Next, the algorithm mapped out the energy 
landscape by tuning θ for up to 100 evaluations (in the qutrit case). 
Treating the input parameters as vectors v(θ), convergence was 
achieved when the norm ||v(θ) − v(θ′)|| between five consecutive runs 
did not exceed a threshold of 0.01.

The variational optimization for the case involving matter and 
gauge fields is more complex. From equation (1) it is evident that g−2 
acts as a scaling factor only for the individual terms contributing to the 
expectation value ⟨ ̂H(θ)⟩. Hence, the cost function could be evaluated 
simultaneously for all values of g−2 after each measurement. This 
allowed us to generate a data storage system and pair it with the BO 
algorithm. We allowed the algorithm to initialize the storage by taking 
130 measurements, before sampling up to 300 times or until conver-
gence. During the optimization of the parameters for a single value of 
g−2i , the outcomes were processed and saved for successive searches. 
After successful optimization for g−2i , this process was repeated for 
g−2i+1, considering all previous outcomes. With the assumption that the 
optimal solutions change smoothly for small variations in the bare 
coupling, the already-found minimum for g−2i  is a good candidate for 
an initial guess for g−2i+1. Consequently, the algorithm no longer needed 
to sample the whole parameter space but could invest in refining the 
search around promising solutions. When the bare coupling is changed, 
the available knowledge increases, yielding faster convergence.

We also modified a recently proposed trust region BO approach79 
to accept noisy cost function evaluations. We coupled it to the data stor-
age and performed two sweeps in the coupling ranging from g−2 = 0.01 
to 100. The best values were obtained after the last run.

VQE measurements for qudits. In the following, we explain the qudit 
measurements and basis decompositions used in our VQE experiments. 
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Unlike qubits, where one naturally chooses the Pauli product basis, 
there is no clear indication for the best possible basis to decompose a 
given qudit (possibly mixed-dimensional) Hamiltonian. This is because 
the Pauli operators allow for an efficient classical determination of a 
circuit that diagonalizes a group of commuting Pauli operators so they 
can be measured simultaneously80.

For qudits, we represented the Hamiltonian in terms of  
the so-called clock and shift operators, which are normalized by the 
generalized Clifford group comprising the d-dimensional SUM  
(generalized controlled NOT), Hadamard and S gates80,81. More pre-
cisely, the clock and shift operators are respectively defined as 
̂Z = diag {exp((2πi/d)k)}d−1k=0  and ( ̂X )kl = δk, l−1 + δk,dδl,1. By expressing the 

matter and gauge fields and the operators ̂Pn as linear combinations 
of tensor products of ̂X

α ̂Z
β

 (α, β ∈ {0, …, d − 1}), we could, therefore, 
write the Hamiltonian ̂H  with contributions from equations (13) and 
(15) in terms of the clock and shift operators only, ̂H = ∑i ciÔi (ref. 80). 
Here, ci ∈ ℂ and Ôi = ⊗m

j=1 ̂X
αij ̂Z

βij for m qudits and coefficients αij and βij 
determined by the decomposition of ̂H .

Normalizing these operators with gates from the generalized 
Clifford group then mapped a subset of the Ôi operators to clock opera-
tors ̂Z

γi (with all γi not necessarily identical), which could subsequently 
be measured simultaneously.

Real-time evolution
In this section, we show how we used the qudit tools that we developed 
in the context of equilibrium problems (Figs. 1 and 2) to study time 
evolutions in LGTs, an area that is inaccessible to Markov chain Monte 
Carlo methods due to sign problems20,22. As a proof-of-concept dem-
onstration, we consider here a single plaquette with open boundary 
conditions, as in ‘Simulating gauge fields and matter’ of the main text. 
As with the VQE demonstration, we studied this model with a hybrid 
qubit–qutrit system, which can be realized within the same trapped-ion 
chain. As the initial state of the time evolution, we chose the bare vac-
uum of the system ∣vvvv, 0〉, where no particles (first four entries) or 
gauge-field excitations (last entry) are present. We study its time evolu-
tion under the Hamiltonian given in equation (9). As depicted in 
Extended Data Fig. 1, the initial state in qubit–qudit form is given by 
|↓↑↓↑, 0〉. This time evolution can be interpreted as a quench from the 
strong-coupling regime (g−2 ≪ 1), where the bare vacuum is the ground 
state, to a weaker coupling. To simulate this time evolution on our 
quantum hardware, we performed a Trotter protocol65,82. We decom-
posed the Hamiltonian into a sum ̂H = ∑i

̂hi. Then the state at time t 
calculated with NT Trotter steps is given by

∏
i=1

exp (−i tNT
̂hi)…∏

i=1
exp (−i tNT

̂hi)
⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟

NTtimes

|↓↑↓↑,0⟩ . (19)

We chose the following decomposition into Trotter steps for the Ham-
iltonian given in equation (9):

̂h1 = Ω (σ̂+1 ̂U
†
σ̂−2 − σ̂

+
4 σ̂

−
3 +H.c.) , (20a)

̂h2 = Ω (σ̂+2 σ̂
−
3 − σ̂

+
1 σ̂

−
4 +H.c.) , (20b)

̂h3 =
g2
4 (σ̂z1 σ̂

z
4 − 4 ̂Eσ̂z1 + 2 ̂Eσ̂z2 − 2 ̂Eσ̂z4) , (20c)

̂h4 =
m
2
(σ̂z1 − σ̂

z
2 + σ̂

z
3 − σ̂

z
4)

+ g2

4
(8 ̂E

2
− 4 ̂E + σ̂z1 − σ̂

z
2 + 3) ,

(20d)

̂h5 = − 1
g2

( ̂U + ̂U
†
) . (20e)

We experimentally realized the above Trotter protocol for a single 
Trotter step NT = 1. The gates in the Trotter circuit (Extended Data 
Fig. 3a) were experimentally implemented as follows. All local gates, 
including σ̂z, ̂U  and ̂E

(2)
, were realized as in the main text. Terms of the 

form ̂Eσ̂z are (for qutrits) effectively equivalent to σ̂zσ̂z and were realized 
by a standard Mølmer–Sørensen (MS) gate83 that was locally rotated 
using (subspace) Hadamard gates on all involved ions. Gates of the 
form σ̂+σ̂− +H.c. were realized as σ̂xσ̂x + σ̂ yσ̂ y, which corresponds to a 
sequence of two locally rotated MS gates. This leaves only the term 
σ̂+1 ̂U

†
σ̂−2 +H.c.  Extending the decomposition given in ref. 84, this 

three-body coupling can be realized using 24 two-body MS gates:

eiθ(σ̂
+
i

̂U
†
j σ̂−k +H.c.) = e−

iπ
4
σ̂ yi σ̂

z01
j e

iθ
4
σ̂x01j σ̂ xk e

iπ
4
σ̂ yi σ̂

z01
j

e−
iπ
4
σ̂ yi σ̂

y01
j e

iθ
4
σ̂z01j σ̂ yk e

iπ
4
σ̂ yi σ̂

y01
j

e−
iπ
4
σ̂ xi σ̂

y01
j e−

iθ
4
σ̂z01j σ̂ xk e

iπ
4
σ̂ xi σ̂

y01
j

e−
iπ
4
σ̂ xi σ̂

x01
j e−

iθ
4
σ̂z01j σ̂ yk e

iπ
4
σ̂ xi σ̂

x01
j

e−
iπ
4
σ̂ yi σ̂

z12
j e

iθ
4
σ̂ x12j σ̂ xk e

iπ
4
σ̂ yi σ̂

z12
j

e−
iπ
4
σ̂ yi σ̂

y12
j e

iθ
4
σ̂z12j σ̂ yk e

iπ
4
σ̂ yi σ̂

y12
j

e−
iπ
4
σ̂ xi σ̂

y12
j e−

iθ
4
σ̂z12j σ̂ xk e

iπ
4
σ̂ xi σ̂

y12
j

e−
iπ
4
σ̂ xi σ̂

x12
j e−

iθ
4
σ̂z12j σ̂ yk e

iπ
4
σ̂ xi σ̂

x12
j ,

(21)

where σ̂x,y,z  are the standard qubit Pauli operators, whereas σ̂zij refers 
to the Pauli Z operator acting on the subspace spanned by the states 
{|i〉, |j〉} for the qutrit. In our simple proof-of-principle experiment, for 
a given initial state, it was not necessary to implement the full coupling 
term. Instead, we implemented only the non-trivial component for the 
given initial state, which required just six MS gates. Notably, all required 
interactions for the mixed-dimensional time evolution of 2D-QED are 
already part of our toolbox described in the main text.

The minimal realization using one Trotter step allowed us already 
to observe the dynamics of the mean particle number density 
ν = ⟨ ̂Hm⟩/4 + 1/2, as shown in Extended Data Fig. 3. Note that ν = 0 for the 
bare vacuum, and ν = 1 for a completely filled system. We can see that, 
immediately after the quench, the kinetic part of the Hamiltonian brings 
pair-creation processes into play, which, therefore increases the particle 
density of the state. After some particles and antiparticles are created, 
however, pairs can be annihilated, leading to a decrease in the average 
particle density. Figure 3 shows how the dynamics of the particle number 
density ν and the plaquette expectation value �̂ is approximated by the 
Trotter time evolution, with NT = 1, NT = 10 and NT → ∞ (exact result).
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org/10.5281/zenodo.14652432 (ref. 85).
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Extended Data Fig. 1 | Elements of two-dimensional lattice QED. a, 2D lattice 
for the Kogut-Susskind Hamiltonian formulation. On each site n = (nx,ny) 
resides a fermionic field operator ϕ̂n that represents the presence or absence of 
particles. Each site can either be in the vacuum state or occupied by an electron 
(positron) for even (odd) sites. Electrons (positrons) are shown as filled circles 
with solid (striped) color, see panel c. The gauge bosons are described by 

operators on the links of the lattice. b, The operator ̂Pn is defined around a 
counterclockwise path around the plaquette with origin in n. For every link,  
̂Pn acquires a factor ̂U  if the path goes towards the positive directions eμ, with  

μ ∈ {x, y}, and a factor ̂U
†

 otherwise. c, Mapping between fermionic states, qubit 
states (obtained via a Jordan-Wigner transformation), and physical states, 
including associated charges.
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Extended Data Fig. 2 | Experimental Details. a, Simplified level scheme of 40Ca+. 
Doppler cooling and state detection is performed on the short-lived S1/2 ↔ P1/2 
transition with a life time of ≈ 9ns. Qubits are encoded in the Zeeman states 
|0⟩ = Sm=−1/2 and |1⟩ = Dm=−1/2, while qudits are encoded only in the D5/2 manifold. 
Any excitation of a D5/2 state decays in T1 ≈ 1.1s to the S1/2 ground states; this 
transition is addressed by a narrow-band laser with a coherence time of T2 = 92(9)
ms. b, Qudit circuit for implementing a mixed-dimensional controlled rotation 
(C-ROT) gate. For each 5-dimensional qudit, we consider a two-level subspace, 
containing the states |0⟩ and |1⟩, coupled to an auxiliary ground state |g⟩. The 
conditional interaction with the phonon mode (blue) depending on the control 
state is shown by the red triangles, with its orientation indicating the creation / 
annihilation of a phonon. If the motional mode is excited, three BSB pulses act 
locally on the target qudit, realizing the rotation. At the end of the sequence, the 

qudits are again disentangled from the motion. In the inset on the right, we 
introduce a symbol for the C-ROT operation CROT(θ, ϕ), which allows us to draw 
controlled qudit operations in quantum circuits in a similar manner to qubit 
gates, see for example Fig. 1d. c, AC Stark shifts on spectator levels for an 
excitation of the blue sideband of the S−1/2 ↔ D−1/2 transition. While the AC Stark 
shift on this transition is directly compensated by a second, off-resonant laser 
beam, the spectator levels D−5/2, D+1/2 and D+3/2 remain shifted by a few kHz with 
respect to the S−1/2 ground state; we measure no shift for the D−3/2 state. The 
individual blue dots correspond to different runs over the course of several days 
and the uncertainty represents one standard deviation of the fit uncertainty. 
These spectator shifts are compensated in software by storing a phase register 
for each qudit state and phase-shifting the subsequent operations on the 
affected qudit transitions by an appropriate amount.
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Extended Data Fig. 3 | Time evolution circuit for 2D-QED with matter. a, Circuit for the Trotter time evolution of a plaquette with dynamical matter, following the 
decomposition given in Eqs. (MIII2). For details on the model see Methods MV. b, An example of the transitions induced by the kinetic term of the Hamiltonian.
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