Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Constant-overhead magic state distillation

Abstract

Most schemes for realistic quantum computing require access to so-called magic states to allow universal quantum computing. Because the preparation process may be noisy, magic state distillation methods are needed to improve their accuracy and suppress any potential errors. Unfortunately, magic state distillation is resource-intensive and often considered a bottleneck to scalable quantum computation. Here, the cost is defined by the overhead: the ratio of noisy input magic states to cleaner outputs. This is known to scale as \({\mathcal{O}}({\log }^{\gamma }(1/\epsilon ))\) as ϵ → 0, where ϵ is the output error rate and γ is some constant. Reducing this overhead, corresponding to smaller γ, is highly desirable to remove the bottleneck. However, identifying the smallest achievable exponent γ for distilling magic states of qubits has proved challenging. Here, we resolve this problem by demonstrating protocols with the optimal exponent γ = 0, thus corresponding to magic state distillation with a constant overhead, and we show that this is achievable for the most important magic states such as \(\left\vert {\mathsf{T}}\right\rangle\) and \(\left\vert {\mathsf{CCZ}}\right\rangle\). This is achieved by using algebraic geometry constructions to build the first asymptotically good quantum codes with transversal non-Clifford gates, for which we also construct an efficient decoder with linear decoding radius.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of distillation protocols.

Similar content being viewed by others

Data availability

No data were used in this study.

Code availability

No code was used in this study.

References

  1. Gottesman, D. An introduction to quantum error correction. Proc. Symp. Appl. Math. 58, 221–236 (2002).

    Article  MathSciNet  Google Scholar 

  2. Aharonov, D. & Ben-Or, M. Fault-tolerant quantum computation with constant error. In Proc. Twenty-Ninth Annual ACM Symposium on Theory of Computing, STOC ’97 176–188 (Association for Computing Machinery, 1997).

  3. Aharonov, D. & Ben-Or, M. Fault-tolerant quantum computation with constant error rate. SIAM J. Comput. 38, 1207 (2008).

    Article  MathSciNet  Google Scholar 

  4. Shor, P. Fault-tolerant quantum computation. In Proc. 37th Conference on Foundations of Computer Science 56–65 (IEEE, 1996).

  5. Aliferis, P., Gottesman, D. & Preskill, J. Quantum accuracy threshold for concatenated distance-3 codes. Quantum Inf. Comput. 6, 97–165 (2006).

    MathSciNet  Google Scholar 

  6. Reichardt, B. W. in Automata, Languages and Programming (eds Bugliesi, M. et al.) 60–61 (Springer, 2006).

  7. Yamasaki, H. & Koashi, M. Time-efficient constant-space-overhead fault-tolerant quantum computation. Nat. Phys. 20, 247–253 (2024).

    Article  Google Scholar 

  8. Bluvstein, D. et al. Logical quantum processor based on reconfigurable atom arrays. Nature 626, 58–65 (2024).

    Article  Google Scholar 

  9. Gupta, R. S. et al. Encoding a magic state with beyond break-even fidelity. Nature 625, 259–263 (2024).

    Article  Google Scholar 

  10. Acharya, R. et al. Quantum error correction below the surface code threshold. Nature 638, 920–926 (2024).

    Google Scholar 

  11. Gottesman, D. Stabilizer Codes and Quantum Error Correction, Ph.D. thesis, California Institute of Technology (1997).

  12. Eastin, B. & Knill, E. Restrictions on transversal encoded quantum gate sets. Phys. Rev. Lett. 102, 110502 (2009).

    Article  ADS  Google Scholar 

  13. Bravyi, S. & Kitaev, A. Universal quantum computation with ideal clifford gates and noisy ancillas. Phys. Rev. A 71, 022316 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  14. Knill, E. Fault-tolerant postselected quantum computation: schemes. Preprint at https://doi.org/10.48550/arXiv.quant-ph/0402171 (2004).

  15. Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999).

    Article  ADS  Google Scholar 

  16. Bombin, H. & Martin-Delgado, M. A. Topological quantum distillation. Phys. Rev. Lett. 97, 180501 (2006).

    Article  ADS  Google Scholar 

  17. Kubica, A. & Beverland, M. E. Universal transversal gates with color codes: a simplified approach. Phys. Rev. A 91, 032330 (2015).

    Article  ADS  Google Scholar 

  18. Moussa, J. E. Transversal clifford gates on folded surface codes. Phys. Rev. A 94, 042316 (2016).

    Article  ADS  Google Scholar 

  19. Łodyga, J., Mazurek, P., Grudka, A. & Horodecki, M. Simple scheme for encoding and decoding a qubit in unknown state for various topological codes. Sci. Rep. 5, 8975 (2015).

    Article  Google Scholar 

  20. Li, Y. A magic state’s fidelity can be superior to the operations that created it. N. J. Phys. 17, 023037 (2015).

    Article  Google Scholar 

  21. Litinski, D. Magic state distillation: not as costly as you think. Quantum 3, 205 (2019).

    Article  Google Scholar 

  22. Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

    Article  ADS  Google Scholar 

  23. Gidney, C. & Ekerå, M. How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits. Quantum 5, 433 (2021).

    Article  Google Scholar 

  24. Bravyi, S. & Haah, J. Magic-state distillation with low overhead. Phys. Rev. A 86, 052329 (2012).

    Article  ADS  Google Scholar 

  25. Haah, J. & Hastings, M. B. Codes and protocols for distilling t, controlled-s, and Toffoli gates. Quantum 2, 71 (2018).

    Article  Google Scholar 

  26. Meier, A. M., Eastin, B. & Knill, E. Magic-state distillation with the four-qubit code. Quantum Inf. Comput. 13, 195–209 (2013).

    MathSciNet  Google Scholar 

  27. Campbell, E. T., Anwar, H. & Browne, D. E. Magic-state distillation in all prime dimensions using quantum reed-muller codes. Phys. Rev. X 2, 041021 (2012).

    Google Scholar 

  28. Jones, C. Multilevel distillation of magic states for quantum computing. Phys. Rev. A 87, 042305 (2013).

    Article  ADS  Google Scholar 

  29. Hastings, M. B. & Haah, J. Distillation with sublogarithmic overhead. Phys. Rev. Lett. 120, 050504 (2018).

    Article  ADS  Google Scholar 

  30. Krishna, A. & Tillich, J.-P. Towards low overhead magic state distillation. Phys. Rev. Lett. 123, 070507 (2019).

    Article  ADS  Google Scholar 

  31. Beverland, M., Campbell, E., Howard, M. & Kliuchnikov, V. Lower bounds on the non-clifford resources for quantum computations. Quantum Sci. Technol. 5, 035009 (2020).

    Article  ADS  Google Scholar 

  32. Jones, C. Low-overhead constructions for the fault-tolerant toffoli gate. Phys. Rev. A 87, 022328 (2013).

    Article  ADS  Google Scholar 

  33. Selinger, P. Quantum circuits of t-depth one. Phys. Rev. A 87, 042302 (2013).

    Article  ADS  Google Scholar 

  34. Gidney, C. & Fowler, A. G. Efficient magic state factories with a catalyzed \(\left\vert CCZ\right\rangle\) to \(\left\vert CCZ\right\rangle\) transformation. Quantum 3, 135 (2019).

    Article  Google Scholar 

  35. Goppa, V. D. Algebraico-geometric codes. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 46, 762 (1982).

    MathSciNet  Google Scholar 

  36. Gottesman, D. Surviving as a Quantum Computer in a Classical World (Self-Published, 2024).

  37. Vasmer, M. & Kubica, A. Morphing quantum codes. PRX Quantum 3, 030319 (2022).

    Article  ADS  Google Scholar 

  38. Golowich, L. & Guruswami, V. Asymptotically good quantum codes with transversal non-Clifford gates. Preprint at https://doi.org/10.48550/arXiv.2408.09254 (2024).

  39. Nguyen, Q. T., Good binary quantum codes with transversal ccz gate. Preprint at https://doi.org/10.48550/arXiv.2408.10140 (2024).

  40. Calderbank, A. R. & Shor, P. W. Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098 (1996).

    Article  ADS  Google Scholar 

  41. Steane, A. Multiple-particle interference and quantum error correction. Proc. R. Soc. London A 452, 2551 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  42. MacWilliams, F. J. & Sloane, N. J. A. The Theory of Error-Correcting Codes vol. 16 (Elsevier, 1977).

  43. Stichtenoth, H. Algebraic Function Fields and Codes vol. 254 (Springer, 2009).

  44. Houshmand, M., Zamani, M. S., Sedighi, M. & Arabzadeh, M. Decomposition of diagonal hermitian quantum gates using multiple-controlled pauli z gates. ACM J. Emerg. Technolog. Comput. Syst 11, 1 (2014).

    Article  Google Scholar 

  45. Tsfasman, M. A., Vlădut, S. G., & Nogin, D. Algebraic Geometric Codes: Basic Notions vol. 139 (American Mathematical Society, 2007).

  46. Panteleev, P. & Kalachev, G. Asymptotically good quantum and locally testable classical LDPC codes. In Proc. 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022 375–388 (Association for Computing Machinery, 2022).

  47. Leverrier, A. and Zemor, G. Quantum tanner codes. In Proc. 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science 872–883 (IEEE Computer Society, 2022).

  48. Dinur, I., Hsieh, M.-H., Lin, T.-C., and Vidick, T. Good quantum LDPC codes with linear time decoders. In Proc. 55th Annual ACM Symposium on Theory of Computing, STOC 2023 905–918 (Association for Computing Machinery, 2023).

  49. Devetak, I. & Winter, A. Distillation of secret key and entanglement from quantum states. Proc. R. Soc. A 461, 207 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  50. Bennett, C. H., Bernstein, H. J., Popescu, S. & Schumacher, B. Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996).

    Article  ADS  Google Scholar 

  51. Veitch, V., Ferrie, C., Gross, D. & Emerson, J. Negative quasi-probability as a resource for quantum computation. N. J. Phys. 14, 113011 (2012).

    Article  Google Scholar 

  52. Veitch, V., Mousavian, S. A. H., Gottesman, D. & Emerson, J. The resource theory of stabilizer quantum computation. N. J. Phys. 16, 013009 (2014).

    Article  MathSciNet  Google Scholar 

  53. Howard, M. & Campbell, E. Application of a resource theory for magic states to fault-tolerant quantum computing. Phys. Rev. Lett. 118, 090501 (2017).

    Article  ADS  Google Scholar 

  54. Hayashi, M. & Yamasaki, H. Generalized quantum Stein’s lemma and second law of quantum resource theories. Preprint at https://doi.org/10.48550/arXiv.2408.02722 (2024).

Download references

Acknowledgements

We thank N. Rengaswamy for discussions on CSS-T codes. A. Wills thanks The University of Tokyo, in particular the whole group of H. Yamasaki, for their funding of and hospitality during his visit to the institution, which led to this work. H. Yamasaki was supported by JST PRESTO grant nos. JPMJPR201A and JPMJPR23FC, JSPS KAKENHI grant no. JP23K19970 and MEXT Quantum Leap Flagship Program (MEXT QLEAP) grant nos. JPMXS0118069605 and JPMXS0120351339.

Author information

Authors and Affiliations

Authors

Contributions

The project was conceived by H.Y. Theoretical results were proved by A.W. and H.Y. in discussion with M.-H.H. The paper was written by A.W. and H.Y. with input from M.-H.H.

Corresponding authors

Correspondence to Adam Wills, Min-Hsiu Hsieh or Hayata Yamasaki.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Noah Shutty, Michael Vasmer and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections I–V, Appendices and References.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wills, A., Hsieh, MH. & Yamasaki, H. Constant-overhead magic state distillation. Nat. Phys. (2025). https://doi.org/10.1038/s41567-025-03026-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41567-025-03026-0

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics