Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gut-derived low-grade endotoxaemia, atherothrombosis and cardiovascular disease

Abstract

Systemic inflammation has been suggested to have a pivotal role in atherothrombosis, but the factors that trigger systemic inflammation have not been fully elucidated. Lipopolysaccharide (LPS) is a component of the membrane of Gram-negative bacteria present in the gut that can translocate into the systemic circulation, causing non-septic, low-grade endotoxaemia. Gut dysbiosis is a major determinant of low-grade endotoxaemia via dysfunction of the intestinal barrier scaffold, which is a prerequisite for LPS translocation into the systemic circulation. Experimental studies have demonstrated that LPS is present in atherosclerotic arteries but not in normal arteries. In atherosclerotic plaques, LPS promotes a pro-inflammatory status that can lead to plaque instability and thrombus formation. Low-grade endotoxaemia affects several cell types, including leukocytes, platelets and endothelial cells, leading to inflammation and clot formation. Low-grade endotoxaemia has been described in patients at risk of or with overt cardiovascular disease, in whom low-grade endotoxaemia was associated with atherosclerotic burden and its clinical sequelae. In this Review, we describe the mechanisms favouring the development of low-grade endotoxaemia, focusing on gut dysbiosis and changes in gut permeability; the plausible biological mechanisms linking low-grade endotoxaemia and atherothrombosis; the clinical studies suggesting that low-grade endotoxaemia is a risk factor for cardiovascular events; and the potential therapeutic tools to improve gut permeability and eventually eliminate low-grade endotoxaemia.

Key points

  • Gut permeability can be altered by gut microbiota dysbiosis, favouring lipopolysaccharide (LPS) translocation into the systemic circulation, with ensuing development of low-grade endotoxaemia.

  • Low-grade endotoxaemia induces an inflammatory state in the arterial wall that ultimately leads to initiation and progression of atherosclerosis.

  • Low-grade endotoxaemia has effects on several cell types, such as leukocytes, platelets and endothelial cells, shifting them to a procoagulant phenotype that contributes to thrombosis.

  • Gut permeability-derived low-grade endotoxaemia might contribute to atherosclerosis and be associated with cardiovascular events in patients at risk of or with overt cardiovascular disease.

  • Modulation of gut permeability-derived low-grade endotoxaemia is a potential tool to counteract inflammation-related atherothrombosis and its clinical sequelae.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Interplay between low-grade endotoxaemia and vascular disease.
Fig. 2: Mechanisms of gut permeability-mediated low-grade endotoxaemia.
Fig. 3: Mechanisms of LPS-mediated atherosclerosis.
Fig. 4: Mechanisms of LPS-mediated thrombosis.
Fig. 5: Potential therapeutic strategies to reduce low-grade endotoxaemia.

Similar content being viewed by others

References

  1. Ross, R. Inflammation or atherogenesis. N. Engl. J. Med. 340, 115–126 (1999).

    Article  CAS  Google Scholar 

  2. Libby, P., Ridker, P. M. & Maseri, A. Inflammation and atherosclerosis. Circulation 105, 1135–1143 (2002).

    Article  CAS  Google Scholar 

  3. Shibata, N. & Glass, C. K. Regulation of macrophage function in inflammation and atherosclerosis. J. Lipid Res. 50, S277–S281 (2009).

    Article  Google Scholar 

  4. Violi, F., Loffredo, L., Carnevale, R., Pignatelli, P. & Pastori, D. Atherothrombosis and oxidative stress: mechanisms and management in elderly. Antioxid. Redox Signal. 27, 1083–1124 (2017).

    Article  CAS  Google Scholar 

  5. Tabas, I. 2016 Russell Ross Memorial Lecture in Vascular Biology: Molecular–Cellular Mechanisms in the Progression of Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 37, 183–189 (2017).

    Article  CAS  Google Scholar 

  6. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  Google Scholar 

  7. Nidorf, S. M. et al. Colchicine in patients with chronic coronary disease. N. Engl. J. Med. 383, 1838–1847 (2020).

    Article  CAS  Google Scholar 

  8. Wang, B., Yao, M., Lv, L., Ling, Z. & Li, L. The human microbiota in health and disease. Engineering 3, 71–82 (2017).

    Article  Google Scholar 

  9. O’Toole, P. W. & Jeffery, I. B. Gut microbiota and aging. Science 350, 1214–1215 (2015).

    Article  Google Scholar 

  10. Ascher, S. & Reinhardt, C. The gut microbiota: an emerging risk factor for cardiovascular and cerebrovascular disease. Eur. J. Immunol. 48, 564–575 (2018).

    Article  CAS  Google Scholar 

  11. Caesar, R., Fåk, F. & Bäckhed, F. Effects of gut microbiota on obesity and atherosclerosis via modulation of inflammation and lipid metabolism: review. J. Intern. Med. 268, 320–328 (2010).

    Article  CAS  Google Scholar 

  12. Moreira, A. P. B., Texeira, T. F. S., Ferreira, A. B., Do Carmo Gouveia Peluzio, M. & De Cássia Gonçalves Alfenas, R. Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. Br. J. Nutr. 108, 801–809 (2012).

    Article  CAS  Google Scholar 

  13. Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).

    Article  CAS  Google Scholar 

  14. den Dekker, W. K., Cheng, C., Pasterkamp, G. & Duckers, H. J. Toll like receptor 4 in atherosclerosis and plaque destabilization. Atherosclerosis 209, 314–320 (2010).

    Article  Google Scholar 

  15. Carnevale, R. et al. Low-grade endotoxaemia enhances artery thrombus growth via toll-like receptor 4: implication for myocardial infarction. Eur. Heart J. 41, 3156–3165 (2020).

    Article  CAS  Google Scholar 

  16. Koupenova, M., Clancy, L., Corkrey, H. A. & Freedman, J. E. Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circ. Res. 122, 337–351 (2018).

    Article  CAS  Google Scholar 

  17. Koupenova, M. & Freedman, J. E. Platelets and COVID-19: inflammation, hyperactivation and additional questions. Circ. Res. 127, 1419–1421 (2020).

    Article  CAS  Google Scholar 

  18. Wiedermann, C. J. et al. Association of endotoxemia with carotid atherosclerosis and cardiovascular disease: prospective results from the Bruneck study. J. Am. Coll. Cardiol. 34, 1975–1981 (1999).

    Article  CAS  Google Scholar 

  19. Oliva, A. et al. Low-grade endotoxemia and thrombosis in COVID-19. Clin. Transl. Gastroenterol. 12, e00348 (2021).

    Article  Google Scholar 

  20. Cani, P. D. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008).

    Article  CAS  Google Scholar 

  21. Guerville, M. et al. Western-diet consumption induces alteration of barrier function mechanisms in the ileum that correlates with metabolic endotoxemia in rats. Am. J. Physiol. Endocrinol. Metab. 313, E107–E120 (2017).

    Article  Google Scholar 

  22. Carnevale, R. et al. Gut-derived lipopolysaccharides increase post-prandial oxidative stress via Nox2 activation in patients with impaired fasting glucose tolerance: effect of extra-virgin olive oil. Eur. J. Nutr. 58, 843–851 (2019).

    Article  CAS  Google Scholar 

  23. Ghoshal, S., Witta, J., Zhong, J., de Villiers, W. & Eckhardt, E. Chylomicrons promote intestinal absorption of lipopolysaccharides. J. Lipid Res. 50, 90–97 (2009).

    Article  CAS  Google Scholar 

  24. Manco, M., Putignani, L. & Bottazzo, G. F. Gut microbiota, lipopolysaccharides, and innate immunity in the pathogenesis of obesity and cardiovascular risk. Endocr. Rev. 31, 817–844 (2010).

    Article  CAS  Google Scholar 

  25. Stoll, L. L., Denning, G. M. & Weintraub, N. L. Potential role of endotoxin as a proinflammatory mediator of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 24, 2227–2236 (2004).

    Article  CAS  Google Scholar 

  26. Levels, J. H. M. et al. Lipopolysaccharide is transferred from high-density to low-density lipoproteins by lipopolysaccharide-binding protein and phospholipid transfer protein. Infect. Immun. 73, 2321–2326 (2005).

    Article  CAS  Google Scholar 

  27. Flegel, W. A., Wolpl, A., Mannel, D. N. & Northoff, H. Inhibition of endotoxin-induced activation of human monocytes by human lipoproteins. Infect. Immun. 57, 2237–2245 (1989).

    Article  CAS  Google Scholar 

  28. Levine, D. M., Parker, T. S., Donnelly, T. M., Walsh, A. & Rubin, A. L. In vivo protection against endotoxin by plasma high density lipoprotein. Proc. Natl Acad. Sci. USA 90, 12040–12044 (1993).

    Article  CAS  Google Scholar 

  29. Parker, T. S. et al. Reconstituted high-density lipoprotein neutralizes gram-negative bacterial lipopolysaccharides in human whole blood. Infect. Immun. 63, 253–258 (1995).

    Article  CAS  Google Scholar 

  30. Guerville, M. & Boudry, G. Gastrointestinal and hepatic mechanisms limiting entry and dissemination of lipopolysaccharide into the systemic circulation. Am. J. Physiol. Liver Physiol. 311, G1–G15 (2016).

    Google Scholar 

  31. Carpino, G. et al. Increased liver localization of lipopolysaccharides in human and experimental NAFLD. Hepatology 72, 470–485 (2020).

    Article  CAS  Google Scholar 

  32. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Article  CAS  Google Scholar 

  33. Park, B. S. & Lee, J. O. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp. Mol. Med. 45, e66 (2013).

    Article  Google Scholar 

  34. Pålsson-McDermott, E. M. & O’Neill, L. A. J. Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology 113, 153–162 (2004).

    Article  Google Scholar 

  35. Liu, T., Zhang, L., Joo, D. & Sun, S. C. NF-κB signaling in inflammation. Sig. Transduct. Target. Ther. 2, 17023 (2017).

    Article  Google Scholar 

  36. Buckley, A. & Turner, J. R. Cell biology of tight junction barrier regulation and mucosal disease. Cold Spring Harb. Perspect. Biol. 10, a029314 (2018).

    Article  Google Scholar 

  37. Johansson, M. E. V., Sjövall, H. & Hansson, G. C. The gastrointestinal mucus system in health and disease. Nat. Rev. Gastroenterol. Hepatol. 10, 352–361 (2013).

    Article  CAS  Google Scholar 

  38. Sturgeon, C. & Fasano, A. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue Barriers 4, e1251384 (2016).

    Article  Google Scholar 

  39. Farquhar, M. G. & Palade, G. E. Junctional complexes in various epithelia. J. Cell Biol. 17, 375–412 (1963).

    Article  CAS  Google Scholar 

  40. Ghosh, S., Whitley, C. S., Haribabu, B. & Jala, V. R. Regulation of intestinal barrier function by microbial metabolites. Cell Mol. Gastroenterol. Hepatol. 11, 1463–1482 (2021).

    Article  CAS  Google Scholar 

  41. Matsuda, M., Kubo, A., Furuse, M. & Tsukita, S. A peculiar internalization of claudins, tight junction-specific adhesion molecules, during the intercellular movement of epithelial cells. J. Cell Sci. 117, 1247–1257 (2004).

    Article  CAS  Google Scholar 

  42. Spadoni, I. et al. A gut-vascular barrier controls the systemic dissemination of bacteria. Science 350, 830–834 (2015).

    Article  CAS  Google Scholar 

  43. Mouries, J. et al. Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development. J. Hepatol. 71, 1216–1228 (2019).

    Article  CAS  Google Scholar 

  44. Paradis, T., Bègue, H., Basmaciyan, L., Dalle, F. & Bon, F. Tight junctions as a key for pathogens invasion in intestinal epithelial cells. Int. J. Mol. Sci. 22, 2506 (2021).

    Article  CAS  Google Scholar 

  45. Cohen, L. J. et al. Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature 549, 48–53 (2017).

    Article  CAS  Google Scholar 

  46. Mydel, P. et al. Roles of the host oxidative immune response and bacterial antioxidant rubrerythrin during porphyromonas gingivalis infection. PLoS Pathog. 2, e76 (2006).

    Article  Google Scholar 

  47. Hiippala, K. et al. The potential of gut commensals in reinforcing intestinal barrier function and alleviating inflammation. Nutrients 10, 988 (2018).

    Article  Google Scholar 

  48. Franceschi, C. et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 908, 244–254 (2000).

    Article  CAS  Google Scholar 

  49. Nagpal, R. et al. Gut microbiome and aging: physiological and mechanistic insights. Nutr. Healthy Aging 4, 267–285 (2018).

    Article  Google Scholar 

  50. Odamaki, T. et al. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol. 16, 90 (2016).

    Article  Google Scholar 

  51. Thevaranjan, N. et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe 21, 455–466.e4 (2017).

    Article  CAS  Google Scholar 

  52. Fort, M. M. et al. A synthetic TLR4 antagonist has anti-inflammatory effects in two murine models of inflammatory bowel disease. J. Immunol. 174, 6416–6423 (2005).

    Article  CAS  Google Scholar 

  53. Wang, W., Xia, T. & Yu, X. Wogonin suppresses inflammatory response and maintains intestinal barrier function via TLR4-MyD88-TAK1-mediated NF-κB pathway in vitro. Inflamm. Res. 64, 423–431 (2015).

    Article  CAS  Google Scholar 

  54. Ungaro, R. et al. A novel Toll-like receptor 4 antagonist antibody ameliorates inflammation but impairs mucosal healing in murine colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G1167–G1179 (2009).

    Article  CAS  Google Scholar 

  55. Peterson, C. Y. et al. Toll-like receptor-4 mediates intestinal barrier breakdown after thermal injury. Surg. Infect. 11, 137–144 (2010).

    Article  Google Scholar 

  56. Bentala, H. et al. Removal of phosphate from lipid a as a strategy to detoxify lipopolysaccharide. Shock 18, 561–566 (2002).

    Article  Google Scholar 

  57. Ghosh, S. S. et al. Over-expression of intestinal alkaline phosphatase attenuates atherosclerosis. Circ. Res. 128, 1646–1659 (2021).

    Article  CAS  Google Scholar 

  58. Han, Y. H. et al. Enterically derived high-density lipoprotein restrains liver injury through the portal vein. Science 373, eabe6729 (2021).

    Article  CAS  Google Scholar 

  59. Kriegel, M. A. et al. Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. Proc. Natl Acad. Sci. USA 108, 11548–11553 (2011).

    Article  CAS  Google Scholar 

  60. Bäckhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004).

    Article  Google Scholar 

  61. Wood Heickman, L. K., DeBoer, M. D. & Fasano, A. Zonulin as a potential putative biomarker of risk for shared type 1 diabetes and celiac disease autoimmunity. Diabetes Metab. Res. Rev. 36, e3309 (2020).

    Article  CAS  Google Scholar 

  62. Fasano, A. Intestinal permeability and its regulation by zonulin: diagnostic and therapeutic implications. Clin. Gastroenterol. Hepatol. 10, 1096–1100 (2012).

    Article  CAS  Google Scholar 

  63. Li, X. & Atkinson, M. A. The role for gut permeability in the pathogenesis of type 1 diabetes–a solid or leaky concept? Pediatr. Diabetes 16, 485–492 (2015).

    Article  Google Scholar 

  64. Jayashree, B. et al. Increased circulatory levels of lipopolysaccharide (LPS) and zonulin signify novel biomarkers of proinflammation in patients with type 2 diabetes. Mol. Cell. Biochem. 388, 203–210 (2014).

    Article  CAS  Google Scholar 

  65. Aasbrenn, M., Lydersen, S. & Farup, P. G. Changes in serum zonulin in individuals with morbid obesity after weight-loss interventions: a prospective cohort study. BMC Endocr. Disord. 20, 108 (2020).

    Article  CAS  Google Scholar 

  66. Cangemi, R. et al. Low-grade endotoxemia, gut permeability and platelet activation in community-acquired pneumonia. J. Infect. 73, 107–114 (2016).

    Article  Google Scholar 

  67. Hanada, S., Pirzadeh, M., Carver, K. Y. & Deng, J. C. Respiratory viral infection-induced microbiome alterations and secondary bacterial pneumonia. Front. Immunol. 9, 2640 (2018).

    Article  Google Scholar 

  68. Zhou, X. et al. Gut-dependent microbial translocation induces inflammation and cardiovascular events after ST-elevation myocardial infarction. Microbiome 6, 66 (2018).

    Article  Google Scholar 

  69. Smith, S. M., Eng, R. H. K., Campos, J. M. & Chmel, H. D-Lactic acid measurements in the diagnosis of bacterial infections. J. Clin. Microbiol. 27, 385–388 (1989).

    Article  CAS  Google Scholar 

  70. Sun, X. Q. et al. Relationship between plasma D(-)-lactate and intestinal damage after severe injuries in rats. World J. Gastroenterol. 7, 555–558 (2001).

    Article  CAS  Google Scholar 

  71. Fukui, H. Gut-liver axis in liver cirrhosis: how to manage leaky gut and endotoxemia. World J. Hepatol. 7, 425–442 (2015).

    Article  Google Scholar 

  72. Sequeira, I. R., Lentle, R. G., Kruger, M. C. & Hurst, R. D. Standardising the lactulose mannitol test of gut permeability to minimise error and promote comparability. PLoS ONE 9, e99256 (2014).

    Article  Google Scholar 

  73. Mundi, S. et al. Endothelial permeability, LDL deposition, and cardiovascular risk factors–a review. Cardiovasc. Res. 114, 35–52 (2018).

    Article  CAS  Google Scholar 

  74. Wu, M. Y., Li, C. J., Hou, M. F. & Chu, P. Y. New insights into the role of inflammation in the pathogenesis of atherosclerosis. Int. J. Mol. Sci. 18, 2034 (2017).

    Article  Google Scholar 

  75. Iuliano, L., Mauriello, A., Sbarigia, E., Spagnoli, L. G. & Violi, F. Radiolabeled native low-density lipoprotein injected into patients with carotid stenosis accumulates in macrophages of atherosclerotic plaque. Circulation 101, 1249–1254 (2000).

    Article  CAS  Google Scholar 

  76. Jonsson, A. L. & Bäckhed, F. Role of gut microbiota in atherosclerosis. Nat. Rev. Cardiol. 14, 79–87 (2017).

    Article  CAS  Google Scholar 

  77. Karlsson, F. H. et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun. 3, 1245 (2012).

    Article  Google Scholar 

  78. Emoto, T. et al. Characterization of gut microbiota profiles in coronary artery disease patients using data mining analysis of terminal restriction fragment length polymorphism: gut microbiota could be a diagnostic marker of coronary artery disease. Heart Vessel. 32, 39–46 (2017).

    Article  Google Scholar 

  79. Kiouptsi, K. et al. The microbiota promotes arterial thrombosis in low-density lipoprotein receptor-deficient mice. MBio 10, e02298-19 (2019).

    Article  Google Scholar 

  80. Violi, F., Carnevale, R., Loffredo, L., Pignatelli, P. & Gallin, J. I. NADPH oxidase-2 and atherothrombosis: insight from chronic granulomatous disease. Arterioscler. Thromb. Vasc. Biol. 37, 218–225 (2017).

    Article  CAS  Google Scholar 

  81. Nocella, C. et al. Lipopolysaccharide as trigger of platelet aggregation via eicosanoid over-production. Thromb. Haemost. 117, 1558–1570 (2017).

    Article  Google Scholar 

  82. Carnevale, R. et al. LDL are oxidatively modified by platelets via GP91(phox) and accumulate in human monocytes. FASEB J. 21, 927–934 (2007).

    Article  CAS  Google Scholar 

  83. Carnevale, R. et al. LDL oxidation by platelets propagates platelet activation via an oxidative stress-mediated mechanism. Atherosclerosis 237, 108–116 (2014).

    Article  CAS  Google Scholar 

  84. Carnevale, R. et al. Low-grade endotoxemia, gut permeability and platelet activation in patients with impaired fasting glucose. Nutr. Metab. Cardiovasc. Dis. 27, 890–895 (2017).

    Article  CAS  Google Scholar 

  85. Carnevale, R. et al. Localization of lipopolysaccharide from Escherichia coli into human atherosclerotic plaque. Sci. Rep. 8, 3598 (2018).

    Article  Google Scholar 

  86. Levels, J. H. M., Abraham, P. R., Van Barreveld, E. P., Meijers, J. C. M. & Van Deventer, S. J. H. Distribution and kinetics of lipoprotein-bound lipoteichoic acid. Infect. Immun. 71, 3280–3284 (2003).

    Article  CAS  Google Scholar 

  87. Hersoug, L. G., Møller, P. & Loft, S. Role of microbiota-derived lipopolysaccharide in adipose tissue inflammation, adipocyte size and pyroptosis during obesity. Nutr. Res. Rev. 31, 153–163 (2018).

    Article  CAS  Google Scholar 

  88. Rehues, P. et al. Characterization of the LPS and 3OHFA contents in the lipoprotein fractions and lipoprotein particles of healthy men. Biomolecules 12, 47 (2021).

    Article  Google Scholar 

  89. Memon, R. A. et al. Infection and inflammation induce LDL oxidation in vivo. Arterioscler. Thromb. Vasc. Biol. 20, 1536–1542 (2000).

    Article  CAS  Google Scholar 

  90. Fuijkschot, W. W. et al. LPS-induced systemic inflammation does not alter atherosclerotic plaque area or inflammation in ApoE3*Leiden mice in the early phase up to 15 days. Shock 50, 360–365 (2018).

    Article  CAS  Google Scholar 

  91. Lehr, H. A. et al. Immunopathogenesis of atherosclerosis: endotoxin accelerates atherosclerosis in rabbits on hypercholesterolemic diet. Circulation 104, 914–920 (2001).

    Article  CAS  Google Scholar 

  92. Ostos, M. A., Recalde, D., Zakin, M. M. & Scott-Algara, D. Implication of natural killer T cells in atherosclerosis development during a LPS-induced chronic inflammation. FEBS Lett. 519, 23–29 (2002).

    Article  CAS  Google Scholar 

  93. Rice, J. B. et al. Low-level endotoxin induces potent inflammatory activation of human blood vessels: inhibition by statins. Arterioscler. Thromb. Vasc. Biol. 23, 1576–1582 (2003).

    Article  CAS  Google Scholar 

  94. Violi, F., Calvieri, C., Ferro, D. & Pignatelli, P. Statins as antithrombotic drugs. Circulation 127, 251–257 (2013).

    Article  Google Scholar 

  95. Michelsen, K. S. et al. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc. Natl Acad. Sci. USA 101, 10679–10684 (2004).

    Article  CAS  Google Scholar 

  96. Vink, A. et al. In vivo evidence for a role of toll-like receptor 4 in the development of intimal lesions. Circulation 106, 1985–1990 (2002).

    Article  CAS  Google Scholar 

  97. Ding, Y. et al. Toll-like receptor 4 deficiency decreases atherosclerosis but does not protect against inflammation in obese low-density lipoprotein receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol. 32, 1596–1604 (2012).

    Article  CAS  Google Scholar 

  98. Koupenova, M., Livada, A. C. & Morrell, C. N. Platelet and megakaryocyte roles in innate and adaptive immunity. Circ. Res. 130, 288–308 (2022).

    Article  CAS  Google Scholar 

  99. Jaw, J. E. et al. Lung exposure to lipopolysaccharide causes atherosclerotic plaque destabilisation. Eur. Respir. J. 48, 205–215 (2016).

    Article  CAS  Google Scholar 

  100. Schumski, A. et al. Endotoxinemia accelerates atherosclerosis through electrostatic charge-mediated monocyte adhesion. Circulation 143, 254–266 (2021).

    Article  CAS  Google Scholar 

  101. Mawhin, M.-A. et al. Neutrophils recruited by leukotriene B4 induce features of plaque destabilization during endotoxaemia. Cardiovasc. Res. 114, 1656–1666 (2018).

    Article  CAS  Google Scholar 

  102. Zhu, W. et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165, 111–124 (2016).

    Article  CAS  Google Scholar 

  103. Violi, F. et al. Bleeding time in patients with cirrhosis: relation with degree of liver failure and clotting abnormalities. J. Hepatol. 20, 531–536 (1994).

    Article  CAS  Google Scholar 

  104. Violi, F. et al. Association between low-grade disseminated intravascular coagulation and endotoxemia in patients with liver cirrhosis. Gastroenterology 109, 531–539 (1995).

    Article  CAS  Google Scholar 

  105. Fimognari, F. L. & Violi, F. Portal vein thrombosis in liver cirrhosis. Intern. Emerg. Med. 3, 213–218 (2008).

    Article  Google Scholar 

  106. Saliola, M. et al. Enhanced expression of monocyte tissue factor in patients with liver cirrhosis. Gut 43, 428–432 (1998).

    Article  CAS  Google Scholar 

  107. Camerer, E., Huang, W. & Coughlin, S. R. Tissue factor- and factor X-dependent activation of protease-activated receptor 2 by factor VIIa. Proc. Natl Acad. Sci. USA 97, 5255–5260 (2000).

    Article  CAS  Google Scholar 

  108. Ferro, D. et al. Vitamin E reduces monocyte tissue factor expression in cirrhotic patients. Blood 93, 2945–2950 (1999).

    Article  CAS  Google Scholar 

  109. Zhang, W. J., Wojta, J. & Binder, B. R. Notoginsenoside R1 counteracts endotoxin-induced activation of endothelial cells in vitro and endotoxin-induced lethality in mice in vivo. Arterioscler. Thromb. Vasc. Biol. 17, 465–474 (1997).

    Article  CAS  Google Scholar 

  110. Ruan, Q., Deng, Z. & Song, J. Ligustrazini inhibits endotoxin induced PAI-1 expression in human umbilical vein endothelial cells. J. Tongji Med. Univ. 21, 6–7 (2001).

    Article  CAS  Google Scholar 

  111. Ren, M. et al. Endothelial cells but not platelets are the major source of Toll-like receptor 4 in the arterial thrombosis and tissue factor expression in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R901–R907 (2014).

    Article  CAS  Google Scholar 

  112. Carnevale, R. et al. Gut-derived endotoxin stimulates factor VIII secretion from endothelial cells. Implications for hypercoagulability in cirrhosis. J. Hepatol. 67, 950–956 (2017).

    Article  CAS  Google Scholar 

  113. Sambrano, G. R. et al. Cathepsin G activates protease-activated receptor-4 in human platelets. J. Biol. Chem. 275, 6819–6823 (2000).

    Article  CAS  Google Scholar 

  114. Nadir, Y. et al. Heparanase enhances the generation of activated factor X in the presence of tissue factor and activated factor VII. Haematologica 95, 1927–1934 (2010).

    Article  CAS  Google Scholar 

  115. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).

    Article  CAS  Google Scholar 

  116. Li, P. et al. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J. Exp. Med. 207, 1853–1862 (2010).

    Article  CAS  Google Scholar 

  117. Yao, W. et al. ONO-5046 suppresses reactive oxidative species-associated formation of neutrophil extracellular traps. Life Sci. 210, 243–250 (2018).

    Article  CAS  Google Scholar 

  118. Khan, M. A. et al. JNK activation turns on LPS- and gram-negative bacteria-induced NADPH oxidase-dependent suicidal NETosis. Sci. Rep. 7, 3409 (2017).

    Article  Google Scholar 

  119. Barillà, F. et al. Toll-like receptor 4 activation in platelets from myocardial infarction patients. Thromb. Res. 209, 33–40 (2022).

    Article  Google Scholar 

  120. Jäckel, S. et al. Gut microbiota regulate hepatic von Willebrand factor synthesis and arterial thrombus formation via Toll-like receptor-2. Blood 130, 542–553 (2017).

    Article  Google Scholar 

  121. Asada, M. et al. Serum lipopolysaccharide-binding protein levels and the incidence of cardiovascular disease in a general Japanese population: the Hisayama study. J. Am. Heart Assoc. 8, e013628 (2019).

    Article  Google Scholar 

  122. Leskelä, J. et al. Genetic profile of endotoxemia reveals an association with thromboembolism and stroke. J. Am. Heart Assoc. 10, e022482 (2021).

    Article  Google Scholar 

  123. Pussinen, P. J. et al. Endotoxemia, immune response to periodontal pathogens, and systemic inflammation associate with incident cardiovascular disease events. Arterioscler. Thromb. Vasc. Biol. 27, 1433–1439 (2007).

    Article  CAS  Google Scholar 

  124. Gomes, J. M. G., de Costa, J. A. & de Alfenas, R. C. G. Metabolic endotoxemia and diabetes mellitus: a systematic review. Metabolism 68, 133–144 (2017).

    Article  CAS  Google Scholar 

  125. Simonsen, J. R. et al. The association between bacterial infections and the risk of coronary heart disease in type 1 diabetes. J. Intern. Med. 288, 711–724 (2020).

    Article  CAS  Google Scholar 

  126. Pastori, D. et al. Gut-derived serum lipopolysaccharide is associated with enhanced risk of major adverse cardiovascular events in atrial fibrillation: effect of adherence to Mediterranean diet. J. Am. Heart Assoc. 6, e005784 (2017).

    Article  Google Scholar 

  127. Zhang, Y. et al. Gut microbiota dysbiosis promotes age-related atrial fibrillation by lipopolysaccharide and glucose-induced activation of NLRP3-inflammasome. Cardiovasc. Res. 118, 785–797 (2021).

    Article  Google Scholar 

  128. Cangemi, R. et al. Comparison of thrombotic events and mortality in patients with community-acquired pneumonia and COVID-19: a multicenter observational study. Thromb. Haemost. 122, 257–266 (2021).

    Google Scholar 

  129. Malehmir, M. et al. Platelet GPIbα is a mediator and potential interventional target for NASH and subsequent liver cancer. Nat. Med. 25, 641–655 (2019).

    Article  CAS  Google Scholar 

  130. Baratta, F. et al. Nonalcoholic fatty liver disease and fibrosis associated with increased risk of cardiovascular events in a prospective study. Clin. Gastroenterol. Hepatol. 18, 2324–2331.e4 (2020).

    Article  Google Scholar 

  131. Amar, J. Microbiota-host crosstalk: a bridge between cardiovascular risk factors, diet, and cardiovascular disease. Am. J. Hypertens. 31, 941–944 (2018).

    Article  CAS  Google Scholar 

  132. De Filippis, F. et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut 65, 1812–1821 (2016).

    Article  Google Scholar 

  133. Bartimoccia, S. et al. Extra virgin olive oil reduces gut permeability and metabolic endotoxemia in diabetic patients. Nutrients 14, 2153 (2022).

    Article  CAS  Google Scholar 

  134. Guevara-Cruz, M. et al. Improvement of lipoprotein profile and metabolic endotoxemia by a lifestyle intervention that modifies the gut microbiota in subjects with metabolic syndrome. J. Am. Heart Assoc. 8, e012401 (2019).

    Article  Google Scholar 

  135. Cani, P. D. et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58, 1091–1103 (2009).

    Article  CAS  Google Scholar 

  136. Rault-Nania, M. H. et al. Inulin attenuates atherosclerosis in apolipoprotein E-deficient mice. Br. J. Nutr. 96, 840–844 (2006).

    Article  CAS  Google Scholar 

  137. Dourado, E., Ferro, M., Guerreiro, C. S. & Fonseca, J. E. Diet as a modulator of intestinal microbiota in rheumatoid arthritis. Nutrients 12, 3504 (2020).

    Article  CAS  Google Scholar 

  138. Knudsen, K. E. B. et al. Impact of diet-modulated butyrate production on intestinal barrier function and inflammation. Nutrients 10, 1499 (2018).

    Article  Google Scholar 

  139. Rosenson, R. S. Statins in atherosclerosis: lipid-lowering agents with antioxidant capabilities. Atherosclerosis 173, 1–12 (2004).

    Article  CAS  Google Scholar 

  140. Zhang, S. et al. Atorvastatin attenuates cold-induced hypertension by preventing gut barrier injury. J. Cardiovasc. Pharmacol. 74, 143–151 (2019).

    Article  CAS  Google Scholar 

  141. Vieira-Silva, S. et al. Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature 581, 310–315 (2020).

    Article  CAS  Google Scholar 

  142. Fukui, H. Leaky gut and gut-liver axis in liver cirrhosis: clinical studies update. Gut Liver 15, 666–676 (2021).

    Article  CAS  Google Scholar 

  143. Munford, R. S. Endotoxemia–menace, marker, or mistake? J. Leukoc. Biol. 100, 687–698 (2016).

    Article  CAS  Google Scholar 

  144. Rinninella, E. et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 7, 14 (2019).

    Article  CAS  Google Scholar 

  145. Thursby, E. & Juge, N. Introduction to the human gut microbiota. Biochem. J. 474, 1823–1836 (2017).

    Article  CAS  Google Scholar 

  146. Berg, R. D. The indigenous gastrointestinal microflora. Trends Microbiol. 4, 430–435 (1996).

    Article  CAS  Google Scholar 

  147. Cani, P. D. Human gut microbiome: hopes, threats and promises. Gut 67, 1716–1725 (2018).

    Article  CAS  Google Scholar 

  148. Dieterich, W., Schink, M. & Zopf, Y. Microbiota in the gastrointestinal tract. Med. Sci. 6, 116 (2018).

    CAS  Google Scholar 

  149. Shin, N. R., Whon, T. W. & Bae, J. W. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 33, 496–503 (2015).

    Article  CAS  Google Scholar 

  150. Stojanov, S., Berlec, A. & Štrukelj, B. The influence of probiotics on the Firmicutes/Bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms 8, 1715 (2020).

    Article  CAS  Google Scholar 

  151. Deo, P. N. & Deshmukh, R. Oral microbiome: unveiling the fundamentals. J. Oral. Maxillofac. Pathol. 23, 122–128 (2019).

    Google Scholar 

  152. Chen, C. et al. Oral microbiota of periodontal health and disease and their changes after nonsurgical periodontal therapy. ISME J. 12, 1210–1224 (2018).

    Article  Google Scholar 

  153. Lamont, R. J., Koo, H. & Hajishengallis, G. The oral microbiota: dynamic communities and host interactions. Nat. Rev. Microbiol. 16, 745–759 (2018).

    Article  CAS  Google Scholar 

  154. Del Giudice, C. et al. Infective endocarditis: a focus on oral microbiota. Microorganisms 9, 1218 (2021).

    Article  Google Scholar 

  155. Koren, O. et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc. Natl Acad. Sci. USA 108, 4592–4598 (2011).

    Article  CAS  Google Scholar 

  156. Bensel, T. et al. Periodontal pockets as potential sources of cystic fibrosis lung infection. J. Cyst. Fibros. 9, S38 (2010).

    Article  Google Scholar 

  157. Tan, L., Wang, H., Li, C. & Pan, Y. 16S rDNA-based metagenomic analysis of dental plaque and lung bacteria in patients with severe acute exacerbations of chronic obstructive pulmonary disease. J. Periodontal Res. 49, 760–769 (2014).

    Article  CAS  Google Scholar 

  158. Prescott, S. L. et al. The skin microbiome: impact of modern environments on skin ecology, barrier integrity, and systemic immune programming. World Allergy Organ. J. 10, 29 (2017).

    Article  Google Scholar 

  159. Sanford, J. A. & Gallo, R. L. Functions of the skin microbiota in health and disease. Semin. Immunol. 25, 370–377 (2013).

    Article  CAS  Google Scholar 

  160. Morand, A. et al. Human bacterial repertoire of the urinary tract: a potential paradigm shift. J. Clin. Microbiol. 57, e00675-18 (2019).

    Article  Google Scholar 

  161. Nielubowicz, G. R. & Mobley, H. L. T. Host-pathogen interactions in urinary tract infection. Nat. Rev. Urol. 7, 430–441 (2010).

    Article  CAS  Google Scholar 

  162. Ulett, G. C. et al. Uropathogenic Escherichia coli virulence and innate immune responses during urinary tract infection. Curr. Opin. Microbiol. 16, 100–107 (2013).

    Article  CAS  Google Scholar 

  163. Kamisoglu, K. et al. Temporal metabolic profiling of plasma during endotoxemia in humans. Shock 40, 519–526 (2013).

    Article  CAS  Google Scholar 

  164. Määttä, A. M. et al. Endotoxemia is associated with an adverse metabolic profile. Innate Immun. 27, 3–14 (2021).

    Article  Google Scholar 

  165. Fong, Y. et al. The acute splanchnic and peripheral tissue metabolic response to endotoxin in humans. J. Clin. Invest. 85, 1896–1904 (1990).

    Article  CAS  Google Scholar 

  166. Bang, F. B. A bacterial disease of Limulus polyphemus. Bull. Johns. Hopkins Hosp. 98, 325–351 (1956).

    CAS  Google Scholar 

  167. Levin, J. & Bang, F. B. The role of endotoxin in the extracellular coagulation of limulus blood. Bull. Johns. Hopkins Hosp. 115, 265–274 (1964).

    CAS  Google Scholar 

  168. Sondhi, P., Maruf, M. H. U. & Stine, K. J. Nanomaterials for biosensing lipopolysaccharide. Biosensors 10, 2 (2020).

    Article  CAS  Google Scholar 

  169. Grallert, H., Leopoldseder, S., Schuett, M., Kurze, P. & Buchberger, B. EndoLISA®: a novel and reliable method for endotoxin detection. Nat. Methods 8, iii–v (2011).

    Article  Google Scholar 

  170. Maitra, S. K., Schotz, M. C., Yoshikawa, T. T. & Guze, L. B. Determination of lipid A and endotoxin in serum by mass spectroscopy. Proc. Natl Acad. Sci. USA 75, 3993–3997 (1978).

    Article  CAS  Google Scholar 

  171. De Barros, J. P. P. et al. Quantitative lipopolysaccharide analysis using HPLC/MS/MS and its combination with the Limulus amebocyte lysate assay. J. Lipid Res. 56, 1363–1369 (2015).

    Article  Google Scholar 

  172. Ding, X., Su, W. & Ding, X. Methods of endotoxin detection. J. Lab. Autom. 20, 354–364 (2015).

    Article  Google Scholar 

  173. Xie, P. et al. Highly sensitive detection of lipopolysaccharides using an aptasensor based on hybridization chain reaction. Sci. Rep. 6, 29524 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

F.V. developed the concept and design of the review and wrote the manuscript. All the authors contributed to the discussion of content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Francesco Violi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Christoph Reinhardt; Christoph Thiemermann, who co-reviewed with Shireen Mohammad; Pirkko Pussinen; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Gut dysbiosis

Any change in the number or diversity of resident commensal gut microbiota relative to the community present in healthy individuals.

Trimethylamine-N-oxide

(TMAO). A small organic compound formed from trimethylamine, which is generated by metabolism of dietary choline and phosphatidylcholine by flavin monooxygenases from gut microbiota.

Endotoxaemia

The presence in the blood of endotoxins, such as lipopolysaccharide (LPS), which is a component of the outer membrane of Gram-negative bacteria.

Non-alcoholic fatty liver disease

(NAFLD). A condition caused by ectopic fat accumulation in the liver in the absence of excessive alcohol intake.

Non-alcoholic steatohepatitis

(NASH). A severe form of non-alcoholic fatty liver disease that is characterized by liver inflammation and that can progress to cirrhosis.

Intestinal adhesion proteins

The scaffold of the epithelial cell barrier that protects from the translocation of microorganisms or microbial products into the systemic circulation.

Increased gut permeability

Impaired function of epithelial cell adhesion proteins and loss of epithelial cell barrier integrity, with translocation of microorganisms and toxins into the bloodstream.

NADPH oxidase

A ubiquitous, multisubunit cellular enzyme that is a major producer of reactive oxygen species.

Neutrophil extracellular traps

(NETs). Extracellular net-like structures composed of DNA, histones and cytoplasmic granule proteins released by neutrophils after activation.

Prebiotics

Non-digestible food ingredients (fibres) that promote a shift to a healthier gut microbiota profile.

Probiotics

Live microorganisms that confer a health benefit in the host when administered in adequate amounts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Violi, F., Cammisotto, V., Bartimoccia, S. et al. Gut-derived low-grade endotoxaemia, atherothrombosis and cardiovascular disease. Nat Rev Cardiol 20, 24–37 (2023). https://doi.org/10.1038/s41569-022-00737-2

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41569-022-00737-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing