Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inflammatory signalling in atrial cardiomyocytes: a novel unifying principle in atrial fibrillation pathophysiology

Abstract

Inflammation has been implicated in atrial fibrillation (AF), a very common and clinically significant cardiac rhythm disturbance, but its precise role remains poorly understood. Work performed over the past 5 years suggests that atrial cardiomyocytes have inflammatory signalling machinery — in particular, components of the NLRP3 (NACHT-, LRR- and pyrin domain-containing 3) inflammasome — that is activated in animal models and patients with AF. Furthermore, work in animal models suggests that NLRP3 inflammasome activation in atrial cardiomyocytes might be a sufficient and necessary condition for AF occurrence. In this Review, we evaluate the evidence for the role and pathophysiological significance of cardiomyocyte NLRP3 signalling in AF. We first summarize the evidence for a role of inflammation in AF and review the biochemical properties of the NLRP3 inflammasome, as defined primarily in studies of classic inflammation. We then briefly consider the broader evidence for a role of inflammatory signalling in heart disease, particularly conditions that predispose individuals to develop AF. We provide a detailed discussion of the available information about atrial cardiomyocyte NLRP3 inflammasome signalling in AF and related conditions and evaluate the possibility that similar signalling might be important in non-myocyte cardiac cells. We then review the evidence on the role of active resolution of inflammation and its potential importance in suppressing AF-related inflammatory signalling. Finally, we consider the therapeutic potential and broader implications of this new knowledge and highlight crucial questions to be addressed in future research.

Key points

  • Atrial fibrillation is the most common cardiac arrhythmia, and new insights into the pathophysiological mechanisms are required to improve the available therapeutic options.

  • Although inflammation has been thought to have a role in atrial fibrillation for ≥20 years, the precise nature of the association has proved elusive.

  • Work over the past 5 years has revealed a key role for inflammatory signalling in cardiomyocytes in atrial fibrillation development, revealing the importance of non-leukocyte cardiac cells in mediating disease-promoting cardiac inflammation.

  • The NLRP3 inflammasome in particular has been implicated in cardiomyocyte-mediated inflammatory signalling in atrial fibrillation.

  • The active resolution of inflammation is thought to be mediated by endogenous bioactive agents, which can be administered as pharmaceutical products to attenuate the development of chronic conditions such as atrial fibrillation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathways involved in NLRP3 inflammasome activation.
Fig. 2: Pathways leading to NLRP3 inflammasome activation induced by comorbidities and cardiovascular risk factors.
Fig. 3: Inflammation resolution concept.
Fig. 4: Cardiomyocyte–immune cell interactions promote and maintain atrial fibrillation.

Similar content being viewed by others

References

  1. Andrade, J., Khairy, P., Dobrev, D. & Nattel, S. The clinical profile and pathophysiology of atrial fibrillation: relationships among clinical features, epidemiology, and mechanisms. Circ. Res. 114, 1453–1468 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Heijman, J., Guichard, J. B., Dobrev, D. & Nattel, S. Translational challenges in atrial fibrillation. Circ. Res. 122, 752–773 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Chung, M. K. et al. C-reactive protein elevation in patients with atrial arrhythmias: inflammatory mechanisms and persistence of atrial fibrillation. Circulation 104, 2886–2891 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Harada, M., Van Wagoner, D. R. & Nattel, S. Role of inflammation in atrial fibrillation pathophysiology and management. Circ. J. 79, 495–502 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gong, T., Liu, L., Jiang, W. & Zhou, R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat. Rev. Immunol. 20, 95–112 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Zhao, C. & Zhao, W. NLRP3 inflammasome – a key player in antiviral responses. Front. Immunol. 11, 211 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lazzerini, P. E., Capecchi, P. L. & Laghi-Pasini, F. Systemic inflammation and arrhythmic risk: lessons from rheumatoid arthritis. Eur. Heart J. 38, 1717–1727 (2017).

    CAS  PubMed  Google Scholar 

  8. Ahlehoff, O. et al. Psoriasis and risk of atrial fibrillation and ischaemic stroke: a Danish nationwide cohort study. Eur. Heart J. 33, 2054–2064 (2012).

    Article  PubMed  Google Scholar 

  9. Kristensen, S. L. et al. Increased risk of atrial fibrillation and stroke during active stages of inflammatory bowel disease: a nationwide study. Europace 16, 477–484 (2014).

    Article  PubMed  Google Scholar 

  10. Koyfman, L. et al. Epidemiology of new-onset paroxysmal atrial fibrillation in the general intensive care unit population and after discharge from ICU. A retrospective epidemiological study. Anaesthesiol. Intensive Ther. 47, 309–314 (2015).

    Article  PubMed  Google Scholar 

  11. Walkey, A. J., Wiener, R. S., Ghobrial, J. M., Curtis, L. H. & Benjamin, E. J. Incident stroke and mortality associated with new-onset atrial fibrillation in patients hospitalized with severe sepsis. JAMA 306, 2248–2254 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Walkey, A. J. et al. Atrial fibrillation among Medicare beneficiaries hospitalized with sepsis: incidence and risk factors. Am. Heart J. 165, 949–955.e3 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kuipers, S., Klein Klouwenberg, P. M. & Cremer, O. L. Incidence, risk factors and outcomes of new-onset atrial fibrillation in patients with sepsis: a systematic review. Crit. Care 18, 688 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Walkey, A. J., Hammill, B. G., Curtis, L. H. & Benjamin, E. J. Long-term outcomes following development of new-onset atrial fibrillation during sepsis. Chest 146, 1187–1195 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Klein Klouwenberg, P. M. et al. Incidence, predictors, and outcomes of new-onset atrial fibrillation in critically ill patients with sepsis. a cohort study. Am. J. Respir. Crit. Care Med. 195, 205–211 (2017).

    Article  PubMed  Google Scholar 

  16. Cheng, C. A. et al. New-onset atrial fibrillation-related ischemic stroke occurring after hospital discharge in septicemia survivors. QJM 110, 453–457 (2017).

    Article  PubMed  Google Scholar 

  17. Bosch, N. A. et al. New-onset atrial fibrillation as a sepsis-defining organ failure. Ann. Am. Thorac. Soc. 16, 1332–1334 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fernando, S. M. et al. New-onset atrial fibrillation and associated outcomes and resource use among critically ill adults – a multicenter retrospective cohort study. Crit. Care 24, 15 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ko, D. et al. Secondary precipitants of atrial fibrillation and anticoagulation therapy. J. Am. Heart Assoc. 10, e021746 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Long, Y. et al. Early coagulation disorder is associated with an increased risk of atrial fibrillation in septic patients. Front. Cardiovasc. Med. 8, 724942 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Spodick, D. H. Arrhythmias during acute pericarditis. A prospective study of 100 consecutive cases. JAMA 235, 39–41 (1976).

    Article  CAS  PubMed  Google Scholar 

  22. Nagahama, Y. et al. The role of infarction-associated pericarditis on the occurrence of atrial fibrillation. Eur. Heart J. 19, 287–292 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Ristić, A. D. et al. Arrhythmias in acute pericarditis. An endomyocardial biopsy study. Herz 25, 729–733 (2000).

    Article  PubMed  Google Scholar 

  24. Imazio, M. et al. Incidence and prognostic significance of new onset atrial fibrillation/flutter in acute pericarditis. Heart 101, 1463–1467 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Adegbala, O. et al. Predictors, burden, and the impact of arrhythmia on patients admitted for acute myocarditis. Am. J. Cardiol. 123, 139–144 (2019).

    Article  PubMed  Google Scholar 

  26. Frustaci, A. et al. Cardiac biopsy in patients with “primary” atrial fibrillation. Histologic evidence of occult myocardial diseases. Chest 100, 303–306 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Frustaci, A. et al. Histological substrate of atrial biopsies in patients with lone atrial fibrillation. Circulation 96, 1180–1184 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Fuenmayor, A. J. et al. Results of electrophysiologic studies in patients with acute chagasic myocarditis. Clin. Cardiol. 20, 1021–1024 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Morgera, T. et al. Electrocardiography of myocarditis revisited: clinical and prognostic significance of electrocardiographic changes. Am. Heart J. 124, 455–467 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Deluigi, C. C. et al. ECG findings in comparison to cardiovascular MR imaging in viral myocarditis. Int. J. Cardiol. 165, 100–106 (2013).

    Article  PubMed  Google Scholar 

  31. Coromilas, E. J. et al. Worldwide survey of COVID-19-associated arrhythmias. Circ. Arrhythm. Electrophysiol. 14, e009458 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gawalko, M., Kaplon-Cieslicka, A., Hohl, M., Dobrev, D. & Linz, D. COVID-19 associated atrial fibrillation: incidence, putative mechanisms and potential clinical implications. Int. J. Cardiol. Heart Vasc. 30, 100631 (2020).

    PubMed  PubMed Central  Google Scholar 

  33. Sun, Z. et al. Cross-talk between macrophages and atrial myocytes in atrial fibrillation. Basic. Res. Cardiol. 111, 63 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Fang, J. et al. Ferroportin-mediated ferroptosis involved in new-onset atrial fibrillation with LPS-induced endotoxemia. Eur. J. Pharmacol. 913, 174622 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Aoki, Y. et al. Role of ion channels in sepsis-induced atrial tachyarrhythmias in guinea pigs. Br. J. Pharmacol. 166, 390–400 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Landstrom, A. P., Dobrev, D. & Wehrens, X. H. T. Calcium signaling and cardiac arrhythmias. Circ. Res. 120, 1969–1993 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nattel, S., Heijman, J., Zhou, L. & Dobrev, D. Molecular basis of atrial fibrillation pathophysiology and therapy: a translational perspective. Circ. Res. 127, 51–72 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kumagai, K., Nakashima, H. & Saku, K. The HMG-CoA reductase inhibitor atorvastatin prevents atrial fibrillation by inhibiting inflammation in a canine sterile pericarditis model. Cardiovasc. Res. 62, 105–111 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Ryu, K. et al. Effects of sterile pericarditis on connexins 40 and 43 in the atria: correlation with abnormal conduction and atrial arrhythmias. Am. J. Physiol. Heart Circ. Physiol. 293, H1231–H1241 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Huang, Z. et al. Signal transducer and activator of transcription 3/microRNA-21 feedback loop contributes to atrial fibrillation by promoting atrial fibrosis in a rat sterile pericarditis model. Circ. Arrhythm. Electrophysiol. https://doi.org/10.1161/CIRCEP.115.003396 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wu, Q. et al. Colchicine prevents atrial fibrillation promotion by inhibiting IL-1β-induced IL-6 release and atrial fibrosis in the rat sterile pericarditis model. Biomed. Pharmacother. 129, 110384 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, Y. et al. Role of inflammation in the initiation and maintenance of atrial fibrillation and the protective effect of atorvastatin in a goat model of aseptic pericarditis. Mol. Med. Rep. 11, 2615–2623 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, Z. et al. n-3 polyunsaturated fatty acids prevents atrial fibrillation by inhibiting inflammation in a canine sterile pericarditis model. Int. J. Cardiol. 153, 14–20 (2011).

    Article  PubMed  Google Scholar 

  44. Chang, C. J. et al. Histone deacetylase inhibition attenuates atrial arrhythmogenesis in sterile pericarditis. Transl. Res. 200, 54–64 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Liao, J. et al. TRPV4 blockade suppresses atrial fibrillation in sterile pericarditis rats. JCI Insight https://doi.org/10.1172/jci.insight.137528 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Liao, J. et al. Interleukin-6-mediated-Ca2+ handling abnormalities contributes to atrial fibrillation in sterile pericarditis rats. Front. Immunol. 12, 758157 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lin, F. J. et al. Toll-like receptor 4 activation modulates pericardium-myocardium interactions in lipopolysaccharide-induced atrial arrhythmogenesis. Europace 23, 1837–1846 (2021).

    Article  PubMed  Google Scholar 

  48. Schwartzman, D. et al. A plasma-based, amiodarone-impregnated material decreases susceptibility to atrial fibrillation in a post-cardiac surgery model. Innovations 11, 59–63 (2016). discussion 63.

    Article  PubMed  Google Scholar 

  49. Fu, X. X. et al. Interleukin-17A contributes to the development of post-operative atrial fibrillation by regulating inflammation and fibrosis in rats with sterile pericarditis. Int. J. Mol. Med. 36, 83–92 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tubeeckx, M. R. L. et al. Sterile pericarditis in Aachener minipigs as a model for atrial myopathy and atrial fibrillation. J. Vis. Exp. https://doi.org/10.3791/63094 (2021).

    Article  PubMed  Google Scholar 

  51. Hoyano, M. et al. Inducibility of atrial fibrillation depends not on inflammation but on atrial structural remodeling in rat experimental autoimmune myocarditis. Cardiovasc. Pathol. 19, e149–e157 (2010).

    Article  PubMed  Google Scholar 

  52. Turner, N. A. et al. Interleukin-1α stimulates proinflammatory cytokine expression in human cardiac myofibroblasts. Am. J. Physiol. Heart Circ. Physiol. 297, H1117–H1127 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Wang, Y. et al. NLRP3 inflammasome, an immune-inflammatory target in pathogenesis and treatment of cardiovascular diseases. Clin. Transl. Med. 10, 91–106 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Liu, L. et al. Up-regulated TLR4 in cardiomyocytes exacerbates heart failure after long-term myocardial infarction. J. Cell Mol. Med. 19, 2728–2740 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Takahashi, M. NLRP3 inflammasome as a key driver of vascular disease. Cardiovasc. Res. 118, 372–385 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Scott, L. Jr., Li, N. & Dobrev, D. Role of inflammatory signaling in atrial fibrillation. Int. J. Cardiol. 287, 195–200 (2019).

    Article  PubMed  Google Scholar 

  57. Latz, E. The inflammasomes: mechanisms of activation and function. Curr. Opin. Immunol. 22, 28–33 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821–832 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Groslambert, M. & Py, B. F. Spotlight on the NLRP3 inflammasome pathway. J. Inflamm. Res. 11, 359–374 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Misawa, T. et al. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat. Immunol. 14, 454–460 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Py, B. F., Kim, M. S., Vakifahmetoglu-Norberg, H. & Yuan, J. Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Mol. Cell 49, 331–338 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Bryan, N. B., Dorfleutner, A., Rojanasakul, Y. & Stehlik, C. Activation of inflammasomes requires intracellular redistribution of the apoptotic speck-like protein containing a caspase recruitment domain. J. Immunol. 182, 3173–3182 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Baroja-Mazo, A. et al. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat. Immunol. 15, 738–748 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Dick, M. S., Sborgi, L., Ruhl, S., Hiller, S. & Broz, P. ASC filament formation serves as a signal amplification mechanism for inflammasomes. Nat. Commun. 7, 11929 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bauernfeind, F. G. et al. Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol. 183, 787–791 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Suetomi, T. et al. Inflammation and NLRP3 inflammasome activation initiated in response to pressure overload by Ca2+/calmodulin-dependent protein kinase II δ signaling in cardiomyocytes are essential for adverse cardiac remodeling. Circulation 138, 2530–2544 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fender, A. C. et al. Thrombin receptor PAR4 drives canonical NLRP3 inflammasome signaling in the heart. Basic. Res. Cardiol. 115, 10 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Tschopp, J. & Schroder, K. NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat. Rev. Immunol. 10, 210–215 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Juliana, C. et al. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J. Biol. Chem. 287, 36617–36622 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lin, K. M. et al. IRAK-1 bypasses priming and directly links TLRs to rapid NLRP3 inflammasome activation. Proc. Natl Acad. Sci. USA 111, 775–780 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Schroder, K. et al. Acute lipopolysaccharide priming boosts inflammasome activation independently of inflammasome sensor induction. Immunobiology 217, 1325–1329 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Broz, P. & Dixit, V. M. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16, 407–420 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Gong, T., Yang, Y., Jin, T., Jiang, W. & Zhou, R. Orchestration of NLRP3 inflammasome activation by ion fluxes. Trends Immunol. 39, 393–406 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Weber, K. & Schilling, J. D. Lysosomes integrate metabolic-inflammatory cross-talk in primary macrophage inflammasome activation. J. Biol. Chem. 289, 9158–9171 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Magupalli, V. G. et al. HDAC6 mediates an aggresome-like mechanism for NLRP3 and pyrin inflammasome activation. Science https://doi.org/10.1126/science.aas8995 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  76. He, Y., Zeng, M. Y., Yang, D., Motro, B. & Nunez, G. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 530, 354–357 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sharif, H. et al. Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome. Nature 570, 338–343 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Murakami, T. et al. Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc. Natl Acad. Sci. USA 109, 11282–11287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lee, G. S. et al. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 492, 123–127 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tseng, H. H., Vong, C. T., Kwan, Y. W., Lee, S. M. & Hoi, M. P. TRPM2 regulates TXNIP-mediated NLRP3 inflammasome activation via interaction with p47 phox under high glucose in human monocytic cells. Sci. Rep. 6, 35016 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Compan, V. et al. Cell volume regulation modulates NLRP3 inflammasome activation. Immunity 37, 487–500 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Horng, T. Calcium signaling and mitochondrial destabilization in the triggering of the NLRP3 inflammasome. Trends Immunol. 35, 253–261 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Menu, P. et al. ER stress activates the NLRP3 inflammasome via an UPR-independent pathway. Cell Death Dis. 3, e261 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Iyer, S. S. et al. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity 39, 311–323 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Swanson, K. V., Deng, M. & Ting, J. P. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat. Rev. Immunol. 19, 477–489 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gaidt, M. M. & Hornung, V. Pore formation by GSDMD is the effector mechanism of pyroptosis. EMBO J. 35, 2167–2169 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Munoz-Planillo, R. et al. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38, 1142–1153 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Burnstock, G. P2X ion channel receptors and inflammation. Purinergic Signal. 12, 59–67 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gaidt, M. M. et al. Human monocytes engage an alternative inflammasome pathway. Immunity 44, 833–846 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Netea, M. G. et al. Differential requirement for the activation of the inflammasome for processing and release of IL-1β in monocytes and macrophages. Blood 113, 2324–2335 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Man, S. M. & Kanneganti, T. D. Converging roles of caspases in inflammasome activation, cell death and innate immunity. Nat. Rev. Immunol. 16, 7–21 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. Kayagaki, N. et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341, 1246–1249 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Yang, D., He, Y., Munoz-Planillo, R., Liu, Q. & Nunez, G. Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock. Immunity 43, 923–932 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. He, Y., Hara, H. & Nunez, G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem. Sci. 41, 1012–1021 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wallach, D., Kang, T. B., Dillon, C. P. & Green, D. R. Programmed necrosis in inflammation: toward identification of the effector molecules. Science 352, aaf2154 (2016).

    Article  PubMed  Google Scholar 

  96. Aziz, M., Jacob, A., Yang, W. L., Matsuda, A. & Wang, P. Current trends in inflammatory and immunomodulatory mediators in sepsis. J. Leukoc. Biol. 93, 329–342 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Miao, E. A. et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat. Immunol. 11, 1136–1142 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Aglietti, R. A. et al. GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc. Natl Acad. Sci. USA 113, 7858–7863 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ding, J. et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535, 111–116 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Karmakar, M. et al. N-GSDMD trafficking to neutrophil organelles facilitates IL-1β release independently of plasma membrane pores and pyroptosis. Nat. Commun. 11, 2212 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Toldo, S. & Abbate, A. The NLRP3 inflammasome in acute myocardial infarction. Nat. Rev. Cardiol. 15, 203–214 (2018).

    Article  CAS  PubMed  Google Scholar 

  102. Abbate, A. et al. Interleukin-1 and the inflammasome as therapeutic targets in cardiovascular disease. Circ. Res. 126, 1260–1280 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Silvis, M. J. M. et al. Immunomodulation of the NLRP3 inflammasome in atherosclerosis, coronary artery disease, and acute myocardial infarction. J. Cardiovasc. Transl. Res. 14, 23–34 (2021).

    Article  PubMed  Google Scholar 

  104. Mezzaroma, E., Abbate, A. & Toldo, S. The inflammasome in heart failure. Curr. Opin. Physiol. 19, 105–112 (2021).

    Article  CAS  PubMed  Google Scholar 

  105. Rajamaki, K. et al. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS ONE 5, e11765 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Mezzaroma, E. et al. The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc. Natl Acad. Sci. USA 108, 19725–19730 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kawaguchi, M. et al. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation 123, 594–604 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Sandanger, O. et al. The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia-reperfusion injury. Cardiovasc. Res. 99, 164–174 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Deftereos, S. et al. Anti-inflammatory treatment with colchicine in acute myocardial infarction: a pilot study. Circulation 132, 1395–1403 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Heijman, J. et al. Atrial myocyte NLRP3/CaMKII nexus forms a substrate for postoperative atrial fibrillation. Circ. Res. 127, 1036–1055 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Byrne, N. J. et al. Empagliflozin blunts worsening cardiac dysfunction associated with reduced NLRP3 (nucleotide-binding domain-like receptor protein 3) inflammasome activation in heart failure. Circ. Heart Fail. 13, e006277 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. Mehta, S., Vijayvergiya, R. & Dhawan, V. Activation of NLRP3 inflammasome assembly is associated with smoking status of patients with coronary artery disease. Int. Immunopharmacol. 87, 106820 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. Yao, C. et al. Enhanced cardiomyocyte NLRP3 inflammasome signaling promotes atrial fibrillation. Circulation 138, 2227–2242 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Xiao, H. et al. IL-18 cleavage triggers cardiac inflammation and fibrosis upon β-adrenergic insult. Eur. Heart J. 39, 60–69 (2018).

    Article  CAS  PubMed  Google Scholar 

  115. Zhuang, Y. T. et al. IL-6 induced lncRNA MALAT1 enhances TNF-α expression in LPS-induced septic cardiomyocytes via activation of SAA3. Eur. Rev. Med. Pharmacol. Sci. 21, 302–309 (2017).

    PubMed  Google Scholar 

  116. Chandrasekar, B., Mummidi, S., Claycomb, W. C., Mestril, R. & Nemer, M. Interleukin-18 is a pro-hypertrophic cytokine that acts through a phosphatidylinositol 3-kinase-phosphoinositide-dependent kinase-1-Akt-GATA4 signaling pathway in cardiomyocytes. J. Biol. Chem. 280, 4553–4567 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Aschar-Sobbi, R. et al. Increased atrial arrhythmia susceptibility induced by intense endurance exercise in mice requires TNFα. Nat. Commun. 6, 6018 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Lakin, R. et al. Inhibition of soluble TNFα prevents adverse atrial remodeling and atrial arrhythmia susceptibility induced in mice by endurance exercise. J. Mol. Cell Cardiol. 129, 165–173 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Scott, L. Jr et al. NLRP3 inflammasome is a key driver of obesity-induced atrial arrhythmias. Cardiovasc. Res. 117, 1746–1759 (2021).

    Article  CAS  PubMed  Google Scholar 

  120. Saba, S. et al. Atrial contractile dysfunction, fibrosis, and arrhythmias in a mouse model of cardiomyopathy secondary to cardiac-specific overexpression of tumor necrosis factor-α. Am. J. Physiol. Heart Circ. Physiol. 289, H1456–H1467 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Sawaya, S. E. et al. Downregulation of connexin40 and increased prevalence of atrial arrhythmias in transgenic mice with cardiac-restricted overexpression of tumor necrosis factor. Am. J. Physiol. Heart Circ. Physiol. 292, H1561–H1567 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Lee, S. H. et al. Tumor necrosis factor-α alters calcium handling and increases arrhythmogenesis of pulmonary vein cardiomyocytes. Life Sci. 80, 1806–1815 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. He, G. et al. Increased M1 macrophages infiltration is associated with thrombogenesis in rheumatic mitral stenosis patients with atrial fibrillation. PLoS ONE 11, e0149910 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Lazzerini, P. E. et al. Systemic inflammation rapidly induces reversible atrial electrical remodeling: the role of interleukin-6-mediated changes in connexin expression. J. Am. Heart Assoc. 8, e011006 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Li, N. & Brundel, B. Inflammasomes and proteostasis novel molecular mechanisms associated with atrial fibrillation. Circ. Res. 127, 73–90 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Willeford, A. et al. CaMKIIδ-mediated inflammatory gene expression and inflammasome activation in cardiomyocytes initiate inflammation and induce fibrosis. JCI Insight https://doi.org/10.1172/jci.insight.97054 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Ling, H. et al. Ca2+/calmodulin-dependent protein kinase II δ mediates myocardial ischemia/reperfusion injury through nuclear factor-κB. Circ. Res. 112, 935–944 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yao, Y. et al. Targeting CaMKII-δ9 ameliorates cardiac ischemia/reperfusion injury by inhibiting myocardial inflammation. Circ. Res. https://doi.org/10.1161/CIRCRESAHA.121.319478 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Joiner, M. L. et al. CaMKII determines mitochondrial stress responses in heart. Nature 491, 269–273 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Dobrev, D. & Dudley, S. C. Oxidative stress: a bystander or a causal contributor to atrial remodelling and fibrillation. Cardiovasc. Res. 117, 2291–2293 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gawalko, M. et al. Gut microbiota, dysbiosis and atrial fibrillation. Arrhythmogenic mechanisms and potential clinical implications. Cardiovasc. Res. https://doi.org/10.1093/cvr/cvab292 (2021).

    Article  PubMed Central  Google Scholar 

  132. Hu, Y. F., Chen, Y. J., Lin, Y. J. & Chen, S. A. Inflammation and the pathogenesis of atrial fibrillation. Nat. Rev. Cardiol. 12, 230–243 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Yu, L. et al. A potential relationship between gut microbes and atrial fibrillation: trimethylamine N-oxide, a gut microbe-derived metabolite, facilitates the progression of atrial fibrillation. Int. J. Cardiol. 255, 92–98 (2018).

    Article  PubMed  Google Scholar 

  134. Wu, X. et al. Role of NLRP3-inflammasome/caspase-1/galectin-3 pathway on atrial remodeling in diabetic rabbits. J. Cardiovasc. Transl. Res. 13, 731–740 (2020).

    Article  PubMed  Google Scholar 

  135. Hiram, R. et al. Right atrial mechanisms of atrial fibrillation in a rat model of right heart disease. J. Am. Coll. Cardiol. 74, 1332–1347 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Goudis, C. A. Chronic obstructive pulmonary disease and atrial fibrillation: an unknown relationship. J. Cardiol. 69, 699–705 (2017).

    Article  PubMed  Google Scholar 

  137. Hiram, R. et al. The inflammation-resolution promoting molecule resolvin-D1 prevents atrial proarrhythmic remodelling in experimental right heart disease. Cardiovasc. Res. 117, 1776–1789 (2021).

    Article  CAS  PubMed  Google Scholar 

  138. Zhang, W. et al. Cardiac fibroblasts contribute to myocardial dysfunction in mice with sepsis: the role of NLRP3 inflammasome activation. PLoS ONE 9, e107639 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Turner, N. A. et al. Mechanism of TNFα-induced IL-1α, IL-1β and IL-6 expression in human cardiac fibroblasts: effects of statins and thiazolidinediones. Cardiovasc. Res. 76, 81–90 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. van Nieuwenhoven, F. A., Hemmings, K. E., Porter, K. E. & Turner, N. A. Combined effects of interleukin-1α and transforming growth factor-β1 on modulation of human cardiac fibroblast function. Matrix Biol. 32, 399–406 (2013).

    Article  PubMed  Google Scholar 

  141. Cheng, C. et al. Mutation in NPPA causes atrial fibrillation by activating inflammation and cardiac fibrosis in a knock-in rat model. FASEB J. 33, 8878–8891 (2019).

    Article  CAS  PubMed  Google Scholar 

  142. Gawalko, M. et al. Adiposity-associated atrial fibrillation: molecular determinants, mechanisms and clinical significance. Cardiovasc Res. https://doi.org/10.1093/cvr/cvac093 (2022).

    Article  PubMed  Google Scholar 

  143. Wong, C. X. et al. Associations of epicardial, abdominal, and overall adiposity with atrial fibrillation. Circ. Arrhythm. Electrophysiol. https://doi.org/10.1161/CIRCEP.116.004378 (2016).

    Article  PubMed  Google Scholar 

  144. Mazurek, T. et al. Relation of proinflammatory activity of epicardial adipose tissue to the occurrence of atrial fibrillation. Am. J. Cardiol. 113, 1505–1508 (2014).

    Article  PubMed  Google Scholar 

  145. Shaihov-Teper, O. et al. Extracellular vesicles from epicardial fat facilitate atrial fibrillation. Circulation 143, 2475–2493 (2021).

    Article  CAS  PubMed  Google Scholar 

  146. Freire, M. O. & Van Dyke, T. E. Natural resolution of inflammation. Periodontol 2000 63, 149–164 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Weissmann, G., Smolen, J. E. & Korchak, H. M. Release of inflammatory mediators from stimulated neutrophils. N. Engl. J. Med. 303, 27–34 (1980).

    Article  CAS  PubMed  Google Scholar 

  148. Serhan, C. N. et al. Resolution of inflammation: state of the art, definitions and terms. FASEB J. 21, 325–332 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. Houck, J. C. Chemical Messengers of the Inflammatory Process (Elsevier/North-Holland, 1979).

  150. Samuelsson, B. From studies of biochemical mechanism to novel biological mediators: prostaglandin endoperoxides, thromboxanes, and leukotrienes. Nobel Lecture, 8 December 1982. Biosci. Rep. 3, 791–813 (1983).

    Article  CAS  PubMed  Google Scholar 

  151. Serhan, C. N. et al. The atlas of inflammation resolution (AIR). Mol. Asp. Med. 74, 100894 (2020).

    Article  CAS  Google Scholar 

  152. Balsinde, J., Winstead, M. V. & Dennis, E. A. Phospholipase A2 regulation of arachidonic acid mobilization. FEBS Lett. 531, 2–6 (2002).

    Article  CAS  PubMed  Google Scholar 

  153. Radmark, O. & Samuelsson, B. 5-Lipoxygenase: mechanisms of regulation. J. Lipid Res. 50, S40–S45 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Vestweber, D. How leukocytes cross the vascular endothelium. Nat. Rev. Immunol. 15, 692–704 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Lee, S. et al. NLRP3 inflammasome deficiency protects against microbial sepsis via increased lipoxin B4 synthesis. Am. J. Respir. Crit. Care Med. 196, 713–726 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Singh, N. K. & Rao, G. N. Emerging role of 12/15-lipoxygenase (ALOX15) in human pathologies. Prog. Lipid Res. 73, 28–45 (2019).

    Article  CAS  PubMed  Google Scholar 

  158. Ishihara, T., Yoshida, M. & Arita, M. Omega-3 fatty acid-derived mediators that control inflammation and tissue homeostasis. Int. Immunol. 31, 559–567 (2019).

    Article  CAS  PubMed  Google Scholar 

  159. El Kebir, D., Gjorstrup, P. & Filep, J. G. Resolvin E1 promotes phagocytosis-induced neutrophil apoptosis and accelerates resolution of pulmonary inflammation. Proc. Natl Acad. Sci. USA 109, 14983–14988 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Pirault, J. & Back, M. Lipoxin and resolvin receptors transducing the resolution of inflammation in cardiovascular disease. Front. Pharmacol. 9, 1273 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Furman, D. et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822–1832 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Qu, X. et al. Resolvins E1 and D1 inhibit interstitial fibrosis in the obstructed kidney via inhibition of local fibroblast proliferation. J. Pathol. 228, 506–519 (2012).

    Article  CAS  PubMed  Google Scholar 

  163. Al-Shaer, A. E., Pal, A. & Shaikh, S. R. Resolvin E1-ChemR23 axis regulates the hepatic metabolic and inflammatory transcriptional landscape in obesity at the whole genome and exon level. Front. Nutr. 8, 799492 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Markworth, J. F. et al. Metabolipidomic profiling reveals an age-related deficiency of skeletal muscle pro-resolving mediators that contributes to maladaptive tissue remodeling. Aging Cell 20, e13393 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Li, G. et al. NLRP3 inflammasome as a novel target for docosahexaenoic acid metabolites to abrogate glomerular injury. J. Lipid Res. 58, 1080–1090 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Younes, R., LeBlanc, C. A. & Hiram, R. Evidence of failed resolution mechanisms in arrhythmogenic inflammation, fibrosis and right heart disease. Biomolecules https://doi.org/10.3390/biom12050720 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Chiurchiu, V. et al. Resolution of inflammation is altered in chronic heart failure and entails a dysfunctional responsiveness of T lymphocytes. FASEB J. 33, 909–916 (2019).

    Article  CAS  PubMed  Google Scholar 

  168. Artiach, G. et al. Omega-3 polyunsaturated fatty acids decrease aortic valve disease through the resolvin E1 and ChemR23 axis. Circulation 142, 776–789 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Jaen, R. I. et al. BML-111 treatment prevents cardiac apoptosis and oxidative stress in a mouse model of autoimmune myocarditis. FASEB J. 34, 10531–10546 (2020).

    Article  CAS  PubMed  Google Scholar 

  170. Keyes, K. T. et al. Resolvin E1 protects the rat heart against reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 299, H153–H164 (2010).

    Article  CAS  PubMed  Google Scholar 

  171. Kain, V. et al. Resolvin D1 activates the inflammation resolving response at splenic and ventricular site following myocardial infarction leading to improved ventricular function. J. Mol. Cell Cardiol. 84, 24–35 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Hiram, R. Resolution-promoting autacoids demonstrate promising cardioprotective effects against heart diseases. Mol. Biol. Rep. https://doi.org/10.1007/s11033-022-07230-6 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Gilroy, D. W. et al. Inducible cyclooxygenase may have anti-inflammatory properties. Nat. Med. 5, 698–701 (1999).

    Article  CAS  PubMed  Google Scholar 

  174. Hua, K. F. et al. Cyclooxygenase-2 regulates NLRP3 inflammasome-derived IL-1β production. J. Cell Physiol. 230, 863–874 (2015).

    Article  CAS  PubMed  Google Scholar 

  175. Chan, M. M. & Moore, A. R. Resolution of inflammation in murine autoimmune arthritis is disrupted by cyclooxygenase-2 inhibition and restored by prostaglandin E2-mediated lipoxin A4 production. J. Immunol. 184, 6418–6426 (2010).

    Article  CAS  PubMed  Google Scholar 

  176. Levy, B. D., Clish, C. B., Schmidt, B., Gronert, K. & Serhan, C. N. Lipid mediator class switching during acute inflammation: signals in resolution. Nat. Immunol. 2, 612–619 (2001).

    Article  CAS  PubMed  Google Scholar 

  177. Patrono, C. Cardiovascular effects of cyclooxygenase-2 inhibitors: a mechanistic and clinical perspective. Br. J. Clin. Pharmacol. 82, 957–964 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Hocherl, K., Endemann, D., Kammerl, M. C., Grobecker, H. F. & Kurtz, A. Cyclo-oxygenase-2 inhibition increases blood pressure in rats. Br. J. Pharmacol. 136, 1117–1126 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Qi, Z. et al. Opposite effects of cyclooxygenase-1 and -2 activity on the pressor response to angiotensin II. J. Clin. Invest. 110, 61–69 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Izhar, M., Alausa, T., Folker, A., Hung, E. & Bakris, G. L. Effects of COX inhibition on blood pressure and kidney function in ACE inhibitor-treated blacks and Hispanics. Hypertension 43, 573–577 (2004).

    Article  CAS  PubMed  Google Scholar 

  181. Shiroshita-Takeshita, A., Brundel, B. J., Lavoie, J. & Nattel, S. Prednisone prevents atrial fibrillation promotion by atrial tachycardia remodeling in dogs. Cardiovasc. Res. 69, 865–875 (2006).

    Article  CAS  PubMed  Google Scholar 

  182. Nomani, H., Mohammadpour, A. H., Moallem, S. M. H. & Sahebkar, A. Anti-inflammatory drugs in the prevention of post-operative atrial fibrillation: a literature review. Inflammopharmacology 28, 111–129 (2020).

    Article  CAS  PubMed  Google Scholar 

  183. Zhou, X. et al. Aspirin alleviates endothelial gap junction dysfunction through inhibition of NLRP3 inflammasome activation in LPS-induced vascular injury. Acta Pharm. Sin. B 9, 711–723 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Ofman, P. et al. Aspirin use and risk of atrial fibrillation in the Physicians’ Health Study. J. Am. Heart Assoc. https://doi.org/10.1161/JAHA.113.000763 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Liu, Y. et al. Glucocorticoids promote nonphlogistic phagocytosis of apoptotic leukocytes. J. Immunol. 162, 3639–3646 (1999).

    Article  CAS  PubMed  Google Scholar 

  186. Giles, K. M. et al. Glucocorticoid augmentation of macrophage capacity for phagocytosis of apoptotic cells is associated with reduced p130Cas expression, loss of paxillin/pyk2 phosphorylation, and high levels of active Rac. J. Immunol. 167, 976–986 (2001).

    Article  CAS  PubMed  Google Scholar 

  187. Birnbaum, Y. et al. Augmentation of myocardial production of 15-epi-lipoxin-A4 by pioglitazone and atorvastatin in the rat. Circulation 114, 929–935 (2006).

    Article  CAS  PubMed  Google Scholar 

  188. Lucas, C. D. et al. Downregulation of Mcl-1 has anti-inflammatory pro-resolution effects and enhances bacterial clearance from the lung. Mucosal Immunol. 7, 857–868 (2014).

    Article  CAS  PubMed  Google Scholar 

  189. Busillo, J. M., Azzam, K. M. & Cidlowski, J. A. Glucocorticoids sensitize the innate immune system through regulation of the NLRP3 inflammasome. J. Biol. Chem. 286, 38703–38713 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Panoulas, V. F. et al. Long-term exposure to medium-dose glucocorticoid therapy associates with hypertension in patients with rheumatoid arthritis. Rheumatology 47, 72–75 (2008).

    Article  CAS  PubMed  Google Scholar 

  191. Tripathi, R. C., Parapuram, S. K., Tripathi, B. J., Zhong, Y. & Chalam, K. V. Corticosteroids and glaucoma risk. Drugs Aging 15, 439–450 (1999).

    Article  CAS  PubMed  Google Scholar 

  192. Nashel, D. J. Is atherosclerosis a complication of long-term corticosteroid treatment? Am. J. Med. 80, 925–929 (1986).

    Article  CAS  PubMed  Google Scholar 

  193. Xu, Y. et al. Multiple-modulation effects of Oridonin on the production of proinflammatory cytokines and neurotrophic factors in LPS-activated microglia. Int. Immunopharmacol. 9, 360–365 (2009).

    Article  CAS  PubMed  Google Scholar 

  194. Perregaux, D. G. et al. Identification and characterization of a novel class of interleukin-1 post-translational processing inhibitors. J. Pharmacol. Exp. Ther. 299, 187–197 (2001).

    CAS  PubMed  Google Scholar 

  195. Zahid, A., Li, B., Kombe, A. J. K., Jin, T. & Tao, J. Pharmacological inhibitors of the NLRP3 inflammasome. Front. Immunol. 10, 2538 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Gao, R. F. et al. The covalent NLRP3-inflammasome inhibitor Oridonin relieves myocardial infarction induced myocardial fibrosis and cardiac remodeling in mice. Int. Immunopharmacol. 90, 107133 (2021).

    Article  CAS  PubMed  Google Scholar 

  197. Wei, Z. et al. Loss of Camk2n1 aggravates cardiac remodeling and malignant ventricular arrhythmia after myocardial infarction in mice via NLRP3 inflammasome activation. Free Radic. Biol. Med. 167, 243–257 (2021).

    Article  CAS  PubMed  Google Scholar 

  198. Brucato, A. et al. Effect of anakinra on recurrent pericarditis among patients with colchicine resistance and corticosteroid dependence: the AIRTRIP randomized clinical trial. JAMA 316, 1906–1912 (2016).

    Article  PubMed  Google Scholar 

  199. Abbate, A. et al. Interleukin-1 blockade with anakinra and heart failure following ST-segment elevation myocardial infarction: results from a pooled analysis of the VCUART clinical trials. Eur. Heart J. Cardiovasc. Pharmacother. https://doi.org/10.1093/ehjcvp/pvab075 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Van Tassell, B. W. et al. Interleukin-1 blockade in recently decompensated systolic heart failure: results from REDHART (Recently Decompensated Heart Failure Anakinra Response Trial). Circ. Heart Fail. https://doi.org/10.1161/CIRCHEARTFAILURE.117.004373 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Klein, A. L. et al. Phase 3 trial of interleukin-1 trap rilonacept in recurrent pericarditis. N. Engl. J. Med. 384, 31–41 (2021).

    Article  CAS  PubMed  Google Scholar 

  202. Everett, B. M. et al. Anti-inflammatory therapy with canakinumab for the prevention of hospitalization for heart failure. Circulation 139, 1289–1299 (2019).

    Article  CAS  PubMed  Google Scholar 

  203. Thul, S., Labat, C., Temmar, M., Benetos, A. & Back, M. Low salivary resolvin D1 to leukotriene B4 ratio predicts carotid intima media thickness: a novel biomarker of non-resolving vascular inflammation. Eur. J. Prev. Cardiol. 24, 903–906 (2017).

    Article  PubMed  Google Scholar 

  204. Bazan, H. A. et al. Circulating inflammation-resolving lipid mediators RvD1 and DHA are decreased in patients with acutely symptomatic carotid disease. Prostaglandins Leukot. Essent. Fat. Acids 125, 43–47 (2017).

    Article  CAS  Google Scholar 

  205. Fredman, G. Can inflammation-resolution provide clues to treat patients according to their plaque phenotype. Front. Pharmacol. 10, 205 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Petri, M. H. et al. Aspirin-triggered lipoxin A4 inhibits atherosclerosis progression in apolipoprotein E(-/-) mice. Br. J. Pharmacol. 174, 4043–4054 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Viola, J. R. et al. Resolving lipid mediators maresin 1 and resolvin D2 prevent atheroprogression in mice. Circ. Res. 119, 1030–1038 (2016).

    Article  CAS  PubMed  Google Scholar 

  208. Zhang, J. et al. The anti-inflammatory mediator resolvin E1 protects mice against lipopolysaccharide-induced heart injury. Front. Pharmacol. 11, 203 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Halade, G. V., Kain, V., Black, L. M., Prabhu, S. D. & Ingle, K. A. Aging dysregulates D- and E-series resolvins to modulate cardiosplenic and cardiorenal network following myocardial infarction. Aging 8, 2611–2634 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Halade, G. V. & Lee, D. H. Inflammation and resolution signaling in cardiac repair and heart failure. EBioMedicine 79, 103992 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. El-Sharkawy, L. Y., Brough, D. & Freeman, S. Inhibiting the NLRP3 Inflammasome. Molecules https://doi.org/10.3390/molecules25235533 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  212. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04338997 (2020).

  213. European Medicines Agency. EU Clinical Trials Register https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-000489-40/GB (2020).

  214. Van Tassell, B. W. et al. Effects of interleukin-1 blockade with anakinra on aerobic exercise capacity in patients with heart failure and preserved ejection fraction (from the D-HART pilot study). Am. J. Cardiol. 113, 321–327 (2014).

    Article  PubMed  Google Scholar 

  215. Marchetti, C. et al. OLT1177, a β-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation. Proc. Natl Acad. Sci. USA 115, E1530–E1539 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Wohlford, G. F. et al. Phase 1B, randomized, double-blinded, dose escalation, single-center, repeat dose safety and pharmacodynamics study of the oral NLRP3 inhibitor dapansutrile in subjects with NYHA II-III systolic heart failure. J. Cardiovasc. Pharmacol. 77, 49–60 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  217. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02272946 (2021).

  218. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03939520 (2022).

  219. Martin, J. et al. Tranilast attenuates cardiac matrix deposition in experimental diabetes: role of transforming growth factor-β. Cardiovasc. Res. 65, 694–701 (2005).

    Article  CAS  PubMed  Google Scholar 

  220. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03490708 (2018).

  221. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03923140 (2019).

  222. Li, Y. et al. Pirfenidone ameliorates lipopolysaccharide-induced pulmonary inflammation and fibrosis by blocking NLRP3 inflammasome activation. Mol. Immunol. 99, 134–144 (2018).

    Article  PubMed  Google Scholar 

  223. Aimo, A. et al. Pirfenidone as a novel cardiac protective treatment. Heart Fail. Rev. 27, 525–532 (2022).

    Article  CAS  PubMed  Google Scholar 

  224. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  225. Lyu, H. et al. VX-765 prevents intestinal ischemia-reperfusion injury by inhibiting NLRP3 inflammasome. Tissue Cell 75, 101718 (2022).

    Article  CAS  PubMed  Google Scholar 

  226. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05164120 (2022).

  227. Toldo, S. et al. Targeting the NLRP3 inflammasome in cardiovascular diseases. Pharmacol. Ther. 236, 108053 (2021).

    Article  PubMed  Google Scholar 

  228. Samuel, M. et al. Colchicine for secondary prevention of cardiovascular disease: a systematic review and meta-analysis of randomized controlled trials. Can. J. Cardiol. 37, 776–785 (2021).

    Article  PubMed  Google Scholar 

  229. Varghese, B. et al. Inflammation, atrial fibrillation, and the potential role for colchicine therapy. Heart Rhythm O2 2, 298–303 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Tabbalat, R. A. et al. Effect of low-dose colchicine on the incidence of atrial fibrillation in open heart surgery patients: END-AF low dose trial. J. Int. Med. Res. 48, 300060520939832 (2020).

    Article  CAS  PubMed  Google Scholar 

  231. Tabbalat, R. A. et al. Effect of colchicine on the incidence of atrial fibrillation in open heart surgery patients: END-AF trial. Am. Heart J. 178, 102–107 (2016).

    Article  PubMed  Google Scholar 

  232. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03310125 (2022).

  233. Aguilar, M., Heijman, J., Dobrev, D. & Nattel, S. One ring to rule them all: continuous monitoring of patients with secondary atrial fibrillation points to a unifying underlying mechanism. Can. J. Cardiol. 37, 686–689 (2021).

    Article  PubMed  Google Scholar 

  234. Tucker, N. R. et al. Transcriptional and cellular diversity of the human heart. Circulation 142, 466–482 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Moreira, L. M. et al. Paracrine signalling by cardiac calcitonin controls atrial fibrogenesis and arrhythmia. Nature 587, 460–465 (2020).

    Article  CAS  PubMed  Google Scholar 

  236. Litvinukova, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Zhang, Y. et al. Gut microbiota dysbiosis promotes age-related atrial fibrillation by lipopolysaccharide and glucose-induced activation of NLRP3-inflammasome. Cardiovasc. Res. 118, 785–797 (2022).

    Article  CAS  PubMed  Google Scholar 

  238. Rong, J. et al. Loss of hepatic angiotensinogen attenuates sepsis-induced myocardial dysfunction. Circ. Res. 129, 547–564 (2021).

    Article  CAS  PubMed  Google Scholar 

  239. Shi, H. et al. GSDMD-mediated cardiomyocyte pyroptosis promotes myocardial I/R injury. Circ. Res. 129, 383–396 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Takahashi, M. Role of NLRP3 inflammasome in cardiac inflammation and remodeling after myocardial infarction. Biol. Pharm. Bull. 42, 518–523 (2019).

    Article  CAS  PubMed  Google Scholar 

  241. Walkey, A. J., Evans, S. R., Winter, M. R. & Benjamin, E. J. Practice patterns and outcomes of treatments for atrial fibrillation during sepsis: a propensity-matched cohort study. Chest 149, 74–83 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Spodick, D. H. Frequency of arrhythmias in acute pericarditis determined by Holter monitoring. Am. J. Cardiol. 53, 842–845 (1984).

    Article  CAS  PubMed  Google Scholar 

  243. Talreja, D. R. et al. Constrictive pericarditis in 26 patients with histologically normal pericardial thickness. Circulation 108, 1852–1857 (2003).

    Article  PubMed  Google Scholar 

  244. Syed, F. F. et al. Atrial fibrillation as a consequence of tuberculous pericardial effusion. Int. J. Cardiol. 158, 152–154 (2012).

    Article  PubMed  Google Scholar 

  245. Larsen, B. T. et al. Atrial giant cell myocarditis: a distinctive clinicopathologic entity. Circulation 127, 39–47 (2013).

    Article  PubMed  Google Scholar 

  246. Anderson, B. R., Silver, E. S., Richmond, M. E. & Liberman, L. Usefulness of arrhythmias as predictors of death and resource utilization in children with myocarditis. Am. J. Cardiol. 114, 1400–1405 (2014).

    Article  PubMed  Google Scholar 

  247. Blagova, O. V. et al. Myocardial biopsy in “idiopathic” atrial fibrillation and other arrhythmias: nosological diagnosis, clinical and morphological parallels, and treatment. J. Atr. Fibrillation 9, 24–30 (2016).

    Google Scholar 

  248. Subahi, A. et al. Impact of atrial fibrillation on patients hospitalized for acute myocarditis: insights from a nationally-representative United States cohort. Clin. Cardiol. 42, 26–31 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  249. Rasal, G. et al. Arrhythmia spectrum and outcome in children with myocarditis. Ann. Pediatr. Cardiol. 14, 366–371 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Dunbar, D. N. et al. Intracavitary electrode catheter cardioversion of atrial tachyarrhythmias in the dog. J. Am. Coll. Cardiol. 7, 1015–1027 (1986).

    Article  CAS  PubMed  Google Scholar 

  251. Kumagai, K., Yamanouchi, Y., Tashiro, N., Hiroki, T. & Arakawa, K. Low energy synchronous transcatheter cardioversion of atrial flutter/fibrillation in the dog. J. Am. Coll. Cardiol. 16, 497–501 (1990).

    Article  CAS  PubMed  Google Scholar 

  252. Ali, I. M., Butler, C. K., Armour, J. A. & Murphy, D. A. Modification of supraventricular tachyarrhythmias by stimulating atrial neurons. Ann. Thorac. Surg. 50, 251–256 (1990).

    Article  CAS  PubMed  Google Scholar 

  253. Yamanouchi, Y., Kumagai, K., Tashiro, N., Hiroki, T. & Arakawa, K. Transesophageal low-energy synchronous cardioversion of atrial flutter/fibrillation in the dog. Am. Heart J. 123, 417–420 (1992).

    Article  CAS  PubMed  Google Scholar 

  254. Ortiz, J. et al. Mechanism of spontaneous termination of stable atrial flutter in the canine sterile pericarditis model. Circulation 88, 1866–1877 (1993).

    Article  CAS  PubMed  Google Scholar 

  255. Ortiz, J. et al. Atrial defibrillation using temporary epicardial defibrillation stainless steel wire electrodes: studies in the canine sterile pericarditis model. J. Am. Coll. Cardiol. 26, 1356–1364 (1995).

    Article  CAS  PubMed  Google Scholar 

  256. Cmolik, B. L. et al. Successful atrial defibrillation with very-low-energy shocks by means of temporary epicardial wire electrodes. J. Thorac. Cardiovasc. Surg. 111, 392–397 (1996). discussion 397-398.

    Article  CAS  PubMed  Google Scholar 

  257. Kumagai, K., Khrestian, C. & Waldo, A. L. Simultaneous multisite mapping studies during induced atrial fibrillation in the sterile pericarditis model. Insights into the mechanism of its maintenance. Circulation 95, 511–521 (1997).

    Article  CAS  PubMed  Google Scholar 

  258. Sokoloski, M. C. et al. Safety of transvenous atrial defibrillation: studies in the canine sterile pericarditis model. Circulation 96, 1343–1350 (1997).

    Article  CAS  PubMed  Google Scholar 

  259. Kumagai, K., Uno, K., Khrestian, C. & Waldo, A. L. Single site radiofrequency catheter ablation of atrial fibrillation: studies guided by simultaneous multisite mapping in the canine sterile pericarditis model. J. Am. Coll. Cardiol. 36, 917–923 (2000).

    Article  CAS  PubMed  Google Scholar 

  260. Becker, R. et al. Suppression of atrial fibrillation by multisite and septal pacing in a novel experimental model. Cardiovasc. Res. 54, 476–481 (2002).

    Article  CAS  PubMed  Google Scholar 

  261. Kumagai, K., Nakashima, H., Gondo, N. & Saku, K. Antiarrhythmic effects of JTV-519, a novel cardioprotective drug, on atrial fibrillation/flutter in a canine sterile pericarditis model. J. Cardiovasc. Electrophysiol. 14, 880–884 (2003).

    Article  PubMed  Google Scholar 

  262. Goldstein, R. N., Khrestian, C., Carlsson, L. & Waldo, A. L. Azd7009: a new antiarrhythmic drug with predominant effects on the atria effectively terminates and prevents reinduction of atrial fibrillation and flutter in the sterile pericarditis model. J. Cardiovasc. Electrophysiol. 15, 1444–1450 (2004).

    Article  PubMed  Google Scholar 

  263. Ryu, K. et al. Characterization of the critical cycle length of a left atrial driver which causes right atrial fibrillatory conduction. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2004, 3960–3963 (2004).

    CAS  PubMed  Google Scholar 

  264. Ryu, K., Sahadevan, J., Khrestian, C. M., Stambler, B. S. & Waldo, A. L. Use of fast Fourier transform analysis of atrial electrograms for rapid characterization of atrial activation – implications for delineating possible mechanisms of atrial tachyarrhythmias. J. Cardiovasc. Electrophysiol. 17, 198–206 (2006).

    Article  PubMed  Google Scholar 

  265. Tselentakis, E. V., Woodford, E., Chandy, J., Gaudette, G. R. & Saltman, A. E. Inflammation effects on the electrical properties of atrial tissue and inducibility of postoperative atrial fibrillation. J. Surg. Res. 135, 68–75 (2006).

    Article  CAS  PubMed  Google Scholar 

  266. Bui, H. M., Khrestian, C. M., Ryu, K., Sahadevan, J. & Waldo, A. L. Fixed intercaval block in the setting of atrial fibrillation promotes the development of atrial flutter. Heart Rhythm. 5, 1745–1752 (2008).

    Article  PubMed  Google Scholar 

  267. Ryu, K., Sahadevan, J., Khrestian, C. M., Stambler, B. S. & Waldo, A. L. Frequency analysis of atrial electrograms identifies conduction pathways from the left to the right atrium during atrial fibrillation – studies in two canine models. J. Cardiovasc. Electrophysiol. 20, 667–674 (2009).

    Article  PubMed  Google Scholar 

  268. Rossman, E. I. et al. The gap junction modifier, GAP-134 [(2S,4R)-1-(2-aminoacetyl)-4-benzamido-pyrrolidine-2-carboxylic acid], improves conduction and reduces atrial fibrillation/flutter in the canine sterile pericarditis model. J. Pharmacol. Exp. Ther. 329, 1127–1133 (2009).

    Article  CAS  PubMed  Google Scholar 

  269. Matsumoto, N. et al. Vanoxerine, a new drug for terminating atrial fibrillation and flutter. J. Cardiovasc. Electrophysiol. 21, 311–319 (2010).

    Article  PubMed  Google Scholar 

  270. Cakulev, I. et al. Oral vanoxerine prevents reinduction of atrial tachyarrhythmias: preliminary results. J. Cardiovasc. Electrophysiol. 22, 1266–1273 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  271. Bhimani, A. A. et al. Ranolazine terminates atrial flutter and fibrillation in a canine model. Heart Rhythm. 11, 1592–1599 (2014).

    Article  PubMed  Google Scholar 

  272. Sadrpour, S. A. et al. Termination of atrial flutter and fibrillation by K201’s metabolite M-II: studies in the canine sterile pericarditis model. J. Cardiovasc. Pharmacol. 65, 494–499 (2015).

    Article  CAS  PubMed  Google Scholar 

  273. Goldstein, R. N., Ryu, K., Khrestian, C., van Wagoner, D. R. & Waldo, A. L. Prednisone prevents inducible atrial flutter in the canine sterile pericarditis model. J. Cardiovasc. Electrophysiol. 19, 74–81 (2008).

    PubMed  Google Scholar 

  274. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04575753 (2020).

  275. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04997057 (2022).

  276. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03609541 (2022).

  277. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04697719 (2022).

  278. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02322073 (2021).

Download references

Acknowledgements

The authors thank T. Poppenborg (Institute of Pharmacology, University Duisburg-Essen, Germany) for help with preparing the figures for initial submission and A. Saljic (Institute of Pharmacology, University Duisburg-Essen, Germany) for critical review of the tables. The authors are supported by funding from the National Institutes of Health (R01HL136389, R01HL131517, R01HL089598 and R01HL163277 to D.D.; R01HL136389, R01HL147108 and R01HL163277 to N.L.), the German Research Foundation (DFG, Do 769/4-1 to D.D.), the European Union (large-scale integrative project MAESTRIA, no. 965286 to D.D.), the Netherlands Organization for Scientific Research (NWO/ZonMW Vidi 09150171910029 to J.H.), the Montreal Heart Institute Foundation (4800 to R.H.), the Canada Foundation for Innovation (42228 to S.N. and R.H.), the Canadian Institutes of Health Research (148401 to S.N.), and the AHA (Established Investigator Award 936111 to N.L).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed substantially to all aspects of the article.

Corresponding author

Correspondence to Stanley Nattel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Antonio Abbate, Shih-Ann Chen and David van Wagoner for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobrev, D., Heijman, J., Hiram, R. et al. Inflammatory signalling in atrial cardiomyocytes: a novel unifying principle in atrial fibrillation pathophysiology. Nat Rev Cardiol 20, 145–167 (2023). https://doi.org/10.1038/s41569-022-00759-w

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41569-022-00759-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing