Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The need for increased pragmatism in cardiovascular clinical trials

Abstract

The majority of cardiovascular randomized controlled trials (RCTs) test interventions in selected patient populations under explicitly protocol-defined settings. Although these ‘explanatory’ trial designs optimize conditions to test the efficacy and safety of an intervention, they limit the generalizability of trial findings in broader clinical settings. The concept of ‘pragmatism’ in RCTs addresses this concern by providing counterbalance to the more idealized situation underpinning explanatory RCTs and optimizing effectiveness over efficacy. The central tenets of pragmatism in RCTs are to test interventions in routine clinical settings, with patients who are representative of broad clinical practice, and to reduce the burden on investigators and participants by minimizing the number of trial visits and the intensity of trial-based testing. Pragmatic evaluation of interventions is particularly important in cardiovascular diseases, where the risk of death among patients has remained fairly stable over the past few decades despite the development of new therapeutic interventions. Pragmatic RCTs can help to reveal the ‘real-world’ effectiveness of therapeutic interventions and elucidate barriers to their implementation. In this Review, we discuss the attributes of pragmatism in RCT design, conduct and interpretation as well as the general need for increased pragmatism in cardiovascular RCTs. We also summarize current challenges and potential solutions to the implementation of pragmatism in RCTs and highlight selected ongoing and completed cardiovascular RCTs with pragmatic trial designs.

Key points

  • Most cardiovascular randomized controlled trials (RCTs) conducted to date have been ‘explanatory’, that is, designed to study the intervention in optimized conditions with selected patient populations and frequent protocolized assessments.

  • Although explanatory RCT designs increase validity, they limit the generalizability of trial findings, whereas a ‘pragmatic’ approach to RCTs yields findings more relevant to real-world practice.

  • In pragmatic RCTs, interventions are tested in patients who are broadly representative of the condition being studied, and the study is aligned with routine clinical care to reduce costs and organizational burden.

  • Although pragmatic RCTs tend to attenuate estimates of treatment effects, they do provide a more realistic understanding of population-level effectiveness and costs than explanatory trials.

  • Pragmatic trials can highlight barriers to the implementation of therapies and are better suited than explanatory RCTs to assessing the effects of implementation strategies and health-care policies at the population level.

  • Widespread implementation of pragmatic trials would require the development of technological infrastructure to collect and share data as well as regulatory guidelines amenable to findings derived from routinely collected data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The PRECIS-2 wheel.
Fig. 2: Relative likelihood of biases and limitations in each type of clinical study.

Similar content being viewed by others

References

  1. Zhu, J. W. et al. Global representation of heart failure clinical trial leaders, collaborators, and enrolled participants: a bibliometric review 2000–2020. Eur. Heart J. Qual. Care Clin. Outcomes https://doi.org/10.1093/ehjqcco/qcab058 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Schwartz, D. & Lellouch, J. Explanatory and pragmatic attitudes in therapeutical trials. J. Chronic Dis. 20, 637–648 (1967).

    Article  CAS  PubMed  Google Scholar 

  3. Merali, Z. & Wilson, J. R. Explanatory versus pragmatic trials: an essential concept in study design and interpretation. Clin. Spine Surg. 30, 404–406 (2017).

    Article  PubMed  Google Scholar 

  4. Ford, I. & Norrie, J. Pragmatic Trials. N. Engl. J. Med. 375, 454–463 (2016).

    Article  PubMed  Google Scholar 

  5. Van Spall, H. G. C., Averbuch, T., Damman, K. & Voors, A. A. Risk and risk reduction in trials of heart failure with reduced ejection fraction: absolute or relative? Eur. J. Heart Fail. 23, 1437–1444 (2021).

    Article  PubMed  Google Scholar 

  6. Ferreira, J. P. et al. Natriuretic peptides, 6-min walk test, and quality-of-life questionnaires as clinically meaningful endpoints in HF trials. J. Am. Coll. Cardiol. 68, 2690–2707 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Greene, S. J. et al. Reassessing the role of surrogate end points in drug development for heart failure. Circulation 138, 1039–1053 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Thorpe, K. E. et al. A pragmatic-explanatory continuum indicator summary (PRECIS): a tool to help trial designers. J. Clin. Epidemiol. 62, 464–475 (2009).

    Article  PubMed  Google Scholar 

  9. Loudon, K. et al. The PRECIS-2 tool: designing trials that are fit for purpose. BMJ 350, h2147 (2015).

    Article  PubMed  Google Scholar 

  10. Farrow, L., Gardner, W. T., Ablett, A. D., Kutuzov, V. & Johnstone, A. A review of trauma and orthopaedic randomised clinical trials published in high-impact general medical journals. Eur. J. Orthop. Surg. Traumatol. https://doi.org/10.1007/s00590-021-03137-3 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hohenschurz-Schmidt, D. et al. Pragmatic trials of pain therapies: a systematic review of methods. Pain 163, 21–46 (2022).

    Article  PubMed  Google Scholar 

  12. Burnett, H. et al. Thirty years of evidence on the efficacy of drug treatments for chronic heart failure with reduced ejection fraction. Circ. Heart Fail. 10, e003529 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bassi, N. S., Ziaeian, B., Yancy, C. W. & Fonarow, G. C. Association of optimal implementation of sodium-glucose cotransporter 2 inhibitor therapy with outcome for patients with heart failure. JAMA Cardiol. 5, 948–951 (2020).

    Article  PubMed  Google Scholar 

  14. Bardy, G. H. et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N. Engl. J. Med. 352, 225–237 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Cleland, J. G. et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N. Engl. J. Med. 352, 1539–1549 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Roccaforte, R., Demers, C., Baldassarre, F., Teo, K. K. & Yusuf, S. Effectiveness of comprehensive disease management programmes in improving clinical outcomes in heart failure patients: a meta-analysis. Eur. J. Heart Fail. 7, 1133–1144 (2005).

    Article  PubMed  Google Scholar 

  17. Blue, L. et al. Randomised controlled trial of specialist nurse intervention in heart failure. BMJ 323, 715–718 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Taylor, C. J. et al. Trends in survival after a diagnosis of heart failure in the United Kingdom 2000–2017: population based cohort study. BMJ 364, l223 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gerber, Y. et al. A contemporary appraisal of the heart failure epidemic in Olmsted County, Minnesota, 2000 to 2010. JAMA Intern. Med. 175, 996–1004 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Taylor, C. J. et al. Survival following a diagnosis of heart failure in primary care. Fam. Pract. 34, 161–168 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Conrad, N. et al. Temporal trends and patterns in mortality after incident heart failure: a longitudinal analysis of 86000 individuals. JAMA Cardiol. 4, 1102–1111 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Coffey, S., Cox, B. & Williams, M. J. Lack of progress in valvular heart disease in the pre-transcatheter aortic valve replacement era: increasing deaths and minimal change in mortality rate over the past three decades. Am. Heart J. 167, 562–567.e2 (2014).

    Article  PubMed  Google Scholar 

  23. Vinter, N. et al. Trends in excess mortality associated with atrial fibrillation over 45 years (Framingham Heart Study): community based cohort study. BMJ 370, m2724 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tanaka, Y. et al. Trends in cardiovascular mortality related to atrial fibrillation in the United States, 2011 to 2018. J. Am. Heart Assoc. 10, e020163 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Greene Stephen, J. et al. Medical therapy for heart failure with reduced ejection fraction. J. Am. Coll. Cardiol. 72, 351–366 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Fiuzat, M. et al. Assessment of limitations to optimization of guideline-directed medical therapy in heart failure from the GUIDE-IT trial: a secondary analysis of a randomized clinical trial. JAMA Cardiol. 5, 757–764 (2020).

    Article  PubMed  Google Scholar 

  27. Keramida, K. & Filippatos, G. Heart failure guidelines implementation: lifting barriers using registries and networks. Anatol. J. Cardiol. 24, 41–42 (2020).

    PubMed  PubMed Central  Google Scholar 

  28. Usman, M. S., Pitt, B. & Butler, J. Target trial emulations: bridging the gap between clinical trial and real-world data. Eur. J. Heart Fail. 23, 1708–1711 (2021).

    Article  PubMed  Google Scholar 

  29. Sedgwick, P. Bias in observational study designs: prospective cohort studies. BMJ 349, g7731 (2014).

    Article  PubMed  Google Scholar 

  30. Fanaroff, A. C. et al. Randomized trials versus common sense and clinical observation: JACC review topic of the week. J. Am. Coll. Cardiol. 76, 580–589 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Whitbeck, M. G. et al. Increased mortality among patients taking digoxin — analysis from the AFFIRM study. Eur. Heart J. 34, 1481–1488 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Gheorghiade, M. et al. Lack of evidence of increased mortality among patients with atrial fibrillation taking digoxin: findings from post hoc propensity-matched analysis of the AFFIRM trial. Eur. Heart J. 34, 1489–1497 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Van Spall, H. G., Toren, A., Kiss, A. & Fowler, R. A. Eligibility criteria of randomized controlled trials published in high-impact general medical journals: a systematic sampling review. JAMA 297, 1233–1240 (2007).

    Article  PubMed  Google Scholar 

  34. Nanna, M. G., Chen, S. T., Nelson, A. J., Navar, A. M. & Peterson, E. D. Representation of older adults in cardiovascular disease trials since the inclusion across the lifespan policy. JAMA Intern. Med. 180, 1531–1533 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jadad, A. R., To, M. J., Emara, M. & Jones, J. Consideration of multiple chronic diseases in randomized controlled trials. JAMA 306, 2670–2672 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Arnett, D. K. et al. AHA/ACC/HHS strategies to enhance application of clinical practice guidelines in patients with cardiovascular disease and comorbid conditions. Circulation 130, 1662–1667 (2014).

    Article  PubMed  Google Scholar 

  37. Whitelaw, S. et al. Trial characteristics associated with under-enrolment of females in randomized controlled trials of heart failure with reduced ejection fraction: a systematic review. Eur. J. Heart Fail. 23, 15–24 (2021).

    Article  PubMed  Google Scholar 

  38. Obadia, J.-F. et al. Percutaneous repair or medical treatment for secondary mitral regurgitation. N. Engl. J. Med. 379, 2297–2306 (2018).

    Article  PubMed  Google Scholar 

  39. Stone, G. W. et al. Transcatheter mitral-valve repair in patients with heart failure. N. Engl. J. Med. 379, 2307–2318 (2018).

    Article  PubMed  Google Scholar 

  40. McMurray, J. J. V. et al. Angiotensin–neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 371, 993–1004 (2014).

    Article  PubMed  Google Scholar 

  41. Mann, D. L. et al. Sacubitril/valsartan in advanced heart failure with reduced ejection fraction: rationale and design of the LIFE trial. JACC Heart Fail. 8, 789–799 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Samman Tahhan, A. et al. Design elements and enrollment patterns of contemporary trials in heart failure with preserved ejection fraction. JACC Heart Fail. 6, 714–717 (2018).

    Article  PubMed  Google Scholar 

  43. Moyé, L. Clinical trials in cardiology. Circ. Res. 114, 28–31 (2014).

    Article  PubMed  Google Scholar 

  44. Williams, R. J., Tse, T., DiPiazza, K. & Zarin, D. A. Terminated trials in the clinicaltrials.gov results database: evaluation of availability of primary outcome data and reasons for termination. PLoS ONE 10, e0127242 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wei, S. et al. Factors associated with racial and ethnic diversity among heart failure trial participants: a systematic bibliometric review. Circ. Heart Fail. 15, e008685 (2022).

    Article  PubMed  Google Scholar 

  46. Khan, M. S. et al. Ten‐year trends in enrollment of women and minorities in pivotal trials supporting recent us food and drug administration approval of novel cardiometabolic drugs. J. Am. Heart Assoc. 9, e015594 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Greene, S. J. et al. Representativeness of a heart failure trial by race and sex: results from ASCEND-HF and GWTG-HF. JACC Heart Fail. 7, 980–992 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bernabe-Ortiz, A. et al. Effect of salt substitution on community-wide blood pressure and hypertension incidence. Nat. Med. 26, 374–378 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Felker, G. M. et al. Effect of natriuretic peptide–guided therapy on hospitalization or cardiovascular mortality in high-risk patients with heart failure and reduced ejection fraction: a randomized clinical trial. JAMA 318, 713–720 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Beck-da-Silva, L., de Bold, A., Fraser, M., Williams, K. & Haddad, H. BNP-guided therapy not better than expert’s clinical assessment for beta-blocker titration in patients with heart failure. Congest. Heart Fail. 11, 248–253 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. McCord, K. A. et al. Treatment effects in randomised trials using routinely collected data for outcome assessment versus traditional trials: meta-research study. BMJ 372, n450 (2021).

    Article  Google Scholar 

  52. Breckenridge, A. et al. Poor medication adherence in clinical trials: consequences and solutions. Nat. Rev. Drug Discov. 16, 149–150 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Laursen, D. R. T., Paludan-Müller, A. S. & Hróbjartsson, A. Randomized clinical trials with run-in periods: frequency, characteristics and reporting. Clin. Epidemiol. 11, 169–184 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Verberk, W. J. et al. Home versus Office Blood Pressure Measurements: Reduction of Unnecessary Rreatment Study: rationale and study design of the HOMERUS trial. Blood Press. 12, 326–333 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. van Onzenoort, H. A. W. et al. Participation in a clinical trial enhances adherence and persistence to treatment. Hypertension 58, 573–578 (2011).

    Article  PubMed  Google Scholar 

  56. Vonbank, A. et al. Reasons for disparity in statin adherence rates between clinical trials and real-world observations: a review. Eur. Heart J. Cardiovasc. Pharmacother. 4, 230–236 (2018).

    Article  PubMed  Google Scholar 

  57. Lachaine, J., Beauchemin, C. & Ramos, E. Use, tolerability and compliance of spironolactone in the treatment of heart failure. BMC Clin. Pharmacol. 11, 4 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gardner, T. J., Miller, M. A., O’Gara, P. T. & Gelijns, A. C. Building an infrastructure for clinical trials in cardiac surgery. J. Thorac. Cardiovasc. Surg. 142, 265–266 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Moore, T. J., Heyward, J., Anderson, G. & Alexander, G. C. Variation in the estimated costs of pivotal clinical benefit trials supporting the US approval of new therapeutic agents, 2015-2017: a cross-sectional study. BMJ Open 10, e038863 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Eisenstein, E. L. et al. Reducing the costs of phase III cardiovascular clinical trials. Am. Heart J. 149, 482–488 (2005).

    Article  PubMed  Google Scholar 

  61. Fröbert, O. et al. Thrombus aspiration during ST-segment elevation myocardial infarction. N. Engl. J. Med. 369, 1587–1597 (2013).

    Article  PubMed  Google Scholar 

  62. Neal, B. et al. Effect of salt substitution on cardiovascular events and death. N. Engl. J. Med. 385, 1067–1077 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Bikdeli, B. et al. Two decades of cardiovascular trials with primary surrogate endpoints: 1990–2011. J. Am. Heart Assoc. 6, e005285 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Marquis-Gravel, G. et al. Technology-enabled clinical trials. Circulation 140, 1426–1436 (2019).

    Article  PubMed  Google Scholar 

  65. Inan, O. T. et al. Digitizing clinical trials. NPJ Digit. Med. 3, 101 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mori, M. et al. The promise of big data and digital solutions in building a cardiovascular learning system: opportunities and barriers. Methodist Debakey Cardiovasc. J. 16, 212–219 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wolfenden, L. et al. Designing and undertaking randomised implementation trials: guide for researchers. BMJ 372, m3721 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Curran, G. M., Bauer, M., Mittman, B., Pyne, J. M. & Stetler, C. Effectiveness-implementation hybrid designs: combining elements of clinical effectiveness and implementation research to enhance public health impact. Med. Care 50, 217–226 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gitlin, L. N. et al. Dissemination and implementation of evidence-based dementia care using embedded pragmatic trials. J. Am. Geriatr. Soc. 68, S28–S36 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hernán, M. A., Brumback, B. & Robins, J. M. Marginal structural models to estimate the joint causal effect of nonrandomized treatments. J. Am. Stat. Assoc. 96, 440–448 (2001).

    Article  Google Scholar 

  71. Branson, M. & Whitehead, J. Estimating a treatment effect in survival studies in which patients switch treatment. Stat. Med. 21, 2449–2463 (2002).

    Article  PubMed  Google Scholar 

  72. Latimer, N. R., Abrams, K. R., Lambert, P. C., Morden, J. P. & Crowther, M. J. Assessing methods for dealing with treatment switching in clinical trials: a follow-up simulation study. Stat. Methods Med. Res. 27, 765–784 (2018).

    Article  PubMed  Google Scholar 

  73. Mark, S. D. & Robins, J. M. A method for the analysis of randomized trials with compliance information: an application to the Multiple Risk Factor Intervention Trial. Control. Clin. Trials 14, 79–97 (1993).

    Article  CAS  PubMed  Google Scholar 

  74. Cook, A. J., Delong, E., Murray, D. M., Vollmer, W. M. & Heagerty, P. J. Statistical lessons learned for designing cluster randomized pragmatic clinical trials from the NIH Health Care Systems Collaboratory Biostatistics and Design Core. Clin. Trials 13, 504–512 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sepehrvand, N. et al. Trends in the explanatory or pragmatic nature of cardiovascular clinical trials over 2 decades. JAMA Cardiol. 4, 1122–1128 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Van Spall, H. G. C. et al. Effect of patient-centered transitional care services on clinical outcomes in patients hospitalized for heart failure: the PACT-HF randomized clinical trial. JAMA 321, 753–761 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Van Spall, H. G. C. et al. Knowledge to action: rationale and design of the Patient-Centered Care Transitions in Heart Failure (PACT-HF) stepped wedge cluster randomized trial. Am. Heart J. 199, 75–82 (2018).

    Article  PubMed  Google Scholar 

  78. Van Spall, H. G. C. et al. Comparative effectiveness of transitional care services in patients discharged from the hospital with heart failure: a systematic review and network meta-analysis. Eur. J. Heart Fail. 19, 1427–1443 (2017).

    Article  PubMed  Google Scholar 

  79. Feltner, C. et al. Transitional care interventions to prevent readmissions for persons with heart failure: a systematic review and meta-analysis. Ann. Intern. Med. 160, 774–784 (2014).

    Article  PubMed  Google Scholar 

  80. Spertus, J. A. et al. Novel trial design: CHIEF-HF. Circ. Heart Fail. 14, e007767 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Spertus, J. A. et al. The SGLT2 inhibitor canagliflozin in heart failure: the CHIEF-HF remote, patient-centered randomized trial. Nat. Med. 28, 809–813 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  82. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04564742 (2022).

  83. Dockendorf, M. F. et al. Leveraging digital health technologies and outpatient sampling in clinical drug development: a phase I exploratory study. Clin. Pharmacol. Ther. 105, 168–176 (2019).

    Article  PubMed  Google Scholar 

  84. Mentz, R. J. et al. Good clinical practice guidance and pragmatic clinical trials: balancing the best of both worlds. Circulation 133, 872–880 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  85. World Health Organization. Guidelines for Good Clinical Practice (GCP) for Trials on Pharmaceutical Products http://www.femh-irb.org/content_pages/files_add/doc_arb/I01_9712011000.pdf (1995).

  86. International Council for Harmonisation. ICH-E6 Good Clinical Practice (GCP), Explanatory Note https://database.ich.org/sites/default/files/ICH_E6-R3_GCP-Principles_Draft_2021_0419.pdf (2021).

  87. Claerhout, B. et al. Federated electronic health records research technology to support clinical trial protocol optimization: evidence from EHR4CR and the InSite platform. J. Biomed. Inf. 90, 103090 (2019).

    Article  Google Scholar 

  88. Hernandez, A. F., Fleurence, R. L. & Rothman, R. L. The ADAPTABLE trial and PCORnet: shining light on a new research paradigm. Ann. Intern. Med. 163, 635–636 (2015).

    Article  PubMed  Google Scholar 

  89. Miksad, R. A. & Abernethy, A. P. Harnessing the power of real-world evidence (RWE): a checklist to ensure regulatory-grade data quality. Clin. Pharmacol. Ther. 103, 202–205 (2018).

    Article  PubMed  Google Scholar 

  90. Kwakkenbos, L. et al. CONSORT extension for the reporting of randomised controlled trials conducted using cohorts and routinely collected data (CONSORT-ROUTINE): checklist with explanation and elaboration. BMJ 373, n857 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  91. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04727073 (2021).

  92. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02901184 (2021).

  93. Jones, W. S. et al. Comparative effectiveness of aspirin dosing in cardiovascular disease. N. Engl. J. Med. 384, 1981–1990 (2021).

    Article  CAS  PubMed  Google Scholar 

  94. ASCEND Study Collaborative Groupet al. Effects of aspirin for primary prevention in persons with diabetes mellitus. N. Engl. J. Med. 379, 1529–1539 (2018).

    Article  Google Scholar 

  95. Choudhry, N. K. et al. Full coverage for preventive medications after myocardial infarction. N. Engl. J. Med. 365, 2088–2097 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05130268 (2022).

  97. Greene, S. J. et al. Pragmatic design of randomized clinical trials for heart failure: rationale and design of the TRANSFORM-HF Trial. JACC Heart Fail. 9, 325–335 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Ambrosy, A. P. et al. Rationale and design of the pragmatic randomized trial of icosapent ethyl for high cardiovascular risk adults (MITIGATE). Am. Heart J. 235, 54–64 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04564742 (2022).

  100. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04509674 (2022).

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.S.U., Z.A.A., R.J.M. and M.S.K. researched data for the article. H.G.C.V., S.J.G., A.P., D.K.M. and S.K.J. contributed substantially to discussion of the content. M.S.U., D.K.M., R.J.M., G.C.F., J.A.S., S.D.A., J.B. and M.S.K. wrote the article. H.G.C.V., S.J.G., A.P., D.K.M., Z.A.A., G.C.F., J.A.S., S.D.A., J.B., S.K.J. and M.S.K. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Muhammad Shahzeb Khan.

Ethics declarations

Competing interests

H.G.C.V. is funded by the Canadian Institutes of Health Research and the Heart and Stroke Foundation of Canada. S.J.G. has received research support from the Duke University Department of Medicine Chair’s Research Award, American Heart Association, Amgen, AstraZeneca, Bristol Myers Squibb, Cytokinetics, Merck, Novartis, Pfizer and Sanofi; has served on advisory boards for Amgen, AstraZeneca, Bristol Myers Squibb, Cytokinetics, Roche Diagnostics and Sanofi; and serves as a consultant for Amgen, Bayer, Bristol Myers Squibb, Merck, PharmaIN, Roche Diagnostics, Sanofi, Tricog Health, Urovant Pharmaceuticals and Vifor. D.K.M. reports honoraria for clinical trial leadership from AbbVie, Akebia, Arena, AstraZeneca, Boehringer Ingelheim, CSL Behring, Dynavax, Eidos, Esperion, Lexicon, Lilly USA, Merck & Co, Novo Nordisk, Otsuka, Pfizer and Sanofi, and honoraria for consultancy from Afimmune, Applied Therapeutics, Bayer, Boehringer Ingelheim, CSL Behring, Lilly USA, Merck & Co, Metavant, Novo Nordisk and Sanofi. Z.A.A. reports institutional research grants to Columbia University from Abbott and Cardiovascular Systems; and is a consultant for Abbott, Abiomed, AstraZeneca and Shockwave. R.J.M. reports receiving personal fees from Amgen, Bayer, Boehringer Ingelheim, Merck & Co and Novartis International; and receiving research support and honoraria from Abbott Laboratories, American Regent, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim/Eli Lilly & Co, Boston Scientific Corporation, Cytokinetics, FAST BioMedical, Gilead Sciences, Innolife, Medtronic, Merck & Co, Novartis International, Relypsa, Respicardia, Windtree Therapeutics and ZOLL Medical Corporation. G.C.F. reports research support from the National Institutes of Health and consulting for Abbott, Amgen, AstraZeneca, Bayer, Cytokinetics, Janssen, Medtronic, Merck and Novartis. J.A.S. is a consultant for Bayer, Janssen, Merck, Myokardia, Novartis, Terumo and United Healthcare; receives grant support from Janssen and Myokadia; and holds the copyright to the Peripheral Artery Questionnaire, Kansas City Cardiomyopathy Questionnaires and the Seattle Angina Questionnaire; and serves on the Board of Blue Cross/Blue Shield of Kansas City. S.D.A. declares grants or personal fees from Abbott Vascular, Actimed, Amgen, AstraZeneca, Bayer, Bioventrix, Boehringer Ingelheim, Brahms, Cardiac Dimensions, Cordio, Janssen, Occlutech, Respicardia, Servier, Vifor Int. and V-Wave. J.B. has served as a consultant for Abbott, Adrenomed, Arena Pharma, Amgen, Applied Therapeutics, Array, AstraZeneca, Bayer, Boehringer Ingelheim, Cardior, CVRx, Eli Lilly, G3 Pharma, Imbria, Impulse Dynamics, Innolife, Janssen, LivaNova, Luitpold, Medtronic, Merck, Novartis, Novo Nordisk, Sequana Medical, V-Wave Limited and Vifor. S.K.J. has received institutional research/grant support from AstraZeneca, Bayer, Janssen and Novartis. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Naveed Sattar, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usman, M.S., Van Spall, H.G.C., Greene, S.J. et al. The need for increased pragmatism in cardiovascular clinical trials. Nat Rev Cardiol 19, 737–750 (2022). https://doi.org/10.1038/s41569-022-00705-w

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41569-022-00705-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing