Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epidemiology and prevention of venous thromboembolism

Abstract

Venous thromboembolism, that consists of the interrelated conditions deep-vein thrombosis and pulmonary embolism, is an under-appreciated vascular disease. In Western regions, approximately 1 in 12 individuals will be diagnosed with venous thromboembolism in their lifetime. Rates of venous thromboembolism are lower in Asia, but data from other regions are sparse. Numerous risk factors for venous thromboembolism have been identified, which can be classified as acute or subacute triggers (provoking factors that increase the risk of venous thromboembolism) and basal or acquired risk factors (which can be modifiable or static). Approximately 20% of individuals who have a venous thromboembolism event die within 1 year (although often from the provoking condition), and complications are common among survivors. Fortunately, opportunities exist for primordial prevention (prevention of the development of underlying risk factors), primary prevention (management of risk factors among individuals at high risk of the condition) and secondary prevention (prevention of recurrent events) of venous thromboembolism. In this Review, we describe the epidemiology of venous thromboembolism, including the incidence, risk factors, outcomes and opportunities for prevention. Meaningful health disparities exist in both the incidence and outcomes of venous thromboembolism. We also discuss these disparities as well as opportunities to reduce them.

Key points

  • Venous thromboembolism (VTE) surveillance systems are lacking, but VTE is estimated to affect one to two individuals per 1,000 person-years in Europe and the USA, with lower rates in other regions.

  • Risk factors for VTE are varied, and include triggers (acute and subacute), basal risk factors (demographic, behavioural, anthropometric and genetic) and acquired clinical risk factors.

  • Numerous complications can occur after a VTE event, and quality of life can decrease.

  • Reduction in the risk of VTE and adverse outcomes after a VTE event will require prevention across the spectrum of prevention stages (primordial, primary and secondary) and increased awareness of this under-appreciated condition.

  • Disparities exist in VTE incidence and outcomes; reducing these disparities will require individual, systems-based and societal commitments to equity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Factors with protective or adverse effects on thrombosis potential and risk of VTE.
Fig. 2: Racial/ethnic differences in VTE incidence and potential underlying factors.
Fig. 3: Cumulative incidence of VTE according to genetic risk score and the AHA Life’s Simple 7.

Similar content being viewed by others

References

  1. Wendelboe, A. M. & Raskob, G. E. Global burden of thrombosis: epidemiologic aspects. Circ. Res. 118, 1340–1347 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Bell, E. J. et al. Lifetime risk of venous thromboembolism in two cohort studies. Am. J. Med. 129, 339 e19–339.e26 (2016).

    Article  PubMed  Google Scholar 

  3. Sogaard, K. K., Schmidt, M., Pedersen, L., Horvath-Puho, E. & Sorensen, H. T. 30-year mortality after venous thromboembolism: a population-based cohort study. Circulation 130, 829–836 (2014).

    Article  PubMed  Google Scholar 

  4. Kort, D. et al. Relationship between neighborhood socioeconomic status and venous thromboembolism: results from a population-based study. J. Thromb. Haemost. 15, 2352–2360 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Januel, J. M. et al. Clinical and health system determinants of venous thromboembolism event rates after hip arthroplasty: an international comparison. Med. Care 56, 862–869 (2018).

    Article  PubMed  Google Scholar 

  6. Wattanakit, K. et al. Association between cardiovascular disease risk factors and occurrence of venous thromboembolism. A time-dependent analysis. Thromb. Haemost. 108, 508–515 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gregson, J. et al. Cardiovascular risk factors associated with venous thromboembolism. JAMA Cardiol. 4, 163–173 (2019).

    Article  PubMed  Google Scholar 

  8. Lutsey, P. L. et al. Correlates and consequences of venous thromboembolism: the Iowa Women’s Health Study. Am. J. Public Health 100, 1506–1513 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Severinsen, M. T. et al. Anthropometry, body fat, and venous thromboembolism: a Danish follow-up study. Circulation 120, 1850–1857 (2009).

    Article  PubMed  Google Scholar 

  10. Evensen, L. H., Brækkan, S. K. & Hansen, J. B. Regular physical activity and risk of venous thromboembolism. Semin. Thromb. Hemost. 44, 765–779 (2018).

    Article  PubMed  Google Scholar 

  11. Kunutsor, S. K. et al. Physical activity and risk of venous thromboembolism: systematic review and meta-analysis of prospective cohort studies. Eur. J. Epidemiol. 35, 431–442 (2020).

    Article  PubMed  Google Scholar 

  12. Centers for Disease Control and Prevention. Strategies to prevent & manage obesity. CDC https://www.cdc.gov/obesity/strategies/index.html (2022).

  13. Mahmoodi, B. K. et al. Association of traditional cardiovascular risk factors with venous thromboembolism: an individual participant data meta-analysis of prospective studies. Circulation 135, 7–16 (2017).

    Article  PubMed  Google Scholar 

  14. Rosendaal, F. R. Venous thrombosis: a multicausal disease. Lancet 353, 1167–1173 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Cushman, M. et al. Deep vein thrombosis and pulmonary embolism in two cohorts: the longitudinal investigation of thromboembolism etiology. Am. J. Med. 117, 19–25 (2004).

    Article  PubMed  Google Scholar 

  16. Heit, J. A., Spencer, F. A. & White, R. H. The epidemiology of venous thromboembolism. J. Thromb. Thrombolysis 41, 3–14 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ay, C., Pabinger, I. & Cohen, A. T. Cancer-associated venous thromboembolism: burden, mechanisms, and management. Thromb. Haemost. 117, 219–230 (2017).

    Article  PubMed  Google Scholar 

  18. Albertsen, I. E., Piazza, G. & Goldhaber, S. Z. Let’s stop dichotomizing venous thromboembolism as provoked or unprovoked. Circulation 138, 2591–2593 (2018).

    Article  PubMed  Google Scholar 

  19. Konstantinides, S. V. et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS): the Task Force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC). Eur. Respir. J. https://doi.org/10.1183/13993003.01647-2019 (2019).

    Article  PubMed  Google Scholar 

  20. Ortel, T. L. et al. American Society of Hematology 2020 guidelines for management of venous thromboembolism: treatment of deep vein thrombosis and pulmonary embolism. Blood Adv. 4, 4693–4738 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kearon, C. et al. Antithrombotic therapy for VTE disease: CHEST guideline and expert panel report. Chest 149, 315–352 (2016).

    Article  PubMed  Google Scholar 

  22. Hong, J. et al. Incidence of venous thromboembolism in Korea from 2009 to 2013. PLoS ONE 13, e0191897 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ceresetto, J. M. Venous thromboembolism in Latin America: a review and guide to diagnosis and treatment for primary care. Clinics 71, 36–46 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Vázquez, F. J., Posadas-Martínez, M. L., Vicens, J., González Bernaldo de Quirós, F. & Giunta, D. H. Incidence rate of symptomatic venous thromboembolic disease in patients from a medical care program in Buenos Aires, Argentina: a prospective cohort. Thrombosis J. 11, 16 (2013).

    Article  Google Scholar 

  25. Ho, W. K., Hankey, G. J. & Eikelboom, J. W. The incidence of venous thromboembolism: a prospective, community-based study in Perth, Western Australia. Med. J. Aust. 189, 144–147 (2008).

    Article  PubMed  Google Scholar 

  26. Danwang, C., Temgoua, M. N., Agbor, V. N., Tankeu, A. T. & Noubiap, J. J. Epidemiology of venous thromboembolism in Africa: a systematic review. J. Thromb. Haemost. 15, 1770–1781 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Virani, S. S. et al. Heart disease and stroke statistics–2021 update: a report from the American Heart Association. Circulation 143, e254–e743 (2021).

    Article  PubMed  Google Scholar 

  28. Cohen, A. T. et al. Venous thromboembolism (VTE) in Europe. The number of VTE events and associated morbidity and mortality. Thromb. Haemost. 98, 756–764 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Wiener, R. S., Schwartz, L. M. & Woloshin, S. Time trends in pulmonary embolism in the United States: evidence of overdiagnosis. Arch. Intern. Med. 171, 831–837 (2011).

    PubMed  PubMed Central  Google Scholar 

  30. den Exter, P. L. et al. Establishing diagnostic criteria and treatment of subsegmental pulmonary embolism: a Delphi analysis of experts. Res. Pract. Thromb. Haemost. 4, 1251–1261 (2020).

    Article  Google Scholar 

  31. Stein, P. D., Matta, F. & Hughes, M. J. Home treatment of deep venous thrombosis according to comorbid conditions. Am. J. Med. 129, 392–397 (2016).

    Article  PubMed  Google Scholar 

  32. Stein, P. D. et al. Home treatment of pulmonary embolism in the era of novel oral anticoagulants. Am. J. Med. 129, 974–977 (2016).

    Article  PubMed  Google Scholar 

  33. Klil-Drori, A. J., Coulombe, J., Suissa, S., Hirsch, A. & Tagalakis, V. Temporal trends in outpatient management of incident pulmonary embolism and associated mortality. Thromb. Res. 161, 111–116 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Gangireddy, C. et al. Risk factors and clinical impact of postoperative symptomatic venous thromboembolism. J. Vasc. Surg. 45, 335–341 (2007).

    Article  PubMed  Google Scholar 

  35. Hak, D. J. Prevention of venous thromboembolism in trauma and long bone fractures. Curr. Opin. Pulm. Med. 7, 338–343 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. van Stralen, K. J., Rosendaal, F. R. & Doggen, C. J. Minor injuries as a risk factor for venous thrombosis. Arch. Intern. Med. 168, 21–26 (2008).

    Article  PubMed  Google Scholar 

  37. Heit, J. A. et al. Incidence of venous thromboembolism in hospitalized patients vs community residents. Mayo Clin. Proc. 76, 1102–1110 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Jordan Bruno, X. et al. Venous thrombosis risk during and after medical and surgical hospitalizations: the Medical Inpatient Thrombosis and Hemostasis (MITH) study. J. Thromb. Haemost. 20, 1645–1652 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Darzi, A. J. et al. Prognostic factors for VTE and bleeding in hospitalized medical patients: a systematic review and meta-analysis. Blood 135, 1788–1810 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Darzi, A. J. et al. Risk models for VTE and bleeding in medical inpatients: systematic identification and expert assessment. Blood Adv. 4, 2557–2566 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Darzi, A. J. et al. Risk-assessment models for VTE and bleeding in hospitalized medical patients: an overview of systematic reviews. Blood Adv. 4, 4929–4944 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Barnathan, E. S. et al. Increased risk of death in acutely ill medical patients with asymptomatic proximal deep vein thrombosis or symptomatic venous thromboembolism: insights from the Magellan study. Blood 134 (Suppl. 1), 163–163 (2019).

    Google Scholar 

  43. Arepally, G. M. & Cines, D. B. Pathogenesis of heparin-induced thrombocytopenia. Transl. Res. 225, 131–140 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cuker, A. & Cines, D. B. How I treat heparin-induced thrombocytopenia. Blood 119, 2209–2218 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Hogan, M. & Berger, J. S. Heparin-induced thrombocytopenia (HIT): review of incidence, diagnosis, and management. Vasc. Med. 25, 160–173 (2020).

    Article  PubMed  Google Scholar 

  46. Cowan, L. T., Lutsey, P. L., Pankow, J. S., Cushman, M. & Folsom, A. R. Hospitalization with infection and incident venous thromboembolism: the ARIC study. Thromb. Res. 151, 74–78 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bjøri, E., Johnsen, H. S., Hansen, J. B. & Brækkan, S. K. Hospitalization as a trigger for venous thromboembolism–Results from a population-based case-crossover study. Thromb. Res. 176, 115–119 (2019).

    Article  PubMed  Google Scholar 

  48. Timp, J. F. et al. Antibiotic use as a marker of acute infection and risk of first and recurrent venous thrombosis. Br. J. Haematol. 176, 961–970 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Nopp, S., Moik, F., Jilma, B., Pabinger, I. & Ay, C. Risk of venous thromboembolism in patients with COVID-19: a systematic review and meta-analysis. Res. Pract. Thromb. Haemost. 4, 1178–1191 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. NIH. Coronavirus disease 2019 (COVID-19): treatment guidelines. COVID-19 Treatment Guidelines https://www.covid19treatmentguidelines.nih.gov/ (2022).

  51. Moores, L. K. et al. Prevention, diagnosis, and treatment of VTE in patients with coronavirus disease 2019: CHEST guideline and expert panel report. Chest 158, 1143–1163 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Arepally, G. M. & Ortel, T. L. Vaccine-induced immune thrombotic thrombocytopenia: what we know and do not know. Blood 138, 293–298 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Greinacher, A. et al. Insights in ChAdOx1 nCoV-19 vaccine-induced immune thrombotic thrombocytopenia. Blood 138, 2256–2268 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Klein, N. P. et al. Surveillance for adverse events after COVID-19 mRNA vaccination. JAMA 326, 1390–1399 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Tu, T. M. et al. Incidence of cerebral venous thrombosis following SARS-CoV-2 infection vs mRNA SARS-CoV-2 vaccination in singapore. JAMA Netw. Open 5, e222940 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Houghton, D. E. et al. Risk of venous thromboembolism after COVID-19 vaccination. J. Thromb. Haemost. 20, 1638–1644 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Olson, N. C. et al. Inflammation markers and incident venous thromboembolism: the reasons for geographic and racial differences in stroke (REGARDS) cohort. J. Thromb. Haemost. 12, 1993–2001 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Agarwal, V., Phung, O. J., Tongbram, V., Bhardwaj, A. & Coleman, C. I. Statin use and the prevention of venous thromboembolism: a meta-analysis. Int. J. Clin. Pract. 64, 1375–1383 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Folsom, A. R., Lutsey, P. L., Heckbert, S. R. & Cushman, M. Serum albumin and risk of venous thromboembolism. Thromb. Haemost. 104, 100–104 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lindström, S. et al. Genomic and transcriptomic association studies identify 16 novel susceptibility loci for venous thromboembolism. Blood 134, 1645–1657 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Biedermann, J. S. et al. Rosuvastatin use improves measures of coagulation in patients with venous thrombosis. Eur. Heart J. 39, 1740–1747 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Glynn, R. J. et al. A randomized trial of rosuvastatin in the prevention of venous thromboembolism. N. Engl. J. Med. 360, 1851–1861 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ge, S. Q. et al. Associations of hormonal contraceptives and infertility medications on the risk of venous thromboembolism, ischemic stroke, and cardiovascular disease in women. J. Investig. Med. 67, 729–735 (2019).

    Article  PubMed  Google Scholar 

  64. Lidegaard, O., Nielsen, L. H., Skovlund, C. W., Skjeldestad, F. E. & Lokkegaard, E. Risk of venous thromboembolism from use of oral contraceptives containing different progestogens and oestrogen doses: Danish cohort study, 2001-9. BMJ 343, d6423 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Li, J. et al. Association of risk for venous thromboembolism with use of low-dose extended- and continuous-cycle combined oral contraceptives: a safety study using the sentinel distributed database. JAMA Intern. Med. 178, 1482–1488 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kasum, M. et al. Thrombosis following ovarian hyperstimulation syndrome. Gynecol. Endocrinol. 30, 764–768 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Canonico, M., Plu-Bureau, G., Lowe, G. D. & Scarabin, P. Y. Hormone replacement therapy and risk of venous thromboembolism in postmenopausal women: systematic review and meta-analysis. BMJ 336, 1227–1231 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kotamarti, V. S., Greige, N., Heiman, A. J., Patel, A. & Ricci, J. A. Risk for venous thromboembolism in transgender patients undergoing cross-sex hormone treatment: a systematic review. J. Sex. Med. 18, 1280–1291 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Kourlaba, G., Relakis, J., Kontodimas, S., Holm, M. V. & Maniadakis, N. A systematic review and meta-analysis of the epidemiology and burden of venous thromboembolism among pregnant women. Int. J. Gynaecol. Obstet. 132, 4–10 (2016).

    Article  PubMed  Google Scholar 

  70. Creanga, A. A., Syverson, C., Seed, K. & Callaghan, W. M. Pregnancy-related mortality in the United States, 2011–2013. Obstet. Gynecol. 130, 366–373 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Brenner, B. Haemostatic changes in pregnancy. Thromb. Res. 114, 409–414 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Bazzan, M. & Donvito, V. Low-molecular-weight heparin during pregnancy. Thromb. Res. 101, V175–V186 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Tepper, N. K. et al. Postpartum venous thromboembolism: incidence and risk factors. Obstet. Gynecol. 123, 987–996 (2014).

    Article  PubMed  Google Scholar 

  74. Blondon, M. et al. Racial and ethnic differences in the risk of postpartum venous thromboembolism: a population-based, case-control study. J. Thromb. Haemost. 12, 2002–2009 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Holmegard, H. N., Nordestgaard, B. G., Schnohr, P., Tybjaerg-Hansen, A. & Benn, M. Endogenous sex hormones and risk of venous thromboembolism in women and men. J. Thromb. Haemost. 12, 297–305 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Roetker, N. S. et al. Prospective study of endogenous hormones and incidence of venous thromboembolism: the atherosclerosis risk in communities study. Thromb. Haemost. 118, 1940–1950 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ajayi, A. A., Mathur, R. & Halushka, P. V. Testosterone increases human platelet thromboxane A2 receptor density and aggregation responses. Circulation 91, 2742–2747 (1995).

    Article  CAS  PubMed  Google Scholar 

  78. Fernandez-Balsells, M. M. et al. Clinical review 1: adverse effects of testosterone therapy in adult men: a systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 95, 2560–2575 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Glueck, C. J. & Wang, P. Testosterone therapy, thrombosis, thrombophilia, cardiovascular events. Metabolism 63, 989–994 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Walker, R. F. et al. Association of testosterone therapy with risk of venous thromboembolism among men with and without hypogonadism. JAMA Intern. Med. 180, 190–197 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Layton, J. B. et al. Testosterone lab testing and initiation in the United Kingdom and the United States, 2000 to 2011. J. Clin. Endocrinol. Metab. 99, 835–842 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Baillargeon, J. et al. Risk of venous thromboembolism in men receiving testosterone therapy. Mayo Clin. Proc. 90, 1038–1045 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. FDA. Drug Safety Communication: FDA cautions about using testosterone products for low testosterone due to aging; requires labeling change to inform of possible increased risk of heart attack and stroke with use. FDA https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-cautions-about-using-testosterone-products-low-testosterone-due (2019).

  84. Tan, R. S., Cook, K. R. & Reilly, W. G. Myocardial infarction and stroke risk in young healthy men treated with injectable testosterone. Int. J. Endocrinol. 2015, 970750 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Vigen, R. et al. Association of testosterone therapy with mortality, myocardial infarction, and stroke in men with low testosterone levels. JAMA 310, 1829–1836 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Naess, I. A. et al. Incidence and mortality of venous thrombosis: a population-based study. J. Thromb. Haemost. 5, 692–699 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Folsom, A. R. et al. Distributions of hemostatic variables in blacks and whites: population reference values from the Atherosclerosis Risk in Communities (ARIC) study. Ethn. Dis. 2, 35–46 (1992).

    CAS  PubMed  Google Scholar 

  88. Nagashima, J. et al. Influence of physical fitness and smoking on the coagulation system in hypertensive patients: effect on prothrombin fragment F1+2. Intern. Med. 46, 933–936 (2007).

    Article  PubMed  Google Scholar 

  89. Kannel, W. B. Overview of hemostatic factors involved in atherosclerotic cardiovascular disease. Lipids 40, 1215–1220 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Becker, R. C. Thrombotic preparedness in aging: a translatable construct for thrombophilias? J. Thromb. Thrombolysis 24, 323–325 (2007).

    Article  PubMed  Google Scholar 

  91. Moores, L., Bilello, K. L. & Murin, S. Sex and gender issues and venous thromboembolism. Clin. Chest Med. 25, 281–297 (2004).

    Article  PubMed  Google Scholar 

  92. Pabinger, I. & Grafenhofer, H. Thrombosis during pregnancy: risk factors, diagnosis and treatment. Pathophysiol. Haemost. Thromb. 32, 322–324 (2002).

    Article  PubMed  Google Scholar 

  93. Robertson, L. & Greer, I. Thromboembolism in pregnancy. Curr. Opin. Obstet. Gynecol. 17, 113–116 (2005).

    Article  PubMed  Google Scholar 

  94. Wu, O. et al. Oral contraceptives, hormone replacement therapy, thrombophilias and risk of venous thromboembolism: a systematic review. The Thrombosis: Risk and Economic Assessment of Thrombophilia Screening (TREATS) study. Thromb. Haemost. 94, 17–25 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Roach, R. E., Cannegieter, S. C. & Lijfering, W. M. Differential risks in men and women for first and recurrent venous thrombosis: the role of genes and environment. J. Thromb. Haemost. 12, 1593–1600 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Silverstein, M. D. et al. Trends in the incidence of deep vein thrombosis and pulmonary embolism: a 25-year population-based study. Arch. Intern. Med. 158, 585–593 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Shatzel, J. J., Connelly, K. J. & DeLoughery, T. G. Thrombotic issues in transgender medicine: a review. Am. J. Hematol. 92, 204–208 (2017).

    Article  PubMed  Google Scholar 

  98. Zakai, N. A. & McClure, L. A. Racial differences in venous thromboembolism. J. Thromb. Haemost. 9, 1877–1882 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. United States Census Bureau. About the topic of race. United States Census Bureau https://www.census.gov/topics/population/race/about.html (2022).

  100. Folsom, A. R. et al. Reasons for differences in the incidence of venous thromboembolism in black versus white Americans. Am. J. Med. 132, 970–976 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  101. White, R. H., Zhou, H., Murin, S. & Harvey, D. Effect of ethnicity and gender on the incidence of venous thromboembolism in a diverse population in California in 1996. Thromb. Haemost. 93, 298–305 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Stein, P. D., Kayali, F., Olson, R. E. & Milford, C. E. Pulmonary thromboembolism in Asians/Pacific Islanders in the United States: analysis of data from the National Hospital Discharge Survey and the United States Bureau of the Census. Am. J. Med. 116, 435–442 (2004).

    Article  PubMed  Google Scholar 

  103. Zakai, N. A. et al. Racial and regional differences in venous thromboembolism in the United States in 3 cohorts. Circulation 129, 1502–1509 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Martin, K. A. et al. Time trends in pulmonary embolism mortality rates in the United States, 1999 to 2018. J. Am. Heart Assoc. 9, e016784 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Jørgensen, H. et al. Socioeconomic status and risk of incident venous thromboembolism. J. Thromb. Haemost. 19, 3051–3061 (2021).

    Article  PubMed  Google Scholar 

  106. Zöller, B., Ohlsson, H., Sundquist, J. & Sundquist, K. Cardiovascular fitness in young males and risk of unprovoked venous thromboembolism in adulthood. Ann. Med. 49, 176–184 (2017).

    Article  PubMed  Google Scholar 

  107. Kubota, Y., Cushman, M., Zakai, N., Rosamond, W. D. & Folsom, A. R. TV viewing and incident venous thromboembolism: the Atherosclerotic Risk in Communities Study. J. Thrombosis Thrombolysis 45, 353–359 (2018).

    Article  Google Scholar 

  108. Suadicani, P., Hannerz, H., Bach, E. & Gyntelberg, F. Jobs encompassing prolonged sitting in cramped positions and risk of venous thromboembolism: cohort study. JRSM Short. Rep. 3, 8 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Johannesen, C. D. L. et al. Sedentary work and risk of venous thromboembolism. Scand. J. Work. Env. Health 46, 69–76 (2020).

    Article  CAS  Google Scholar 

  110. Folsom, A. R. & Cushman, M. Exploring opportunities for primary prevention of unprovoked venous thromboembolism: ready for prime time? J. Am. Heart Assoc. 9, e019395 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lutsey, P. L. Invited commentary: diet and risk of venous thromboembolism–a hard nut to crack. Am. J. Epidemiol. 175, 127–130 (2012). discussion 131-2.

    Article  PubMed  Google Scholar 

  112. Glynn, R. J., Ridker, P. M., Goldhaber, S. Z., Zee, R. Y. & Buring, J. E. Effects of random allocation to vitamin E supplementation on the occurrence of venous thromboembolism: report from the Women’s Health Study. Circulation 116, 1497–1503 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Lutsey, P. L., Steffen, L. M., Virnig, B. A. & Folsom, A. R. Diet and incident venous thromboembolism: the Iowa Women’s Health Study. Am. Heart J. 157, 1081–1087 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Steffen, L. M., Folsom, A. R., Cushman, M., Jacobs, D. R. Jr. & Rosamond, W. D. Greater fish, fruit, and vegetable intakes are related to lower incidence of venous thromboembolism: the Longitudinal Investigation of Thromboembolism Etiology. Circulation 115, 188–195 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Varraso, R., Kabrhel, C., Goldhaber, S. Z., Rimm, E. B. & Camargo, C. A. Jr Prospective study of diet and venous thromboembolism in US women and men. Am. J. Epidemiol. 175, 114–126 (2012).

    Article  PubMed  Google Scholar 

  116. Hoevenaar-Blom, M. P. et al. Mediterranean style diet and 12-year incidence of cardiovascular diseases: the EPIC-NL cohort study. PLoS ONE 7, e45458 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ohira, T., Iso, H., Yamagishi, K., Tamakoshi, A. & Group, J. S. Fish intake and death from pulmonary embolisms among Japanese men and women–the Japan Collaborative Cohort (JACC) study. Circulation J. 82, 2063–2070 (2018).

    Article  Google Scholar 

  118. Chen, M., Ji, M., Chen, T., Hong, X. & Jia, Y. Alcohol consumption and risk for venous thromboembolism: a meta-analysis of prospective studies. Systematic review. Front. Nutr. 7, 32 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Tapson, V. F. The role of smoking in coagulation and thromboembolism in chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 2, 71–77 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Elisia, I. et al. The effect of smoking on chronic inflammation, immune function and blood cell composition. Sci. Rep. 10, 19480 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Enga, K. F. et al. Cigarette smoking and the risk of venous thromboembolism: the Tromso Study. J. Thromb. Haemost. 10, 2068–2074 (2012).

    Article  CAS  PubMed  Google Scholar 

  122. Lutsey, P. L., Cushman, M., Heckbert, S. R., Tang, W. & Folsom, A. R. Longer legs are associated with greater risk of incident venous thromboembolism independent of total body height. The Longitudinal Study of Thromboembolism Etiology (LITE). Thromb. Haemost. 106, 113–120 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Glynn, R. J. & Rosner, B. Comparison of risk factors for the competing risks of coronary heart disease, stroke, and venous thromboembolism. Am. J. Epidemiol. 162, 975–982 (2005).

    Article  PubMed  Google Scholar 

  124. Braekkan, S. K. et al. Body height and risk of venous thromboembolism: the Tromsø Study. Am. J. Epidemiol. 171, 1109–1115 (2010).

    Article  PubMed  Google Scholar 

  125. Fronek, A., Criqui, M. H., Denenberg, J. & Langer, R. D. Common femoral vein dimensions and hemodynamics including Valsalva response as a function of sex, age, and ethnicity in a population study. J. Vasc. Surg. 33, 1050–1056 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Kügler, C., Strunk, M. & Rudofsky, G. Venous pressure dynamics of the healthy human leg. Role of muscle activity, joint mobility and anthropometric factors. J. Vasc. Res. 38, 20–29 (2001).

    Article  PubMed  Google Scholar 

  127. Roetker, N. S. et al. Taller height as a risk factor for venous thromboembolism: a Mendelian randomization meta-analysis. J. Thromb. Haemost. 15, 1334–1343 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zöller, B., Ji, J., Sundquist, J. & Sundquist, K. Body height and incident risk of venous thromboembolism: a cosibling design. Circ. Cardiovasc. Genet. https://doi.org/10.1161/circgenetics.116.001651 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Horvei, L. D., Braekkan, S. K. & Hansen, J. B. Weight change and risk of venous thromboembolism: the Tromso Study. PLoS ONE 11, e0168878 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  130. French, S. A. et al. Weight change over 9 years and subsequent risk of venous thromboembolism in the ARIC cohort. Int. J. Obes. 44, 2465–2471 (2020).

    Article  CAS  Google Scholar 

  131. Klovaite, J., Benn, M. & Nordestgaard, B. G. Obesity as a causal risk factor for deep venous thrombosis: a Mendelian randomization study. J. Intern. Med. 277, 573–584 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Lindstrom, S. et al. Assessing the causal relationship between obesity and venous thromboembolism through a Mendelian randomization study. Hum. Genet. 136, 897–902 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Armenta Flores, R., Armenta-Villalobos, D., Ramirez-Centeno, E., Harrison-Ragle, D. & Carrillo, L. G. D. May Thurner syndrome: sixty years later. Phlebology 37, 5–13 (2022).

    Article  PubMed  Google Scholar 

  134. Harbin, M. M. & Lutsey, P. L. May–Thurner syndrome: history of understanding and need for defining population prevalence. J. Thromb. Haemost. 18, 534–542 (2020).

    Article  PubMed  Google Scholar 

  135. Klarin, D. et al. Genome-wide association analysis of venous thromboembolism identifies new risk loci and genetic overlap with arterial vascular disease. Nat. Genet. 51, 1574–1579 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zoller, B. Genetics of venous thromboembolism revised. Blood 134, 1568–1570 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Zoller, B., Ohlsson, H., Sundquist, J. & Sundquist, K. Familial risk of venous thromboembolism in first-, second- and third-degree relatives: a nationwide family study in Sweden. Thromb. Haemost. 109, 458–463 (2013).

    Article  PubMed  Google Scholar 

  138. Hotoleanu, C. In: Thrombosis and Embolism: from Research to Clinical Practice Vol. 1 (ed. Islam, M. S.) 253–272 (Springer, 2017).

  139. Zöller, B. et al. Genetic risk factors for venous thromboembolism. Expert. Rev. Hematol. 13, 971–981 (2020).

    Article  PubMed  Google Scholar 

  140. Kujovich, J. L. Factor V Leiden thrombophilia. In: GeneReviews. (eds Adam M. P. et al.) (University of Washington, 2018).

  141. Simone, B. et al. Risk of venous thromboembolism associated with single and combined effects of factor V Leiden, prothrombin 20210A and methylenetethraydrofolate reductase C677T: a meta-analysis involving over 11,000 cases and 21,000 controls. Eur. J. Epidemiol. 28, 621–647 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Morange, P. E., Suchon, P. & Tregouet, D. A. Genetics of venous thrombosis: update in 2015. Thromb. Haemost. 114, 910–919 (2015).

    Article  PubMed  Google Scholar 

  143. Folsom, A. R. et al. Prospective study of sickle cell trait and venous thromboembolism incidence. J. Thromb. Haemost. 13, 2–9 (2015).

    Article  CAS  PubMed  Google Scholar 

  144. Heller, P., Best, W. R., Nelson, R. B. & Becktel, J. Clinical implications of sickle-cell trait and glucose-6-phosphate dehydrogenase deficiency in hospitalized Black male patients. N. Engl. J. Med. 300, 1001–1005 (1979).

    Article  CAS  PubMed  Google Scholar 

  145. Bucknor, M. D., Goo, J. S. & Coppolino, M. L. The risk of potential thromboembolic, renal and cardiac complications of sickle cell trait. Hemoglobin 38, 28–32 (2014).

    Article  CAS  PubMed  Google Scholar 

  146. Centers for Disease Control and Prevention. Data & statistics on sickle cell disease. CDC https://www.cdc.gov/ncbddd/sicklecell/data.html (2018).

  147. Harrison, S. E., Walcott, C. M. & Warner, T. D. Knowledge and awareness of sickle cell trait among young African American adults. West. J. Nurs. Res. 39, 1222–1239 (2017).

    Article  PubMed  Google Scholar 

  148. Lim, M. Y., Ataga, K. I. & Key, N. S. Hemostatic abnormalities in sickle cell disease. Curr. Opin. Hematol. 20, 472–477 (2013).

    Article  CAS  PubMed  Google Scholar 

  149. Whelihan, M. F. et al. Thrombin generation and cell-dependent hypercoagulability in sickle cell disease. J. Thromb. Haemost. 14, 1941–1952 (2016).

    Article  CAS  PubMed  Google Scholar 

  150. Klarin, D. et al. Genetic analysis of venous thromboembolism in UK Biobank identifies the ZFPM2 locus and implicates obesity as a causal risk factor. Circ. Cardiovasc. Genet. 10, e001643 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Folsom, A. R. et al. Replication of a genetic risk score for venous thromboembolism in whites but not in African Americans. J. Thromb. Haemost. 14, 83–88 (2016).

    Article  CAS  PubMed  Google Scholar 

  152. Varki, A. Trousseau’s syndrome: multiple definitions and multiple mechanisms. Blood 110, 1723–1729 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Young, A. et al. Thrombosis and cancer. Nat. Rev. Clin. Oncol. 9, 437–449 (2012).

    Article  CAS  PubMed  Google Scholar 

  154. Horsted, F., West, J. & Grainge, M. J. Risk of venous thromboembolism in patients with cancer: a systematic review and meta-analysis. PLoS Med. 9, e1001275 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Khorana, A. A., Kuderer, N. M., Culakova, E., Lyman, G. H. & Francis, C. W. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood 111, 4902–4907 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Martens, K. L. et al. HIGH-2-LOW risk model to predict venous thromboembolism in allogeneic transplant patients after platelet engraftment. Blood Adv. 5, 167–175 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Li, A. et al. Derivation and validation of a risk assessment model for immunomodulatory drug-associated thrombosis among patients with multiple myeloma. J. Natl Compr. Canc Netw. 17, 840–847 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Douce, D. R. et al. Risk factors for cancer-associated venous thromboembolism: the Venous Thromboembolism Prevention in the Ambulatory Cancer Clinic (VTE-PACC) study. J. Thromb. Haemost. 17, 2152–2159 (2019).

    Article  CAS  PubMed  Google Scholar 

  159. Lyman, G. H. et al. American Society of Hematology 2021 guidelines for management of venous thromboembolism: prevention and treatment in patients with cancer. Blood Adv. 5, 927–974 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Chaturvedi, S. et al. Complement activity and complement regulatory gene mutations are associated with thrombosis in APS and CAPS. Blood 135, 239–251 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Lim, W. Antiphospholipid syndrome. Hematol. Am. Soc. Hematol. Educ. Program. 2013, 675–680 (2013).

    Article  Google Scholar 

  162. Duarte-Garcia, A. et al. The epidemiology of antiphospholipid syndrome: a population-based study. Arthritis Rheumatol. 71, 1545–1552 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Abdel-Wahab, N. et al. Systematic review of observational studies reporting antiphospholipid antibodies in patients with solid tumors. Blood Adv. 4, 1746–1755 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Ortel, T. L., Erkan, D. & Kitchens, C. S. How I treat catastrophic thrombotic syndromes. Blood 126, 1285–1293 (2015).

    Article  CAS  PubMed  Google Scholar 

  165. Zöller, B., Li, X., Sundquist, J. & Sundquist, K. Autoimmune diseases and venous thromboembolism: a review of the literature. Am. J. Cardiovasc. Dis. 2, 171–183 (2012).

    PubMed  PubMed Central  Google Scholar 

  166. Zöller, B., Li, X., Sundquist, J. & Sundquist, K. Risk of pulmonary embolism in patients with autoimmune disorders: a nationwide follow-up study from Sweden. Lancet 379, 244–249 (2012).

    Article  PubMed  Google Scholar 

  167. Yusuf, H. R. et al. Risk of venous thromboembolism among hospitalizations of adults with selected autoimmune diseases. J. Thromb. Thrombolysis 38, 306–313 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Nguyen, G. C. & Sam, J. Rising prevalence of venous thromboembolism and its impact on mortality among hospitalized inflammatory bowel disease patients. Am. J. Gastroenterol. 103, 2272–2280 (2008).

    Article  PubMed  Google Scholar 

  169. Romero-Diaz, J., Garcia-Sosa, I. & Sanchez-Guerrero, J. Thrombosis in systemic lupus erythematosus and other autoimmune diseases of recent onset. J. Rheumatol. 36, 68–75 (2009).

    Article  PubMed  Google Scholar 

  170. Hoisnard, L. et al. Adverse events associated with JAK inhibitors in 126,815 reports from the WHO pharmacovigilance database. Sci. Rep. 12, 7140 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Folsom, A. R., de Vries, P. S. & Cushman, M. No prospective association of a polygenic risk score for coronary artery disease with venous thromboembolism incidence. J. Thromb. Haemost. 19, 2841–2844 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Watson, H. G. & Baglin, T. P. Guidelines on travel-related venous thrombosis. Br. J. Haematol. 152, 31–34 (2011).

    Article  PubMed  Google Scholar 

  173. Ocak, G. et al. Risk of venous thrombosis in patients with chronic kidney disease: identification of high-risk groups. J. Thromb. Haemost. 11, 627–633 (2013).

    Article  CAS  PubMed  Google Scholar 

  174. Mahmoodi, B. K. et al. Association of mild to moderate chronic kidney disease with venous thromboembolism: pooled analysis of five prospective general population cohorts. Circulation 126, 1964–1971 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Tang, L., Wu, Y. Y., Lip, G. Y., Yin, P. & Hu, Y. Heart failure and risk of venous thromboembolism: a systematic review and meta-analysis. Lancet Haematol. 3, e30–e44 (2016).

    Article  PubMed  Google Scholar 

  176. Fanola, C. L. et al. Incident heart failure and long-term risk for venous thromboembolism. J. Am. Coll. Cardiol. 75, 148–158 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Enga, K. F. et al. Atrial fibrillation and future risk of venous thromboembolism: the Tromso study. J. Thromb. Haemost. 13, 10–16 (2015).

    Article  CAS  PubMed  Google Scholar 

  178. Lutsey, P. L. et al. Atrial fibrillation and venous thromboembolism: evidence of bidirectionality in the Atherosclerosis Risk in Communities Study. J. Thromb. Haemost. 16, 670–679 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Mount, H. R., Rich, M. & Putnam, M. S. Recurrent venous thromboembolism. Am. Fam. Physician 105, 377–385 (2022).

    PubMed  Google Scholar 

  180. Galanaud, J. P., Monreal, M. & Kahn, S. R. Epidemiology of the post-thrombotic syndrome. Thromb. Res. 164, 100–109 (2018).

    Article  CAS  PubMed  Google Scholar 

  181. Olson, S. R., Shatzel, J. J. & DeLoughery, T. G. Asymptomatic “breakthrough” thrombosis and anticoagulant “failure”: keep calm and carry on. Res. Pract. Thromb. Haemost. 3, 498–502 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Agnelli, G. et al. Oral apixaban for the treatment of acute venous thromboembolism. N. Engl. J. Med. 369, 799–808 (2013).

    Article  CAS  PubMed  Google Scholar 

  183. Castellucci, L. A. et al. Clinical and safety outcomes associated with treatment of acute venous thromboembolism: a systematic review and meta-analysis. JAMA 312, 1122–1135 (2014).

    Article  CAS  PubMed  Google Scholar 

  184. The Hokusai-VTE Investigators Edoxaban versus warfarin for the treatment of symptomatic venous thromboembolism. N. Engl. J. Med. 369, 1406–1415 (2013).

    Article  Google Scholar 

  185. The EINSTEIN Investigators Oral rivaroxaban for symptomatic venous thromboembolism. N. Engl. J. Med. 363, 2499–2510 (2010).

    Article  Google Scholar 

  186. Prins, M. H. et al. Oral rivaroxaban versus standard therapy for the treatment of symptomatic venous thromboembolism: a pooled analysis of the EINSTEIN-DVT and PE randomized studies. Thromb. J. 11, 21 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Schulman, S. et al. Dabigatran versus warfarin in the treatment of acute venous thromboembolism. N. Engl. J. Med. 361, 2342–2352 (2009).

    Article  CAS  PubMed  Google Scholar 

  188. Douketis, J. D., Foster, G. A., Crowther, M. A., Prins, M. H. & Ginsberg, J. S. Clinical risk factors and timing of recurrent venous thromboembolism during the initial 3 months of anticoagulant therapy. Arch. Intern. Med. 160, 3431–3436 (2000).

    Article  CAS  PubMed  Google Scholar 

  189. Heit, J. A. The epidemiology of venous thromboembolism in the community. Arterioscler. Thromb. Vasc. Biol. 28, 370–372 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Prandoni, P. et al. The risk of recurrent venous thromboembolism after discontinuing anticoagulation in patients with acute proximal deep vein thrombosis or pulmonary embolism. A prospective cohort study in 1,626 patients. Haematologica 92, 199–205 (2007).

    Article  PubMed  Google Scholar 

  191. Heit, J. A. et al. Heparin and warfarin anticoagulation intensity as predictors of recurrence after deep vein thrombosis or pulmonary embolism: a population-based cohort study. Blood 118, 4992–4999 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Heit, J. A. et al. Predictors of survival after deep vein thrombosis and pulmonary embolism: a population-based, cohort study. Arch. Intern. Med. 159, 445–453 (1999).

    Article  CAS  PubMed  Google Scholar 

  193. RIETE Registry. Death within 30 days. RIETE Registry https://rieteregistry.com/graphics-interactives/dead-30-days/ (2022).

  194. Minges, K. E., Bikdeli, B., Wang, Y., Attaran, R. R. & Krumholz, H. M. National and regional trends in deep vein thrombosis hospitalization rates, discharge disposition, and outcomes for Medicare beneficiaries. Am. J. Med. 131, 1200–1208 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Minges, K. E. et al. National trends in pulmonary embolism hospitalization rates and outcomes for adults aged ≥65 years in the United States (1999 to 2010). Am. J. Cardiol. 116, 1436–1442 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Tagalakis, V., Patenaude, V., Kahn, S. R. & Suissa, S. Incidence of and mortality from venous thromboembolism in a real-world population: the Q-VTE Study Cohort. Am. J. Med. 126, 832 e13-21 (2013).

    Article  PubMed  Google Scholar 

  197. Flinterman, L. E., van Hylckama Vlieg, A., Cannegieter, S. C. & Rosendaal, F. R. Long-term survival in a large cohort of patients with venous thrombosis: incidence and predictors. PLoS Med. 9, e1001155 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Kalayci, A. et al. Asymptomatic deep vein thrombosis is associated with an increased risk of death: insights from the APEX trial. Thromb. Haemost. 118, 2046–2052 (2018).

    Article  PubMed  Google Scholar 

  199. Spencer, F. A. et al. Venous thromboembolism and bleeding in a community setting. The Worcester Venous Thromboembolism study. Thromb. Haemost. 101, 878–885 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. MacLehose, R. F. et al. Impact of oral anticoagulant choice for the secondary prevention of venous thromboembolism on the risk of inpatient bleeding. Res. Pract. Thromb. Haemost. 5, e12514 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Gomez-Outes, A., Terleira-Fernandez, A. I., Lecumberri, R., Suarez-Gea, M. L. & Vargas-Castrillon, E. Direct oral anticoagulants in the treatment of acute venous thromboembolism: a systematic review and meta-analysis. Thromb. Res. 134, 774–782 (2014).

    Article  CAS  PubMed  Google Scholar 

  202. van Es, N., Coppens, M., Schulman, S., Middeldorp, S. & Buller, H. R. Direct oral anticoagulants compared with vitamin K antagonists for acute venous thromboembolism: evidence from phase 3 trials. Blood 124, 1968–1975 (2014).

    Article  PubMed  Google Scholar 

  203. van der Hulle, T. et al. Effectiveness and safety of novel oral anticoagulants as compared with vitamin K antagonists in the treatment of acute symptomatic venous thromboembolism: a systematic review and meta-analysis. J. Thromb. Haemost. 12, 320–328 (2014).

    Article  PubMed  Google Scholar 

  204. Lutsey, P. L. et al. Risk of hospitalised bleeding in comparisons of oral anticoagulant options for the primary treatment of venous thromboembolism. Br. J. Haematol. 185, 903–911 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Khan SR, Mathes BM. Post-thrombotic (postphlebitic) syndrome. UpToDate https://www.uptodate.com/contents/post-thrombotic-postphlebitic-syndrome (2022).

  206. Mohr, D. N. et al. The venous stasis syndrome after deep venous thrombosis or pulmonary embolism: a population-based study. Mayo Clin. Proc. 75, 1249–1256 (2000).

    Article  CAS  PubMed  Google Scholar 

  207. Nishimoto, Y. et al. Risk factors for post-thrombotic syndrome in patients with deep vein thrombosis: from the COMMAND VTE registry. Heart Vessel. 34, 669–677 (2019).

    Article  Google Scholar 

  208. Dronkers, C. E. A. et al. Predicting post-thrombotic syndrome with ultrasonographic follow-up after deep vein thrombosis: a systematic review and meta-analysis. Thromb. Haemost. 118, 1428–1438 (2018).

    Article  CAS  PubMed  Google Scholar 

  209. Kahn, S. R., Galanaud, J. P., Vedantham, S. & Ginsberg, J. S. Guidance for the prevention and treatment of the post-thrombotic syndrome. J. Thromb. Thrombolysis 41, 144–153 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Gall, H. et al. The Giessen Pulmonary Hypertension Registry: survival in pulmonary hypertension subgroups. J. Heart Lung Transpl. 36, 957–967 (2017).

    Article  Google Scholar 

  211. Galie, N. et al. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur. Respir. J. 46, 903–975 (2015).

    Article  CAS  PubMed  Google Scholar 

  212. Martinez, C., Wallenhorst, C., Teal, S., Cohen, A. T. & Peacock, A. J. Incidence and risk factors of chronic thromboembolic pulmonary hypertension following venous thromboembolism, a population-based cohort study in England. Pulm. Circ. 8, 2045894018791358 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Ende-Verhaar, Y. M. et al. Incidence of chronic thromboembolic pulmonary hypertension after acute pulmonary embolism: a contemporary view of the published literature. Eur. Respir. J. https://doi.org/10.1183/13993003.01792-2016 (2017).

    Article  PubMed  Google Scholar 

  214. Lutsey, P. L. et al. Incidence and risk factors of pulmonary hypertension after venous thromboembolism: an analysis of a large health care database. J. Am. Heart Assoc. 11, e024358 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Klok, F. A. et al. The post-PE syndrome: a new concept for chronic complications of pulmonary embolism. Blood Rev. 28, 221–226 (2014).

    Article  CAS  PubMed  Google Scholar 

  216. Braekkan, S. K. et al. Venous thromboembolism and subsequent permanent work-related disability. J. Thromb. Haemost. 14, 1978–1987 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Stefanick, M. L. et al. The relationship of cardiovascular disease to physical functioning in women surviving to age 80 and above in the Women’s Health Initiative. J. Gerontol. A Biol. Sci. Med. Sci. 71 (Suppl. 1), 42–53 (2016).

    Article  Google Scholar 

  218. Lutsey, P. L. et al. Long-term association of venous thromboembolism with frailty, physical functioning, and quality of life: the Atherosclerosis Risk in Communities Study. J. Am. Heart Assoc. 9, e015656 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Lloyd-Jones, D. M. et al. Defining and setting national goals for cardiovascular health promotion and disease reduction: the American Heart Association’s Strategic Impact Goal through 2020 and beyond. Circulation 121, 586–613 (2010).

    Article  PubMed  Google Scholar 

  220. Vaduganathan, M., Venkataramani, A. S. & Bhatt, D. L. Moving toward global primordial prevention in cardiovascular disease: the heart of the matter. J. Am. Coll. Cardiol. 66, 1535–1537 (2015).

    Article  PubMed  Google Scholar 

  221. Claas, S. A. & Arnett, D. K. The role of healthy lifestyle in the primordial prevention of cardiovascular disease. Curr. Cardiol. Rep. 18, 56 (2016).

    Article  PubMed  Google Scholar 

  222. Yuan, S. et al. Overall and abdominal obesity in relation to venous thromboembolism. J. Thromb. Haemost. 19, 460–469 (2021).

    Article  PubMed  Google Scholar 

  223. James, S. A. Primordial prevention of cardiovascular disease among African-Americans: a social epidemiological perspective. Prev. Med. 29, S84–S89 (1999).

    Article  CAS  PubMed  Google Scholar 

  224. Evans, C. R. et al. Lifestyle moderates genetic risk of venous thromboembolism: the ARIC study. Arterioscler. Thromb. Vasc. Biol. 40, 2756–2763 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Office of the Surgeon General (US); National Heart, Lung, and Blood Institute. Surgeon General’s Call to Action to Prevent Deep Vein Thrombosis and Pulmonary Embolism (Office of the Surgeon General (US), 2008).

  226. The Joint Commision. Specifications Manual for National Hospital Inpatient Quality Measures V5.6. The Joint Commission https://www.jointcommission.org/-/media/tjc/documents/measurement/specification-manuals/hiqr_specsman_july2019_v5_6.pdf (2019).

  227. Schunemann, H. J. et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: prophylaxis for hospitalized and nonhospitalized medical patients. Blood Adv. 2, 3198–3225 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Maynard, G. Preventing hospital-associated venous thromboembolism: a guide for effective quality improvement (Agency for Healthcare Research and Quality, 2016).

  229. Key, N. S. et al. Venous thromboembolism prophylaxis and treatment in patients with cancer: ASCO Clinical Practice Guideline Update. J. Clin. Oncol. 38, 496–520 (2020).

    Article  PubMed  Google Scholar 

  230. Cushman, M. & Creager, M. A. Improving awareness and outcomes related to venous thromboembolism. JAMA 314, 1913–1914 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Wendelboe, A. M. et al. Global public awareness of venous thromboembolism. J. Thromb. Haemost. 13, 1365–1371 (2015).

    Article  CAS  PubMed  Google Scholar 

  232. Aggarwal, A. et al. Deep vein thrombosis (DVT) and pulmonary embolism (PE): awareness and prophylaxis practices reported by patients with cancer. Cancer Invest 33, 405–410 (2015).

    Article  PubMed  Google Scholar 

  233. Zöller, B., Li, X., Sundquist, J. & Sundquist, K. Socioeconomic and occupational risk factors for venous thromboembolism in Sweden: a nationwide epidemiological study. Thromb. Res. 129, 577–582 (2012).

    Article  PubMed  Google Scholar 

  234. White, R. H., Dager, W. E., Zhou, H. & Murin, S. Racial and gender differences in the incidence of recurrent venous thromboembolism. Thromb. Haemost. 96, 267–273 (2006).

    Article  CAS  PubMed  Google Scholar 

  235. Lau, B. D. et al. Eliminating health care disparities with mandatory clinical decision support: the venous thromboembolism (VTE) example. Med. Care 53, 18–24 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Aujesky, D. et al. Predictors of early hospital readmission after acute pulmonary embolism. Arch. Intern. Med. 169, 287–293 (2009).

    Article  PubMed  Google Scholar 

  237. Aujesky, D., Long, J. A., Fine, M. J. & Ibrahim, S. A. African American race was associated with an increased risk of complications following venous thromboembolism. J. Clin. Epidemiol. 60, 410–416 (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We graciously acknowledge A. Folsom (University of Minnesota, USA) and M. Cushman (University of Vermont, USA) for serving as our mentors and introducing us as we began our careers in VTE epidemiology. P.L.L. is supported by the NIH National Heart, Lung, and Blood Institute award K24 HL159246.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed substantially to all aspect of the article.

Corresponding author

Correspondence to Pamela L. Lutsey.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Suzanne Cannegieter and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Review criteria

We provide a broad overview of the epidemiology and prevention of venous thromboembolism (VTE). Given the breadth of this topic, including an exhaustive review of the literature for each risk factor and VTE was not possible. Therefore, we tried to identify either a well-performed meta-analysis or a few representative studies for each risk factor. In general, we placed the most weight on randomized controlled trials (when available), followed by large, population-based, cohort studies, and then case–control studies or other designs. With regard to VTE anatomical sites, we focus on the deep veins of the legs and arms as well as of the pulmonary arterial vasculature. Alternative sites of thrombosis, such as cerebral sinus thrombosis and splanchnic vein thrombosis, are not reviewed in this article because, although having some shared risk factors, they are managed differently and often have very specific risk factors. Additionally, treatment is reviewed more extensively in various consensus statements, and a full review of treatment strategies is outside the scope of this Review.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lutsey, P.L., Zakai, N.A. Epidemiology and prevention of venous thromboembolism. Nat Rev Cardiol 20, 248–262 (2023). https://doi.org/10.1038/s41569-022-00787-6

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41569-022-00787-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing