Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review article
  • Published:

Temporary mechanical circulatory support devices: practical considerations for all stakeholders

Abstract

Originally intended for life-saving salvage therapy, the use of temporary mechanical circulatory support (MCS) devices has become increasingly widespread in a variety of clinical settings in the contemporary era. Their use as a short-term, prophylactic support vehicle has expanded to include procedures in the catheterization laboratory, electrophysiology suite, operating room and intensive care unit. Accordingly, MCS device design and technology continue to develop at a rapid pace. In this Review, we describe the functionality, indications, management and complications associated with temporary MCS, together with scenario-specific utilization, goal-directed development and bioengineering of future devices. We address various considerations for the use of temporary MCS devices in both prophylactic and rescue scenarios, with input from stakeholders from various cardiovascular specialties, including interventional and heart failure cardiology, electrophysiology, cardiothoracic anaesthesiology, critical care and cardiac surgery.

Key points

  • The use of mechanical circulatory support (MCS) devices involves several different stakeholders and requires a multidisciplinary approach to consideration and management.

  • Choosing the appropriate MCS device involves a thorough evaluation of the patient’s phenotype, history, physical condition, laboratory data, haemodynamic deficit (univentricular or biventricular compromise) and echocardiographic findings and the objectives of care.

  • Optimal patient outcome is continually reassessed and is based on a balanced intersection between the objectives and level of support, the risk of complications, timing and the available resources.

  • Important opportunities for MCS innovation include challenges related to pump size, vascular access, biocompatibility and use in the ambulatory setting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Left ventricular circulatory support devices.
Fig. 2: Right ventricular circulatory support devices.
Fig. 3: Effects of MCS devices on pressure–volume loops and blood pressure.

Similar content being viewed by others

References

  1. Parissis, H. et al. IABP: history-evolution-pathophysiology-indications: what we need to know. J. Cardiothorac. Surg. 11, 122 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Krishna, M. & Zacharowski, K. Principles of intra-aortic balloon pump counterpulsation. Contin. Educ. Anaesth. Crit. Care Pain. 9, 24–28 (2009).

    Article  Google Scholar 

  3. Getinge. Intra-aortic balloon counterpulsation. Getinge https://www.getinge.com/me/products/hospital/counterpulsation/ (2022).

  4. Burkhoff, D., Sayer, G., Doshi, D. & Uriel, N. Hemodynamics of mechanical circulatory support. J. Am. Coll. Cardiol. 66, 2663–2674 (2015).

    Article  PubMed  Google Scholar 

  5. Schreuder, J. J. et al. Beat-to-beat effects of intraaortic balloon pump timing on left ventricular performance in patients with low ejection fraction. Ann. Thorac. Surg. 79, 872–880 (2005).

    Article  PubMed  Google Scholar 

  6. Abiomed. Impella: the world’s smallest heart pump. Abiomed https://www.abiomed.com/products-and-services/impella (2022).

  7. Gottula, A. L. et al. Impella in transport: physiology, mechanics, complications, and transport considerations. Air Med. J. 41, 114–127 (2021).

    Article  PubMed  Google Scholar 

  8. Telukuntla, K. S. & Estep, J. D. Acute mechanical circulatory support for cardiogenic shock. Methodist. Debakey Cardiovasc. J. 16, 27–35 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Saffarzadeh, A. & Bonde, P. Options for temporary mechanical circulatory support. J. Thorac. Dis. 7, 2102–2111 (2015).

    PubMed  PubMed Central  Google Scholar 

  10. Kapur, N. K. et al. Mechanical circulatory support devices for acute right ventricular failure. Circulation 136, 314–326 (2017).

    Article  PubMed  Google Scholar 

  11. Anderson, M. et al. Outcomes of patients with right ventricular failure requiring short-term hemodynamic support with the Impella RP device. J. Heart Lung Transpl. 37, 1448–1458 (2018).

    Article  Google Scholar 

  12. Abiomed. Impella RP with SmartAssist. Abiomed https://www.heartrecovery.com/products-and-services/impella/impella-rp (2022).

  13. FDA. Fact Sheet for Patients: emergency use of Impella RP system during the COVID-19 outbreak. FDA https://www.fda.gov/media/138462/download (2020).

  14. Upadhyay, R., Alrayes, H., Arno, S., Kaushik, M. & Basir, M. B. Current landscape of temporary percutaneous mechanical circulatory support technology. US Cardiol. Rev. 15, e21 (2021).

    Article  Google Scholar 

  15. Spectrum Medical. Dual Lumen Cannula. Spectrum Medical https://www.spectrummedical.com/quantum-perfusion-for-the-icu-cath-lab-and-transport/quantum-sterile-technologies-icu/cannulas/dual-lumen-rv-to-pa-cannula (2020).

  16. Takayama, H. et al. A novel approach to percutaneous right-ventricular mechanical support. Eur. J. Cardiothorac. Surg. 41, 423–426 (2012).

    Article  PubMed  Google Scholar 

  17. Abbott. About the CentriMag circulatory support system. Abbott https://www.cardiovascular.abbott/us/en/hcp/products/heart-failure/mechanical-circulatory-support/centrimag-acute-circulatory-support-system/about.html (2022).

  18. Abiomed. Impella RP system with the automated impella controller. FDA https://www.fda.gov/media/138463/download (2020).

  19. Tsangaris, A. et al. Overview of veno-arterial extracorporeal membrane oxygenation (VA-ECMO) support for the management of cardiogenic shock. Front. Cardiovasc. Med. 8, 686558 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cevasco, M. et al. Left ventricular distension and venting strategies for patients on venoarterial extracorporeal membrane oxygenation. J. Thorac. Dis. 11, 1676–1683 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Al-Fares, A. A. et al. Optimal strategy and timing of left ventricular venting during veno-arterial extracorporeal life support for adults in cardiogenic shock. Circ. Heart Fail. 12, e006486 (2019).

    Article  PubMed  Google Scholar 

  22. Truby, L. K. et al. Incidence and implications of left ventricular distention during venoarterial extracorporeal membrane oxygenation support. ASAIO J. 63, 257–265 (2017).

    Article  PubMed  Google Scholar 

  23. Schrage, B. et al. Left ventricular unloading is associated with lower mortality in patients with cardiogenic shock treated with venoarterial extracorporeal membrane oxygenation: results from an international, multicenter cohort study. Circulation 142, 2095–2106 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Russo, J. J. et al. Left ventricular unloading during extracorporeal membrane oxygenation in patients with cardiogenic shock. J. Am. Coll. Cardiol. 73, 654–662 (2019).

    Article  PubMed  Google Scholar 

  25. Extracorporeal Life Support Organization. ECLS international summary of statistics. Extracorporeal Life Support Organization https://www.elso.org/Registry/InternationalSummaryandReports/InternationalSummary.aspx (2022).

  26. Sakamoto, T. et al. Extracorporeal cardiopulmonary resuscitation versus conventional cardiopulmonary resuscitation in adults with out-of-hospital cardiac arrest: a prospective observational study. Resuscitation 85, 762–768 (2014).

    Article  PubMed  Google Scholar 

  27. Stub, D., Byrne, M., Pellegrino, V. & Kaye, D. M. Extracorporeal membrane oxygenation to support cardiopulmonary resuscitation in a sheep model of refractory ischaemic cardiac arrest. Heart Lung Circ. 22, 421–427 (2013).

    Article  PubMed  Google Scholar 

  28. Subramaniam, A. V., Barsness, G. W., Vallabhajosyula, S. & Vallabhajosyula, S. Complications of temporary percutaneous mechanical circulatory support for cardiogenic shock: an appraisal of contemporary literature. Cardiol. Ther. 8, 211–228 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Patton-Rivera, K. et al. Using near-infrared reflectance spectroscopy (NIRS) to assess distal-limb perfusion on venoarterial (V-A) extracorporeal membrane oxygenation (ECMO) patients with femoral cannulation. Perfusion 33, 618–623 (2018).

    Article  PubMed  Google Scholar 

  30. Guglin, M. et al. Venoarterial ECMO for adults: JACC Scientific Expert Panel. J. Am. Coll. Cardiol. 73, 698–716 (2019).

    Article  PubMed  Google Scholar 

  31. Extracorporeal Life Support Organization. General guidelines for all ECLS cases. Extracorporeal Life Support Organization https://www.elso.org/Portals/0/ELSO%20Guidelines%20General%20All%20ECLS%20Version%201_4.pdf (2017).

  32. Elgendy, I. Y., Van Spall, H. G. C. & Mamas, M. A. Cardiogenic shock in the setting of acute myocardial infarction. Circ. Cardiovasc. Interv. 13, e009034 (2020).

    Article  PubMed  Google Scholar 

  33. Baran, D. A. et al. SCAI clinical expert consensus statement on the classification of cardiogenic shock: this document was endorsed by the American College of Cardiology (ACC), the American Heart Association (AHA), the Society of Critical Care Medicine (SCCM), and the Society of Thoracic Surgeons (STS) in April 2019. Catheter. Cardiovasc. Interv. 94, 29–37 (2019).

    PubMed  Google Scholar 

  34. Kalra, S. et al. Risk prediction in cardiogenic shock: current state of knowledge, challenges and opportunities. J. Card. Fail. 27, 1099–1110 (2021).

    Article  PubMed  Google Scholar 

  35. Abraham, J. et al. Heart failure-related cardiogenic shock: pathophysiology, evaluation and management considerations: review of heart failure-related cardiogenic shock. J. Card. Fail. 27, 1126–1140 (2021).

    Article  PubMed  Google Scholar 

  36. Akodad, M., Delmas, C., Bonello, L., Duflos, C. & Roubille, F. Intra-aortic balloon pump: is the technique really outdated? Esc. Heart Fail. 7, 1025–1030 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dhruva, S. S. et al. Use of mechanical circulatory support devices among patients with acute myocardial infarction complicated by cardiogenic shock. JAMA Netw. Open 4, e2037748 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Thiele, H. et al. Intraaortic balloon pump in cardiogenic shock complicating acute myocardial infarction: long-term 6-year outcome of the randomized IABP-SHOCK II trial. Circulation 139, 395–403 (2019).

    Article  PubMed  Google Scholar 

  39. Thiele, H. et al. Intra-aortic balloon counterpulsation in acute myocardial infarction complicated by cardiogenic shock (IABP-SHOCK II): final 12 month results of a randomised, open-label trial. Lancet 382, 1638–1645 (2013).

    Article  PubMed  Google Scholar 

  40. Thiele, H. et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N. Engl. J. Med. 367, 1287–1296 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. O’Gara, P. T. et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 61, e78–e140 (2013).

    Article  PubMed  Google Scholar 

  42. van Diepen, S. et al. Contemporary management of cardiogenic shock: a scientific statement from the American Heart Association. Circulation 136, e232–e268 (2017).

    PubMed  Google Scholar 

  43. Ibanez, B. et al. 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: the Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 39, 119–177 (2018).

    Article  PubMed  Google Scholar 

  44. Khera, R. et al. Trends in the use of percutaneous ventricular assist devices: analysis of national inpatient sample data, 2007 through 2012. JAMA Intern. Med. 175, 941–950 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Seyfarth, M. et al. A randomized clinical trial to evaluate the safety and efficacy of a percutaneous left ventricular assist device versus intra-aortic balloon pumping for treatment of cardiogenic shock caused by myocardial infarction. J. Am. Coll. Cardiol. 52, 1584–1588 (2008).

    Article  PubMed  Google Scholar 

  46. Alushi, B. et al. Impella versus IABP in acute myocardial infarction complicated by cardiogenic shock. Open Heart 6, e000987 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ouweneel, D. M. et al. Percutaneous mechanical circulatory support versus intra-aortic balloon pump in cardiogenic shock after acute myocardial infarction. J. Am. Coll. Cardiol. 69, 278–287 (2017).

    Article  PubMed  Google Scholar 

  48. Schrage, B. et al. Impella support for acute myocardial infarction complicated by cardiogenic shock. Circulation 139, 1249–1258 (2019).

    Article  PubMed  Google Scholar 

  49. Elliott Miller, P. et al. Clinical outcomes and cost associated with an intravascular microaxial left ventricular assist device vs intra-aortic balloon pump in patients presenting with acute myocardial infarction complicated by cardiogenic shock. JAMA Intern. Med. https://doi.org/10.1001/jamainternmed.2022.2735 (2022).

    Article  PubMed  Google Scholar 

  50. Neumann, F.-J. et al. 2018 ESC/EACTS guidelines on myocardial revascularization. Eur. Heart J. 40, 87–165 (2019).

    Article  PubMed  Google Scholar 

  51. Udesen, N. J. et al. Rationale and design of DanGer shock: Danish-German cardiogenic shock trial. Am. Heart J. 214, 60–68 (2019).

    Article  PubMed  Google Scholar 

  52. US National Library of Medicine. Clinicaltrials.gov https://clinicaltrials.gov/ct2/show/NCT03677180 (2022).

  53. Burkhoff, D., Cohen, H., Brunckhorst, C. & O’Neill, W. W. A randomized multicenter clinical study to evaluate the safety and efficacy of the TandemHeart percutaneous ventricular assist device versus conventional therapy with intraaortic balloon pumping for treatment of cardiogenic shock. Am. Heart J. 152, 469.e1–469.e8 (2006).

    Article  PubMed  Google Scholar 

  54. Thiele, H. et al. Randomized comparison of intra-aortic balloon support with a percutaneous left ventricular assist device in patients with revascularized acute myocardial infarction complicated by cardiogenic shock. Eur. Heart J. 26, 1276–1283 (2005).

    Article  PubMed  Google Scholar 

  55. Thiagarajan, R. R. et al. Extracorporeal Life Support Organization registry international report 2016. ASAIO J. 63, 60–67 (2017).

    Article  PubMed  Google Scholar 

  56. Ouweneel, D. M. et al. Extracorporeal life support during cardiac arrest and cardiogenic shock: a systematic review and meta-analysis. Intensive Care Med. 42, 1922–1934 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Dangers, L. et al. Extracorporeal membrane oxygenation for acute decompensated heart failure. Crit. Care Med. 45, 1359–1366 (2017).

    Article  PubMed  Google Scholar 

  58. Acharya, D. et al. Extracorporeal membrane oxygenation in myocardial infarction complicated by cardiogenic shock: analysis of the ELSO registry. J. Am. Coll. Cardiol. 76, 1001–1002 (2020).

    Article  PubMed  Google Scholar 

  59. US National Library of Medicine. Clinicaltrials.gov https://www.clinicaltrials.gov/ct2/show/NCT04682483 (2022).

  60. Perera, D. et al. Elective intra-aortic balloon counterpulsation during high-risk percutaneous coronary intervention: a randomized controlled trial. JAMA 304, 867–874 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Perera, D. et al. Long-term mortality data from the balloon pump-assisted coronary intervention study (BCIS-1): a randomized, controlled trial of elective balloon counterpulsation during high-risk percutaneous coronary intervention. Circulation 127, 207–212 (2013).

    Article  PubMed  Google Scholar 

  62. Amin, A. P. et al. The evolving landscape of Impella use in the United States among patients undergoing percutaneous coronary intervention with mechanical circulatory support. Circulation 141, 273–284 (2020).

    Article  PubMed  Google Scholar 

  63. Dixon, S. R. et al. A prospective feasibility trial investigating the use of the Impella 2.5 system in patients undergoing high-risk percutaneous coronary intervention (the PROTECT I trial): initial U.S. experience. JACC Cardiovasc. Interv. 2, 91–96 (2009).

    Article  PubMed  Google Scholar 

  64. O’Neill, W. W. et al. A prospective, randomized clinical trial of hemodynamic support with Impella 2.5 versus intra-aortic balloon pump in patients undergoing high-risk percutaneous coronary intervention: the PROTECT II study. Circulation 126, 1717–1727 (2012).

    Article  PubMed  Google Scholar 

  65. Cohen, M. G. et al. Optimizing rotational atherectomy in high-risk percutaneous coronary interventions: insights from the PROTECT ΙΙ study. Catheter. Cardiovasc. Interv. 83, 1057–1064 (2014).

    Article  PubMed  Google Scholar 

  66. Flaherty, M. P. et al. Hemodynamic support with a microaxial percutaneous left ventricular assist device (Impella) protects against acute kidney injury in patients undergoing high-risk percutaneous coronary intervention. Circ. Res. 120, 692–700 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Popma, J. PROTECT III first look: high-risk PCI outcomes in 800 Impella-supported patients. TCTMD https://www.tctmd.com/slide/protect-iii-first-look-high-risk-pci-outcomes-800-impella-supported-patients (2019).

  68. US National Library of Medicine. Clinicaltrials.gov https://clinicaltrials.gov/ct2/show/NCT04763200 (2022).

  69. Kapur, N. K. et al. Unloading the left ventricle before reperfusion in patients with anterior ST-segment-elevation myocardial infarction. Circulation 139, 337–346 (2019).

    Article  PubMed  Google Scholar 

  70. Lawton, J. S. et al. 2021 ACC/AHA/SCAI guideline for coronary artery revascularization: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 145, e18–e114 (2022).

    PubMed  Google Scholar 

  71. Windecker, S. et al. 2014 ESC/EACTS guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur. Heart J. 35, 2541–2619 (2014).

    Article  PubMed  Google Scholar 

  72. Miller, M. A. et al. Activation and entrainment mapping of hemodynamically unstable ventricular tachycardia using a percutaneous left ventricular assist device. J. Am. Coll. Cardiol. 58, 1363–1371 (2011).

    Article  PubMed  Google Scholar 

  73. Miller, M. A. et al. Percutaneous hemodynamic support with Impella 2.5 during scar-related ventricular tachycardia ablation (PERMIT 1). Circ. Arrhythm. Electrophysiol. 6, 151–159 (2013).

    Article  PubMed  Google Scholar 

  74. Kusa, S. et al. Outcomes of ventricular tachycardia ablation using percutaneous left ventricular assist devices. Circ. Arrhythm. Electrophysiol. 10, e004717 (2017).

    Article  PubMed  Google Scholar 

  75. Turagam, M. K. et al. Hemodynamic support in ventricular tachycardia ablation: an International VT Ablation Center Collaborative Group study. JACC Clin. Electrophysiol. 3, 1534–1543 (2017).

    Article  PubMed  Google Scholar 

  76. Santangeli, P. et al. Early mortality after catheter ablation of ventricular tachycardia in patients with structural heart disease. J. Am. Coll. Cardiol. 69, 2105–2115 (2017).

    Article  PubMed  Google Scholar 

  77. Sapp, J. L. et al. Ventricular tachycardia ablation versus escalation of antiarrhythmic drugs. N. Engl. J. Med. 375, 111–121 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Tung, R. et al. Freedom from recurrent ventricular tachycardia after catheter ablation is associated with improved survival in patients with structural heart disease: an International VT Ablation Center Collaborative Group study. Heart Rhythm. 12, 1997–2007 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Vallabhajosyula, S. et al. Venoarterial extracorporeal membrane oxygenation support for ventricular tachycardia ablation: a systematic review. ASAIO J. 66, 980–985 (2020).

    Article  PubMed  Google Scholar 

  80. Baratto, F. et al. Extracorporeal membrane oxygenation for hemodynamic support of ventricular tachycardia ablation. Circ. Arrhythm. Electrophysiol. 9, e004492 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Santangeli, P. et al. Acute hemodynamic decompensation during catheter ablation of scar-related ventricular tachycardia: incidence, predictors, and impact on mortality. Circ. Arrhythm. Electrophysiol. 8, 68–75 (2015).

    Article  PubMed  Google Scholar 

  82. Muser, D. et al. Outcomes with prophylactic use of percutaneous left ventricular assist devices in high-risk patients undergoing catheter ablation of scar-related ventricular tachycardia: a propensity-score matched analysis. Heart Rhythm. 15, 1500–1506 (2018).

    Article  PubMed  Google Scholar 

  83. Cox, M. L. et al. Outcomes after coronary artery bypass grafting in patients with myocardial infarction, cardiogenic shock and unresponsive neurological state: analysis of the Society of Thoracic Surgeons database. Eur. J. Cardiothorac. Surg. 54, 710–716 (2018).

    Article  PubMed  Google Scholar 

  84. Elbadawi, A. et al. Temporal trends and outcomes of mechanical complications in patients with acute myocardial infarction. JACC Cardiovasc. Interv. 12, 1825–1836 (2019).

    Article  PubMed  Google Scholar 

  85. Ariza-Solé, A. et al. The role of perioperative cardiorespiratory support in post infarction ventricular septal rupture-related cardiogenic shock. Eur. Heart J. Acute Cardiovasc. Care 9, 128–137 (2020).

    Article  PubMed  Google Scholar 

  86. Ronco, D. et al. Mechanical circulatory support as a bridge to definitive treatment in post-infarction ventricular septal rupture. JACC Cardiovasc. Interv. 14, 1053–1066 (2021).

    Article  PubMed  Google Scholar 

  87. Hansen, L. S., Sloth, E., Hjortdal, V. E. & Jakobsen, C.-J. Follow-up after cardiac surgery should be extended to at least 120 days when benchmarking cardiac surgery centers. J. Cardiothorac. Vasc. Anesth. 29, 984–989 (2015).

    Article  PubMed  Google Scholar 

  88. Tong, M. Z. Y., Weiss, A. J., Bakaeen, F. & Soltesz, E. G. CABG in failing hearts: a how-to-guide to using modern mechanical support as backup. Innovations 16, 227–230 (2021).

    Article  PubMed  Google Scholar 

  89. Anderson, M. et al. Impella 5.5 direct aortic implant and explant techniques. Ann. Thorac. Surg. 111, e373–e375 (2021).

    Article  PubMed  Google Scholar 

  90. Kowalewski, M. et al. Venoarterial extracorporeal membrane oxygenation for postcardiotomy shock-analysis of the Extracorporeal Life Support Organization registry. Crit. Care Med. 49, 1107–1117 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lorusso, R. et al. Structured review of post-cardiotomy extracorporeal membrane oxygenation: part 1 – adult patients. J. Heart Lung Transpl. 38, 1125–1143 (2019).

    Article  Google Scholar 

  92. Vakil, K. et al. Long-term outcomes of patients who had cardiac arrest after cardiac operations. Ann. Thorac. Surg. 102, 512–517 (2016).

    Article  PubMed  Google Scholar 

  93. Mazzeffi, M. A. et al. Outcomes of extracorporeal cardiopulmonary resuscitation for refractory cardiac arrest in adult cardiac surgery patients. J. Thorac. Cardiovasc. Surg. 152, 1133–1139 (2016).

    Article  PubMed  Google Scholar 

  94. Clerkin, K. J. et al. Impact of temporary percutaneous mechanical circulatory support before transplantation in the 2018 heart allocation system. JACC Heart Fail. 10, 12–23 (2022).

    Article  PubMed  Google Scholar 

  95. Silvestry, S. C. & Rogers, J. G. Rinse, wash, repeat: the evolution of the UNOS heart transplant allocation system. JACC Heart Fail. 10, 24–26 (2022).

    Article  PubMed  Google Scholar 

  96. Kobashigawa, J. et al. Report from a consensus conference on primary graft dysfunction after cardiac transplantation. J. Heart Lung Transpl. 33, 327–340 (2014).

    Article  Google Scholar 

  97. DeRoo, S. C. et al. Extracorporeal membrane oxygenation for primary graft dysfunction after heart transplant. J. Thorac. Cardiovasc. Surg. 158, 1576–1584 (2019).

    Article  PubMed  Google Scholar 

  98. Abiomed. First patients treated with the world’s smallest heart pump, the 9Fr impella ECP. Abiomed https://www.abiomed.com/about-us/news-and-media/press-releases/first-patients-treated-worlds-smallest-heart-pump-9fr-impella-ecp (2020).

  99. Uriel, N. et al. Clinical outcomes and quality of life with an ambulatory counterpulsation pump in advanced heart failure patients. Circ. Heart Fail. 13, e006666 (2020).

    Article  PubMed  Google Scholar 

  100. Jeevanandam, V. et al. The first-in-human experience with a minimally invasive, ambulatory, counterpulsation heart assist system for advanced congestive heart failure. J. Heart Lung Transpl. 37, 1–6 (2018).

    Article  Google Scholar 

  101. Topkara, V. K. et al. Recovery with temporary mechanical circulatory support while waitlisted for heart transplantation. J. Am. Coll. Cardiol. 79, 900–913 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Afana, M. et al. Transcaval access for the emergency delivery of 5.0 liters per minute mechanical circulatory support in cardiogenic shock. Catheter. Cardiovasc. Interv. 97, 555–564 (2021).

    Article  PubMed  Google Scholar 

  103. Singh-Kucukarslan, G. et al. Hemodynamic effects of left-atrial venous arterial extra-corporeal membrane oxygenation (LAVA-ECMO). ASAIO J. https://doi.org/10.1097/MAT.0000000000001628 (2021).

    Article  PubMed  Google Scholar 

  104. Harjola, V.-P. et al. Clinical picture and risk prediction of short-term mortality in cardiogenic shock. Eur. J. Heart Fail. 17, 501–509 (2015).

    Article  PubMed  Google Scholar 

  105. Schmidt, M. et al. Predicting survival after ECMO for refractory cardiogenic shock: the survival after veno-arterial-ECMO (SAVE)-score. Eur. Heart J. 36, 2246–2256 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Pöss, J. et al. Risk stratification for patients in cardiogenic shock after acute myocardial infarction. J. Am. Coll. Cardiol. 69, 1913–1920 (2017).

    Article  PubMed  Google Scholar 

  107. Estep, J. D., Soltesz, E. & Cogswell, R. The new heart transplant allocation system: early observations and mechanical circulatory support considerations. J. Thorac. Cardiovasc. Surg. https://doi.org/10.1016/j.jtcvs.2020.08.113 (2020).

    Article  PubMed  Google Scholar 

  108. Burkhoff, D., Dickstein, M. L. & Schleicher, T. Harvi - online (accessed 21 November 2019, PVLoops); https://harvi.online.

Download references

Author information

Authors and Affiliations

Authors

Contributions

B.S.S., C.R.G., S.R.D., G.W.S., N.M., A.C.A., D.B. and A.L. researched data for the article. B.S.S., C.R.G., A.C.A., D.B. and A.L. discussed the content. All the authors wrote the manuscript. B.S.S, C.R.G., M.M.W., A.C.A., D.B. and A.L. reviewed and/or edited the article before submission.

Corresponding author

Correspondence to Benjamin S. Salter.

Ethics declarations

Competing interests

S.R.D. declares receiving research grant support from Biosense Webster and owning equity in Farapulse (acquired by Boston Scientific) and Manual Surgical Sciences. D.B. declares receiving an unrestricted educational grant from Abiomed, acting as a consultant to PVLoops and receiving consulting fees from CardioDyme. A.L. declares receiving speaker honoraria from Zoll, being on a data safety and monitoring board for Sequana, being on the advisory board of Bioventrix and being a speaker for Novartis. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks José González-Costello and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salter, B.S., Gross, C.R., Weiner, M.M. et al. Temporary mechanical circulatory support devices: practical considerations for all stakeholders. Nat Rev Cardiol 20, 263–277 (2023). https://doi.org/10.1038/s41569-022-00796-5

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41569-022-00796-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing