Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Chiral phonons

Abstract

A rapidly increasing body of work reporting phenomena associated with lattice vibrations carrying angular momentum has led to the emergence of the field of chiral phonons. Some of these properties, such as the phonon magnetic moment, also occur in achiral phonons that are circularly or elliptically polarized, while the presence of chirality has additional implications for the types of interaction allowed between the phonons and light, electrons and other quasiparticles. In this Perspective we introduce a framework for classifying phonons with angular momentum, and provide illustrations of the different types using examples from the recent literature. Specifically, we suggest the term ‘axial phonon’ to encompass all phonons that carry angular momentum, real or pseudo, and reserve the term ‘chiral phonon’ for those phonons that break improper rotational symmetry. We hope that this scheme provides clarification on the matter of phonon chirality and will serve as a guide for future research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Manifestations of chirality in static and dynamic systems.
Fig. 2: Phonon angular momentum in hexagonal boron nitride.
Fig. 3: Chiral and axial phonons.
Fig. 4: Discoveries of chiral and axial phonons in the recent literature.

Similar content being viewed by others

References

  1. Zhang, L. & Niu, Q. Chiral phonons at high-symmetry points in monolayer hexagonal lattices. Phys. Rev. Lett. 115, 115502 (2015).

    Article  ADS  Google Scholar 

  2. Zhu, H. et al. Observation of chiral phonons. Science 359, 579–582 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  3. Grissonnanche, G. et al. Giant thermal Hall conductivity in the pseudogap phase of cuprate superconductors. Nature 571, 376–380 (2019).

    Article  ADS  Google Scholar 

  4. Grissonnanche, G. et al. Chiral phonons in the pseudogap phase of cuprates. Nat. Phys. 16, 1108–1111 (2020).

    Article  Google Scholar 

  5. Li, X., Fauqué, B., Zhu, Z. & Behnia, K. Phonon thermal Hall effect in strontium titanate. Phys. Rev. Lett. 124, 105901 (2020).

    Article  ADS  Google Scholar 

  6. Juraschek, D. M., Fechner, M., Balatsky, A. V. & Spaldin, N. A. Dynamical multiferroicity. Phys. Rev. Mater. 1, 014401 (2017).

    Article  Google Scholar 

  7. Cheng, B. et al. A large effective phonon magnetic moment in a Dirac semimetal. Nano Lett. 20, 5991–5996 (2020).

    Article  ADS  Google Scholar 

  8. Baydin, A. et al. Magnetic control of soft chiral phonons in PbTe. Phys. Rev. Lett. 128, 075901 (2022).

    Article  ADS  Google Scholar 

  9. Hernandez, F. G. G. et al. Observation of interplay between phonon chirality and electronic band topology. Sci. Adv. 9, eadj407 (2023).

    Article  Google Scholar 

  10. Mustafa, H. et al. Origin of large effective phonon magnetic moments in monolayer MoS2. ACS Nano 19, 11241–11248 (2025).

    Article  Google Scholar 

  11. Wu, F. et al. Fluctuation-enhanced phonon magnetic moments in a polar antiferromagnet. Nat. Phys. 19, 1868–1875 (2023).

    Article  Google Scholar 

  12. Lujan, D. et al. Spin–orbit exciton-induced phonon chirality in a quantum magnet. Proc. Natl Acad. Sci. USA 121, e2304360121 (2024).

    Article  Google Scholar 

  13. Mai, T. T. et al. Spin-orbital–lattice coupling and the phonon Zeeman effect in the Dirac honeycomb magnet CoTiO3. Phys. Rev. B 111, 104419 (2025).

    Article  ADS  Google Scholar 

  14. Chen, L. et al. Planar thermal Hall effect from phonons in a Kitaev candidate material. Nat. Commun. 15, 3513 (2024).

    Article  ADS  Google Scholar 

  15. Che, M. et al. Magnetic order induced chiral phonons in a ferromagnetic Weyl semimetal. Phys. Rev. Lett. 134, 196906 (2025).

    Article  ADS  Google Scholar 

  16. Zhang, L. & Niu, Q. Angular momentum of phonons and the Einstein–de Haas Effect. Phys. Rev. Lett. 112, 085503 (2014).

    Article  ADS  Google Scholar 

  17. Dornes, C. et al. The ultrafast Einstein-de Haas effect. Nature 565, 209–212 (2019).

    Article  ADS  Google Scholar 

  18. Tauchert, S. R. et al. Polarized phonons carry angular momentum in ultrafast demagnetization. Nature 602, 73–77 (2022).

    Article  ADS  Google Scholar 

  19. Choi, I. H. et al. Real-time dynamics of angular momentum transfer from spin to acoustic chiral phonon in oxide heterostructures. Nat. Nanotechnol. 19, 1277–1282 (2024).

    Article  ADS  Google Scholar 

  20. Nova, T. F. et al. An effective magnetic field from optically driven phonons. Nat. Phys. 13, 132–136 (2017).

    Article  Google Scholar 

  21. Juraschek, D. M., Narang, P. & Spaldin, N. A. Phono-magnetic analogs to opto-magnetic effects. Phys. Rev. Res. 2, 043035 (2020).

    Article  Google Scholar 

  22. Juraschek, D. M., Neuman, T. & Narang, P. Giant effective magnetic fields from optically driven chiral phonons in 4f paramagnets. Phys. Rev. Res. 4, 013129 (2022).

    Article  Google Scholar 

  23. Geilhufe, R. M., Juričić, V., Bonetti, S., Zhu, J.-X. & Balatsky, A. V. Dynamically induced magnetism in KTaO3. Phys. Rev. Res. 3, L022011 (2021).

    Article  Google Scholar 

  24. Luo, J. et al. Large effective magnetic fields from chiral phonons in rare-earth halides. Science 382, 698–702 (2023).

    Article  ADS  Google Scholar 

  25. Basini, M. et al. Terahertz electric-field-driven dynamical multiferroicity in SrTiO3. Nature 628, 534–539 (2024).

    Article  ADS  Google Scholar 

  26. Davies, C. S. et al. Phononic switching of magnetization by the ultrafast Barnett effect. Nature 628, 540–544 (2024).

    Article  ADS  Google Scholar 

  27. Ishito, K. et al. Truly chiral phonons in α-HgS. Nat. Phys. 19, 35–39 (2023).

    Article  Google Scholar 

  28. Ishito, K. et al. Chiral phonons: circularly polarized Raman spectroscopy and ab initio calculations in a chiral crystal tellurium. Chirality 35, 338–345 (2023).

    Article  Google Scholar 

  29. Ueda, H. et al. Chiral phonons in quartz probed by X-rays. Nature 618, 946–950 (2023).

    Article  ADS  Google Scholar 

  30. Romao, C. P. & Juraschek, D. M. Phonon-induced geometric chirality. ACS Nano 18, 29550–29557 (2024).

    Article  Google Scholar 

  31. Barron, L. D. Molecular Light Scattering and Optical Activity 2nd edn (Cambridge Univ. Press, 2004).

  32. Coh, S. Classification of materials with phonon angular momentum and microscopic origin of angular momentum. Phys. Rev. B 108, 134307 (2023).

    Article  ADS  Google Scholar 

  33. Zhang, T. & Murakami, S. Chiral phonons and pseudoangular momentum in nonsymmorphic systems. Phys. Rev. Res. 4, L012024 (2022).

    Article  Google Scholar 

  34. Zhang, S. et al. Comprehensive study of phonon chirality under symmetry constraints. Preprint at https://arxiv.org/abs/2503.22794 (2025).

  35. Fava, M., McCabe, E., Romero, A. H. & Bousquet, E. Phonon-driven mechanism for the chiral phase transition of K3NiO2. Phys. Rev. B 111, 174102 (2025).

    Article  ADS  Google Scholar 

  36. Zhang, S., Luo, K. & Zhang, T. Understanding chiral charge-density wave by frozen chiral phonon. npj Comput. Mater. 10, 264 (2024).

    Article  ADS  Google Scholar 

  37. Zeng, Z. et al. Photo-induced chirality in a non-chiral crystal. Science 387, 431–436 (2025).

    Article  ADS  Google Scholar 

  38. Inda, A., Oiwa, R., Hayami, S., Yamamoto, H. M. & Kusunose, H. Quantification of chirality based on electric toroidal monopole. J. Chem. Phys. 160, 184117 (2024).

    Article  ADS  Google Scholar 

  39. Rostami, H., Guinea, F. & Cappelluti, E. Strain-driven chiral phonons in two-dimensional hexagonal materials. Phys. Rev. B 105, 195431 (2022).

    Article  ADS  Google Scholar 

  40. Cappelluti, E., Silva-Guillén, J. A., Rostami, H. & Guinea, F. Flat-band optical phonons in twisted bilayer graphene. Phys. Rev. B 108, 125401 (2023).

    Article  ADS  Google Scholar 

  41. Parlak, S., Ghosh, S. & Garate, I. Detection of phonon helicity in nonchiral crystals with Raman scattering. Phys. Rev. B 107, 104308 (2023).

    Article  ADS  Google Scholar 

  42. Boulanger, M.-E. et al. Thermal Hall conductivity in the cuprate Mott insulators Nd2CuO4 and Sr2CuO2Cl2. Nat. Commun. 11, 5325 (2020).

    Article  ADS  Google Scholar 

  43. Flebus, B. & MacDonald, A. H. Charged defects and phonon Hall effects in ionic crystals. Phys. Rev. B 105, L220301 (2022).

    Article  ADS  Google Scholar 

  44. Oh, T. & Nagaosa, N. Phonon thermal Hall effect in Mott insulators via skew-scattering by the scalar spin chirality. Phys. Rev. X 15, 11036 (2024).

    Google Scholar 

  45. Zhang, L., Ren, J., Wang, J. S. & Li, B. Topological nature of the phonon Hall effect. Phys. Rev. Lett. 105, 225901 (2010).

    Article  ADS  Google Scholar 

  46. Flebus, B. & MacDonald, A. H. Phonon Hall viscosity of ionic crystals. Phys. Rev. Lett. 131, 236301 (2023).

    Article  ADS  MathSciNet  Google Scholar 

  47. Park, S. & Yang, B.-J. Phonon angular momentum Hall effect. Nano Lett. 20, 7694–7699 (2020).

    Article  ADS  Google Scholar 

  48. Hamada, M., Minamitani, E., Hirayama, M. & Murakami, S. Phonon angular momentum induced by the temperature gradient. Phys. Rev. Lett. 121, 175301 (2018).

    Article  ADS  Google Scholar 

  49. Chen, H. et al. Chiral phonon diode effect in chiral crystals. Nano Lett. 22, 1688–1693 (2022).

    Article  ADS  Google Scholar 

  50. Kim, K. et al. Chiral-phonon-activated spin Seebeck effect. Nat. Mater. 22, 322–328 (2023).

    Article  ADS  Google Scholar 

  51. Ohe, K. et al. Chirality-induced selectivity of phonon angular momenta in chiral quartz crystals. Phys. Rev. Lett. 132, 056302 (2024).

    Article  ADS  Google Scholar 

  52. Funato, T., Matsuo, M. & Kato, T. Chirality-induced phonon-spin conversion at an interface. Phys. Rev. Lett. 132, 236201 (2024).

    Article  ADS  Google Scholar 

  53. Yang, C. & Ren, J. Chirality-induced phonon spin selectivity by elastic spin–orbit interaction. Proc. Natl Acad. Sci. USA 121, e2411427121 (2024).

    Article  Google Scholar 

  54. Bloom, B. P., Paltiel, Y., Naaman, R. & Waldeck, D. H. Chiral induced spin selectivity. Chem. Rev. 124, 1950–1991 (2024).

    Article  Google Scholar 

  55. Korenev, V. L. et al. Long-range p-d exchange interaction in a ferromagnet-semiconductor hybrid structure. Nat. Phys. 12, 85–91 (2016).

    Article  Google Scholar 

  56. Jeong, S. G. et al. Unconventional interlayer exchange coupling via chiral phonons in synthetic magnetic oxide heterostructures. Sci. Adv. 8, eabm4005 (2022).

    Article  ADS  Google Scholar 

  57. Romao, C. P. Anomalous thermal expansion and chiral phonons in BiB3O6. Phys. Rev. B 100, 060302 (2019).

    Article  ADS  Google Scholar 

  58. Mentink, J. H., Katsnelson, M. I. & Lemeshko, M. Quantum many-body dynamics of the Einstein-de Haas effect. Phys. Rev. B 99, 064428 (2019).

    Article  ADS  Google Scholar 

  59. Mankovsky, S. et al. Angular momentum transfer via relativistic spin-lattice coupling from first principles. Phys. Rev. Lett. 129, 067202 (2022).

    Article  ADS  Google Scholar 

  60. Weißenhofer, M. et al. Rotationally invariant formulation of spin-lattice coupling in multi-scale modeling. Phys. Rev. B 108, L060404 (2023).

    Article  ADS  Google Scholar 

  61. Shokeen, V. et al. Real-time observation of non-equilibrium phonon-electron energy and angular momentum flow in laser-heated nickel. Sci. Adv. 10, eadj2407 (2024).

    Article  Google Scholar 

  62. Gao, L., Prokhorenko, S., Nahas, Y. & Bellaiche, L. Dynamical multiferroicity and magnetic topological structures induced by the orbital angular momentum of light in a nonmagnetic material. Phys. Rev. Lett. 131, 196801 (2023).

    Article  ADS  Google Scholar 

  63. Shabala, N. & Geilhufe, R. M. Phonon inverse Faraday effect from electron-phonon coupling. Phys. Rev. Lett. 133, 266702 (2024).

    Article  ADS  MathSciNet  Google Scholar 

  64. Minakova, O. et al. Direct observation of angular momentum transfer among crystal lattice modes. Preprint at https://arxiv.org/abs/2503.11626 (2025).

  65. Chaudhary, S., Juraschek, D. M., Rodriguez-Vega, M. & Fiete, G. A. Giant effective magnetic moments of chiral phonons from orbit-lattice coupling. Phys. Rev. B 110, 094401 (2024).

    Article  ADS  Google Scholar 

  66. Kusunose, H., Kishine, J. & Yamamoto, H. M. Emergence of chirality from electron spins, physical fields, and material-field composites. Appl. Phys. Lett. 124, 260501 (2024).

    Article  ADS  Google Scholar 

  67. Zhang, T. et al. Weyl phonons in chiral crystals. Nano Lett. 23, 7561–7567 (2023).

    Article  ADS  Google Scholar 

  68. Zhang, X.-W., Ren, Y., Wang, C., Cao, T. & Xiao, D. Gate-tunable phonon magnetic moment in bilayer graphene. Phys. Rev. Lett. 130, 226302 (2023).

    Article  ADS  Google Scholar 

  69. Klebl, L. et al. Ultrafast pseudomagnetic fields from electron-nuclear quantum geometry. Phys. Rev. Lett. 134, 016705 (2025).

    Article  ADS  Google Scholar 

  70. Bonini, J. et al. Frequency splitting of chiral phonons from broken time-reversal symmetry in CrI3. Phys. Rev. Lett. 130, 086701 (2023).

    Article  ADS  Google Scholar 

  71. Ren, S., Bonini, J., Stengel, M., Dreyer, C. E. & Vanderbilt, D. Adiabatic dynamics of coupled spins and phonons in magnetic insulators. Phys. Rev. X 14, 011041 (2024).

    Google Scholar 

  72. Wu, F. et al. Magnetic switching of phonon angular momentum in a ferrimagnetic insulator. Phys. Rev. Lett. 134, 236701 (2025).

  73. Yang, R. et al. Inherent circular dichroism of phonons in magnetic Weyl semimetal Co3Sn2S2. Phys. Rev. Lett. 134, 196905 (2025).

  74. Juraschek, D. M. & Spaldin, N. A. Orbital magnetic moments of phonons. Phys. Rev. Mater. 3, 064405 (2019).

    Article  Google Scholar 

  75. Ren, Y., Xiao, C., Saparov, D. & Niu, Q. Phonon magnetic moment from electronic topological magnetization. Phys. Rev. Lett. 127, 186403 (2021).

    Article  ADS  Google Scholar 

  76. Geilhufe, R. M. Dynamic electron-phonon and spin-phonon interactions due to inertia. Phys. Rev. Res. 4, L012004 (2022).

    Article  Google Scholar 

  77. Fransson, J. Chiral phonon induced spin polarization. Phys. Rev. Res. 5, L022039 (2023).

    Article  Google Scholar 

  78. Yao, D. & Murakami, S. Theory of spin magnetization driven by chiral phonons. Phys. Rev. B 111, 134414 (2025).

    Article  ADS  Google Scholar 

  79. Chen, W. et al. Gauge theory of giant phonon magnetic moment in doped Dirac semimetals. Phys. Rev. B 111, 035126 (2025).

    Article  ADS  Google Scholar 

  80. Merlin, R. Magnetophononics and the chiral phonon misnomer. PNAS Nexus 4, pgaf002 (2024).

    Article  Google Scholar 

  81. Geilhufe, R. M. & Hergert, W. Electron magnetic moment of transient chiral phonons in KTaO3. Phys. Rev. B 107, L020406 (2023).

    Article  ADS  Google Scholar 

  82. Chen, X. et al. Entanglement of single-photons and chiral phonons in atomically thin WSe2. Nat. Phys. 15, 221–227 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. V. Balatsky, E. Bousquet, A. Disa, S. Kamba, L. Klebl, R. Merlin, A. Srivastava, A. Stroppa, M. Udina, P. Wong and D. Xiao for valuable discussions. M.B. acknowledges support from SNSF Ambizione project number PZ00P2_216089. P.B. and U.N. acknowledge funding from the Deutsche Forschungsgemeinschaft (grant number 541503763). B.F. acknowledges support from the National Science Foundation under grant number NSF DMR-2144086. G.G. acknowledges support from STeP2 number ANR-22-EXES-0013, QuantExt number ANR-23-CE30-0001-01, Audace CEA number ANR-24-RRII-0004 and the École Polytechnique foundation. A.I.K. acknowledges the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO-I) for their financial contribution, including the support of the HFML-FELIX Laboratory. D.M.J. acknowledges support from Tel Aviv University and ERC Starting Grant CHIRALPHONONICS grant number 101166037. S.F.M. acknowledges funding from the Deutsche Forschungsgemeinschaft (grant number 469405347). C.P.R. and N.A.S. were supported by ETH Zurich and by the European Union and Horizon 2020, grant agreement numbers 810451 and 101030352. R.M.G. acknowledges support from the Swedish Research Council (VR starting grant number 2022-03350), the Olle Engkvist Foundation (grant number 229-0443), the Royal Physiographic Society in Lund (Horisont), the Knut and Alice Wallenberg Foundation (grant number 2023.0087) and Chalmers University of Technology via the Department of Physics and the Areas of Advance Nano and Materials Science. Q.N. is supported by the National Natural Science Foundation of China (grant number 12234017) and the National Key Research and Development Program of China (grant number 2023YFA1406300). H.R. acknowledges funding from the Engineering and Physical Sciences Research Council (grant number UKRI122) and Royal Society (grant number IES\R2\242309). T.S. acknowledges support from MEXT X-NICS (grant number JPJ011438), NINS OML Project (grant number OML012301) and JST CREST (grant number JPMJCR24R5). H.Z. acknowledges support from the Welch Foundation (grant number C-2128) and the National Science Foundation (grant number DMR-2240106). We acknowledge support from the Centre Européen de Calcul Atomique et Moléculaire (CECAM) in connection to organizing the workshop "Chiral Phonons in Quantum Materials", held in 2023, where the idea for this paper emerged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dominik M. Juraschek, R. Matthias Geilhufe or Hanyu Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Yuanfeng Xu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juraschek, D.M., Geilhufe, R.M., Zhu, H. et al. Chiral phonons. Nat. Phys. (2025). https://doi.org/10.1038/s41567-025-03001-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41567-025-03001-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing