Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review article
  • Published:

Gender medicine: effects of sex and gender on cardiovascular disease manifestation and outcomes

Abstract

Despite a growing body of evidence, the distinct contributions of biological sex and the sociocultural dimension of gender to the manifestations and outcomes of ischaemic heart disease and heart failure remain unknown. The intertwining of sex-based differences in genetic and hormonal mechanisms with the complex dimension of gender and its different components and determinants that result in different disease phenotypes in women and men needs to be elucidated. The relative contribution of purely biological factors, such as genes and hormones, to cardiovascular phenotypes and outcomes is not yet fully understood. Increasing awareness of the effects of gender has led to efforts to measure gender in retrospective and prospective clinical studies and the development of gender scores. However, the synergistic or opposing effects of sex and gender on cardiovascular traits and on ischaemic heart disease and heart failure mechanisms have not yet been systematically described. Furthermore, specific considerations of sex-related and gender-related factors in gender dysphoria or in heart–brain interactions and their association with cardiovascular disease are still lacking. In this Review, we summarize contemporary evidence on the distinct effects of sex and gender as well as of their interactions on cardiovascular disease and how they favourably or unfavourably influence the pathogenesis, clinical manifestations and treatment responses in patients with ischaemic heart disease or heart failure.

Key points

  • Sex-related and gender-related factors often have opposite effects on the clinical manifestations and outcomes of cardiovascular disease.

  • Some sex-related differences in the human cardiovascular system already exist at birth and are due to purely biological mechanisms, that is, genes and sex hormones.

  • Gender-related variables or scores allow for the characterization of individuals beyond their biological sex, and the effects of gender might even oppose the effects of biological sex on clinical outcomes.

  • The predominantly male leadership and workforce in clinical cardiology is a disadvantage for women as patients.

  • Cardiovascular disease risk factors related to female biological sex or feminine gender include, among others, pregnancy complications, breast cancer therapy, autoimmune and rheumatic diseases, depression, and household-related stress.

  • Despite a more favourable biology, gender-related factors impair outcomes in women with coronary artery disease or heart failure compared with those in men.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Concepts of sex and gender in medicine.
Fig. 2: Interactions between sex and gender in health and disease throughout the life cycle.
Fig. 3: Gender score distribution in females and males in an aged German population.
Fig. 4: Sex-related and gender-related disparities in CVD risk and outcomes.

Similar content being viewed by others

References

  1. Legato, M. J. Gender-specific physiology: how real is it? How important is it? Int. J. Fertil. Womens Med. 42, 19–29 (1997).

    CAS  PubMed  Google Scholar 

  2. World Health Organization. Gender and Health https://www.who.int/health-topics/gendertab=tab_1 (2022).

  3. Baggio, G., Corsini, A., Floreani, A., Giannini, S. & Zagonel, V. Gender medicine: a task for the third millennium. Clin. Chem. Lab. Med. 51, 713–727 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Shannon, G. et al. Gender equality in science, medicine, and global health: where are we at and why does it matter. Lancet 393, 560–569 (2019).

    Article  PubMed  Google Scholar 

  5. International Society of Gender Medicine. Aims of the IGM http://www.isogem.eu/IGM/Aims-of-IGM/ (2022).

  6. Krieger, N. Genders, sexes, and health: what are the connections — and why does it matter? Int. J. Epidemiol. 32, 652–657 (2003).

    Article  PubMed  Google Scholar 

  7. Canadian Institutes of Health Research. Institute of Gender and Health https://cihr-irsc.gc.ca/e/8673.html (2022).

  8. Day, S., Mason, R., Tannenbaum, C. & Rochon, P. A. Essential metrics for assessing sex & gender integration in health research proposals involving human participants. PLoS One 12, e0182812 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Schiebinger, L. & Klinge, I. Gendered innovation in health and medicine. Adv. Exp. Med. Biol. 1065, 643–654 (2018).

    Article  PubMed  Google Scholar 

  10. Tannenbaum, C., Ellis, R. P., Eyssel, F., Zou, J. & Schiebinger, L. Sex and gender analysis improves science and engineering. Nature 575, 137–146 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Vogel, B. et al. The Lancet Women and Cardiovascular Disease Commission: reducing the global burden by 2030. Lancet 397, 2385–2438 (2021).

    Article  PubMed  Google Scholar 

  12. Ramirez, F. D. et al. Sex bias is increasingly prevalent in preclinical cardiovascular research: implications for translational medicine and health equity for women: a systematic assessment of leading cardiovascular journals over a 10-year period. Circulation 135, 625–626 (2017).

    Article  PubMed  Google Scholar 

  13. Ventura-Clapier, R. et al. Sex in basic research: concepts in the cardiovascular field. Cardiovasc. Res. 113, 711–724 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Konig, I. R., Loley, C., Erdmann, J. & Ziegler, A. How to include chromosome X in your genome-wide association study. Genet. Epidemiol. 38, 97–103 (2014).

    Article  PubMed  Google Scholar 

  15. Bernabeu, E. et al. Sex differences in genetic architecture in the UK Biobank. Nat. Genet. 53, 1283–1289 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Barc, J. & Erdmann, J. Sex matters? Sex matters! Cardiovasc. Res. 118, e1–e3 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Hartiala, J. A. et al. Genome-wide association study and targeted metabolomics identifies sex-specific association of CPS1 with coronary artery disease. Nat. Commun. 7, 10558 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wren, G. & Davies, W. Sex-linked genetic mechanisms and atrial fibrillation risk. Eur. J. Med. Genet. 65, 104459 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Mendelsohn, M. E. & Karas, R. H. Molecular and cellular basis of cardiovascular gender differences. Science 308, 1583–1587 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Regitz-Zagrosek, V. & Kararigas, G. Mechanistic pathways of sex differences in cardiovascular disease. Physiol. Rev. 97, 1–37 (2017).

    Article  PubMed  Google Scholar 

  21. Arosio, B. et al. Sex differences in cardiovascular diseases: a matter of estrogens, ceramides, and sphingosine 1-phosphate. Int. J. Mol. Sci. https://doi.org/10.3390/ijms23074009 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Blencowe, M. et al. Relative contributions of sex hormones, sex chromosomes, and gonads to sex differences in tissue gene regulation. Genome Res. https://doi.org/10.1101/gr.275965.121 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Robinson, G. A. et al. Sex hormones drive changes in lipoprotein metabolism. iScience 24, 103257 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kararigas, G. et al. Transcriptome characterization of estrogen-treated human myocardium identifies myosin regulatory light chain interacting protein as a sex-specific element influencing contractile function. J. Am. Coll. Cardiol. 59, 410–417 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Dworatzek, E. et al. Sex-specific regulation of collagen I and III expression by 17β-estradiol in cardiac fibroblasts: role of estrogen receptors. Cardiovasc. Res. 115, 315–327 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Hartman, R. J. G. et al. Intrinsic transcriptomic sex differences in human endothelial cells at birth and in adults are associated with coronary artery disease targets. Sci. Rep. 10, 12367 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hartman, R. J. G. et al. Sex-stratified gene regulatory networks reveal female key driver genes of atherosclerosis involved in smooth muscle cell phenotype switching. Circulation 143, 713–726 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kararigas, G. et al. Sex-dependent regulation of fibrosis and inflammation in human left ventricular remodelling under pressure overload. Eur. J. Heart Fail. 16, 1160–1167 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Shi, W. et al. Cardiac proteomics reveals sex chromosome-dependent differences between males and females that arise prior to gonad formation. Dev. Cell 56, 3019–3034 e3017 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Phillips, S. P. Defining and measuring gender: a social determinant of health whose time has come. Int. J. Equity Health 4, 11 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Johnson, J. L., Greaves, L. & Repta, R. Better science with sex and gender: facilitating the use of a sex and gender-based analysis in health research. Int. J. Equity Health 8, 14 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pelletier, R., Ditto, B. & Pilote, L. A composite measure of gender and its association with risk factors in patients with premature acute coronary syndrome. Psychosom. Med. 77, 517–526 (2015).

    Article  PubMed  Google Scholar 

  33. Pelletier, R. et al. Sex versus gender-related characteristics: which predicts outcome after acute coronary syndrome in the young? J. Am. Coll. Cardiol. 67, 127–135 (2016).

    Article  PubMed  Google Scholar 

  34. Regitz-Zagrosek, V. Sex and gender differences in health. Science & society series on sex and science. EMBO Rep. 13, 596–603 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nauman, A. T. et al. Gender score development in the Berlin Aging Study II: a retrospective approach. Biol. Sex Differ. 12, 15 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Smith, P. M. & Koehoorn, M. Measuring gender when you don’t have a gender measure: constructing a gender index using survey data. Int. J. Equity Health 15, 82 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lacasse, A. et al. Conducting gender-based analysis of existing databases when self-reported gender data are unavailable: the GENDER Index in a working population. Can. J. Public Health 111, 155–168 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Leung Yinko, S. S. et al. Health-related quality of life in premature acute coronary syndrome: does patient sex or gender really matter? J. Am. Heart Assoc. https://doi.org/10.1161/JAHA.114.000901 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nielsen, M. W. et al. Gender-related variables for health research. Biol. Sex Differ. 12, 23 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Song, M. K., Lin, F. C., Ward, S. E. & Fine, J. P. Composite variables: when and how. Nurs. Res. 62, 45–49 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Glynn, R. J., Schneeweiss, S. & Stürmer, T. Indications for propensity scores and review of their use in pharmacoepidemiology. Basic Clin. Pharmacol. Toxicol. 98, 253–259 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Azizi, Z. et al. Sex, gender, and cardiovascular health in Canadian and Austrian populations. Can. J. Cardiol. 37, 1240–1247 (2021).

    Article  PubMed  Google Scholar 

  43. Raparelli, V. et al. Identification and inclusion of gender factors in retrospective cohort studies: the GOING-FWD framework. BMJ Glob. Health https://doi.org/10.1136/bmjgh-2021-005413 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tadiri, C. P. et al. Methods for prospectively incorporating gender into health sciences research. J. Clin. Epidemiol. 129, 191–197 (2021).

    Article  PubMed  Google Scholar 

  45. Pohrt, A. et al. Differentiating sex and gender among older men and women. Psychosom. Med. 84, 339–346 (2022).

    Article  CAS  PubMed  Google Scholar 

  46. Gebhard, C. E. et al. Sex versus gender-related characteristics: which predicts clinical outcomes of acute COVID-19? Intensive Care Med. https://doi.org/10.1007/s00134-022-06836-5 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Cirillo, D. et al. Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. NPJ Digit. Med. 3, 81 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  48. White-Williams, C. et al. Addressing social determinants of health in the care of patients with heart failure: a scientific statement from the American Heart Association. Circulation 141, e841–e863 (2020).

    Article  PubMed  Google Scholar 

  49. Lindley, K. J. et al. Socioeconomic determinants of health and cardiovascular outcomes in women: JACC review topic of the week. J. Am. Coll. Cardiol. 78, 1919–1929 (2021).

    Article  PubMed  Google Scholar 

  50. Oertelt-Prigione, S. et al. Cardiovascular risk factor distribution and subjective risk estimation in urban women–the BEFRI study: a randomized cross-sectional study. BMC Med. 13, 52 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sarma, A. A. et al. Outcomes of women compared with men after non-ST-segment elevation acute coronary syndromes. J. Am. Coll. Cardiol. 74, 3013–3022 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Todorov, A. et al. Gender differences in the provision of intensive care: a Bayesian approach. Intensive Care Med. 47, 577–587 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Khandelwal, A. et al. Managing ischemic heart disease in women: role of a women’s heart center. Curr. Atheroscler. Rep. 23, 56 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Greenwood, B. N., Carnahan, S. & Huang, L. Patient-physician gender concordance and increased mortality among female heart attack patients. Proc. Natl Acad. Sci. USA 115, 8569–8574 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wallis, C. J. D. et al. Association of surgeon-patient sex concordance with postoperative outcomes. JAMA Surg. 157, 146–156 (2022).

    Article  PubMed  Google Scholar 

  56. Pasupathy, S., Air, T., Dreyer, R. P., Tavella, R. & Beltrame, J. F. Systematic review of patients presenting with suspected myocardial infarction and nonobstructive coronary arteries. Circulation 131, 861–870 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. McDonagh, T. A. et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 42, 3599–3726 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Walli-Attaei, M. et al. Variations between women and men in risk factors, treatments, cardiovascular disease incidence, and death in 27 high-income, middle-income, and low-income countries (PURE): a prospective cohort study. Lancet 396, 97–109 (2020).

    Article  PubMed  Google Scholar 

  59. Desai, R. et al. Nationwide trends in prevalent cardiovascular risk factors and diseases in young adults: differences by sex and race and in-hospital outcomes. South. Med. J. 113, 311–319 (2020).

    Article  PubMed  Google Scholar 

  60. Lee, C. M. Y. et al. Sex disparities in the management of coronary heart disease in general practices in Australia. Heart 105, 1898–1904 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. Narasimha, D. & Curtis, A. B. Sex differences in utilisation and response to implantable device therapy. Arrhythm. Electrophysiol. Rev. 4, 129–135 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Mosca, L., Barrett-Connor, E. & Wenger, N. K. Sex/gender differences in cardiovascular disease prevention: what a difference a decade makes. Circulation 124, 2145–2154 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Mosca, L., Navar, A. M. & Kass Wenger, N. Reducing cardiovascular disease risk in women beyond statin therapy: new insights 2020. J. Womens Health https://doi.org/10.1089/jwh.2019.8189 (2020).

    Article  Google Scholar 

  64. Cushman, M. et al. Ten-year differences in women’s awareness related to coronary heart disease: results of the 2019 American Heart Association National Survey: a special report from the American Heart Association. Circulation 143, e239–e248 (2021).

    Article  PubMed  Google Scholar 

  65. Rachamin, Y., Grischott, T., Rosemann, T. & Meyer, M. R. Inferior control of low-density lipoprotein cholesterol in women is the primary sex difference in modifiable cardiovascular risk: a large-scale, cross-sectional study in primary care. Atherosclerosis 324, 141–147 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Harreiter, J. & Kautzky-Willer, A. Sex and gender differences in prevention of type 2 diabetes. Front. Endocrinol. 9, 220 (2018).

    Article  Google Scholar 

  67. Kautzky-Willer, A. & Harreiter, J. Sex and gender differences in therapy of type 2 diabetes. Diabetes Res. Clin. Pract. 131, 230–241 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Visseren, F. L. J. et al. 2021 ESC guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 42, 3227–3337 (2021).

    Article  PubMed  Google Scholar 

  69. SCORE2 Working Group and ESC Cardiovascular Risk Collaboration.SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe. Eur. Heart J. 42, 2439–2454 (2021).

    Article  Google Scholar 

  70. Peters, S. A. & Woodward, M. Women’s reproductive factors and incident cardiovascular disease in the UK Biobank. Heart 104, 1069–1075 (2018).

    Article  CAS  PubMed  Google Scholar 

  71. Xu, G. et al. Risk of all-cause and CHD mortality in women versus men with type 2 diabetes: a systematic review and meta-analysis. Eur. J. Endocrinol. 180, 243–255 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Haider, A. et al. Sex and gender in cardiovascular medicine: presentation and outcomes of acute coronary syndrome. Eur. Heart J. 41, 1328–1336 (2020).

    Article  CAS  PubMed  Google Scholar 

  73. Merz, N. B. et al. Diagnostic, prognostic, and cost assessment of coronary artery disease in women. Am. J. Manag. Care 7, 959–965 (2001).

    CAS  PubMed  Google Scholar 

  74. Hellgren, T. et al. Sex-related differences in the management and outcomes of patients hospitalized with ST-elevation myocardial infarction: a comparison within four European myocardial infarction registries. Eur. Heart J. Open 2, oeac042 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kosmidou, I. et al. Infarct size, left ventricular function, and prognosis in women compared to men after primary percutaneous coronary intervention in ST-segment elevation myocardial infarction: results from an individual patient-level pooled analysis of 10 randomized trials. Eur. Heart J. 38, 1656–1663 (2017).

    Article  PubMed  Google Scholar 

  76. Vaccarino, V., Abramson, J. L., Veledar, E. & Weintraub, W. S. Sex differences in hospital mortality after coronary artery bypass surgery: evidence for a higher mortality in younger women. Circulation 105, 1176–1181 (2002).

    Article  PubMed  Google Scholar 

  77. Humphries, K. H. et al. Sex differences in cardiovascular disease — impact on care and outcomes. Front. Neuroendocrinol. 46, 46–70 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mehilli, J. & Presbitero, P. Coronary artery disease and acute coronary syndrome in women. Heart 106, 487–492 (2020).

    Article  PubMed  Google Scholar 

  79. Jespersen, L. et al. Stable angina pectoris with no obstructive coronary artery disease is associated with increased risks of major adverse cardiovascular events. Eur. Heart J. 33, 734–744 (2012).

    Article  PubMed  Google Scholar 

  80. Mehta, P. K. et al. Ischemia and no obstructive coronary arteries in patients with stable ischemic heart disease. Int. J. Cardiol. 348, 1–8 (2022).

    Article  PubMed  Google Scholar 

  81. Tjoe, B. et al. Coronary microvascular dysfunction: considerations for diagnosis and treatment. Cleve. Clin. J. Med. 88, 561–571 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Reynolds, H. R. et al. Coronary optical coherence tomography and cardiac magnetic resonance imaging to determine underlying causes of myocardial infarction with nonobstructive coronary arteries in women. Circulation 143, 624–640 (2021).

    Article  PubMed  Google Scholar 

  83. Vaccarino, V. et al. Sex differences in mental stress-induced myocardial ischemia in patients with coronary heart disease. J. Am. Heart Assoc. https://doi.org/10.1161/JAHA.116.003630 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Vaccarino, V. et al. Mental stress-induced-myocardial ischemia in young patients with recent myocardial infarction: sex differences and mechanisms. Circulation 137, 794–805 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Gebhard, C. & Regitz-Zagrosek, V. Colchicine in patients with chronic coronary disease. N. Engl. J. Med. 384, 776–777 (2021).

    Article  PubMed  Google Scholar 

  86. Regitz-Zagrosek, V. et al. Gender as a risk factor in young, not in old, women undergoing coronary artery bypass grafting. J. Am. Coll. Cardiol. 44, 2413–2414 (2004).

    Article  PubMed  Google Scholar 

  87. Lehmkuhl, E. et al. Gender-specific predictors of early mortality after coronary artery bypass graft surgery. Clin. Res. Cardiol. 101, 745–751 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Lam, C. S. P. et al. Sex differences in heart failure. Eur. Heart J. 40, 3859–3868c (2019).

    Article  PubMed  Google Scholar 

  89. Chung, A. K. et al. Women have higher left ventricular ejection fractions than men independent of differences in left ventricular volume: the Dallas Heart Study. Circulation 113, 1597–1604 (2006).

    Article  PubMed  Google Scholar 

  90. Dewan, P. et al. Interactions between left ventricular ejection fraction, sex and effect of neurohumoral modulators in heart failure. Eur. J. Heart Fail. 22, 898–901 (2020).

    Article  PubMed  Google Scholar 

  91. Beale, A. L., Meyer, P., Marwick, T. H., Lam, C. S. P. & Kaye, D. M. Sex differences in cardiovascular pathophysiology: why women are overrepresented in heart failure with preserved ejection fraction. Circulation 138, 198–205 (2018).

    Article  PubMed  Google Scholar 

  92. Regitz-Zagrosek, V., Brokat, S. & Tschope, C. Role of gender in heart failure with normal left ventricular ejection fraction. Prog. Cardiovasc. Dis. 49, 241–251 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Gerdts, E. & Regitz-Zagrosek, V. Sex differences in cardiometabolic disorders. Nat. Med. 25, 1657–1666 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Martinez-Selles, M. et al. Gender and survival in patients with heart failure: interactions with diabetes and aetiology. Results from the MAGGIC individual patient meta-analysis. Eur. J. Heart Fail. 14, 473–479 (2012).

    Article  PubMed  Google Scholar 

  95. McMurray, J. J. V. et al. Effects of Sacubitril-Valsartan versus Valsartan in women compared with men with heart failure and preserved ejection fraction: insights from PARAGON-HF. Circulation 141, 338–351 (2020).

    Article  PubMed  Google Scholar 

  96. Merrill, M., Sweitzer, N. K., Lindenfeld, J. & Kao, D. P. Sex differences in outcomes and responses to spironolactone in heart failure with preserved ejection fraction: a secondary analysis of TOPCAT trial. JACC Heart Fail. 7, 228–238 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Santema, B. T. et al. Identifying optimal doses of heart failure medications in men compared with women: a prospective, observational, cohort study. Lancet 394, 1254–1263 (2019).

    Article  CAS  PubMed  Google Scholar 

  98. Rathore, S. S., Wang, Y. & Krumholz, H. M. Sex-based differences in the effect of digoxin for the treatment of heart failure. N. Engl. J. Med. 347, 1403–1411 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Tamargo, J. et al. Gender differences in the effects of cardiovascular drugs. Eur. Heart J. Cardiovasc. Pharmacother. 3, 163–182 (2017).

    Article  CAS  PubMed  Google Scholar 

  100. Watson, S., Caster, O., Rochon, P. A. & den Ruijter, H. Reported adverse drug reactions in women and men: aggregated evidence from globally collected individual case reports during half a century. EClinicalMedicine 17, 100188 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Varrias, D. et al. Sex-specific differences in ventricular remodeling and response after cardiac resynchronization therapy. Am. J. Cardiol. https://doi.org/10.1016/j.amjcard.2022.03.021 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Narasimha, D. & Curtis, A. B. Arrhythmias. Cardiac resynchronization therapy in women. Nat. Rev. Cardiol. 11, 501–502 (2014).

    Article  PubMed  Google Scholar 

  103. Costanzo, M. R. Cardiac resynchronization therapy in women. Heart Fail. Clin. 13, 165–178 (2017).

    Article  PubMed  Google Scholar 

  104. Regitz-Zagrosek, V. et al. Heart transplantation in women with dilated cardiomyopathy. Transplantation 89, 236–244 (2010).

    Article  PubMed  Google Scholar 

  105. MacGowan, G. A. et al. Gender differences in the assessment, decision making and outcomes for ventricular assist devices and heart transplantation: an analysis from a UK transplant centre. Clin. Transplant. https://doi.org/10.1111/ctr.14666 (2022).

    Article  PubMed  Google Scholar 

  106. Rossi, A. et al. Heart-brain interactions in cardiac and brain diseases: why sex matters. Eur. Heart J. https://doi.org/10.1093/eurheartj/ehac061 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Fiechter, M. et al. Association between resting amygdalar activity and abnormal cardiac function in women and men: a retrospective cohort study. Eur. Heart J. Cardiovasc. Imaging 20, 625–632 (2019).

    Article  PubMed  Google Scholar 

  108. Ishai, A. et al. Amygdalar metabolic activity independently associates with progression of visceral adiposity. J. Clin. Endocrinol. Metab. 104, 1029–1038 (2019).

    Article  PubMed  Google Scholar 

  109. Osborne, M. T. et al. Amygdalar activity predicts future incident diabetes independently of adiposity. Psychoneuroendocrinology 100, 32–40 (2019).

    Article  PubMed  Google Scholar 

  110. Radfar, A. et al. Stress-associated neurobiological activity associates with the risk for and timing of subsequent Takotsubo syndrome. Eur. Heart J. 42, 1898–1908 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tawakol, A. et al. Relation between resting amygdalar activity and cardiovascular events: a longitudinal and cohort study. Lancet 389, 834–845 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Templin, C. et al. Clinical features and outcomes of Takotsubo (stress) cardiomyopathy. N. Engl. J. Med. 373, 929–938 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Burger, I. A. et al. Age- and sex-dependent changes in sympathetic activity of the left ventricular apex assessed by 18F-DOPA PET imaging. PLoS One 13, e0202302 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Cammann, V. L. et al. Age-related variations in Takotsubo syndrome. J. Am. Coll. Cardiol. 75, 1869–1877 (2020).

    Article  PubMed  Google Scholar 

  115. Hogarth, A. J., Graham, L. N., Mary, D. A. & Greenwood, J. P. Gender differences in sympathetic neural activation following uncomplicated acute myocardial infarction. Eur. Heart J. 30, 1764–1770 (2009).

    Article  PubMed  Google Scholar 

  116. Wittstein, I. S. Why age matters in Takotsubo syndrome. J. Am. Coll. Cardiol. 75, 1878–1881 (2020).

    Article  PubMed  Google Scholar 

  117. Mazure, C. M., Weinberger, A. H., Pittman, B., Sibon, I. & Swendsen, J. Gender and stress in predicting depressive symptoms following stroke. Cerebrovasc. Dis. 38, 240–246 (2014).

    Article  PubMed  Google Scholar 

  118. Templin, C. et al. Altered limbic and autonomic processing supports brain-heart axis in Takotsubo syndrome. Eur. Heart J. 40, 1183–1187 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Hiestand, T. et al. Takotsubo syndrome associated with structural brain alterations of the limbic system. J. Am. Coll. Cardiol. 71, 809–811 (2018).

    Article  PubMed  Google Scholar 

  120. Fiechter, M. et al. Sex-dependent association between inflammation, neural stress responses, and impaired myocardial function. Eur. J. Nucl. Med. Mol. Imaging 47, 2010–2015 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Mehta, P. K., Lima, B. B., Nelson, M. D. & Bairey Merz, C. N. Adverse cardiovascular outcomes in women: blame the amygdala? Eur. Heart J. Cardiovasc. Imaging 20, 633–635 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Gebhard, C., Bengs, S., Haider, A. & Fiechter, M. The neuro-inflammatory-vascular circuit: evidence for a sex-dependent interrelation? Front. Neurosci. 14, 614345 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Komesaroff, P. A., Esler, M. D. & Sudhir, K. Estrogen supplementation attenuates glucocorticoid and catecholamine responses to mental stress in perimenopausal women. J. Clin. Endocrinol. Metab. 84, 606–610 (1999).

    CAS  PubMed  Google Scholar 

  124. Dart, A. M., Du, X. J. & Kingwell, B. A. Gender, sex hormones and autonomic nervous control of the cardiovascular system. Cardiovasc. Res. 53, 678–687 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Maredziak, M. et al. Microvascular dysfunction and sympathetic hyperactivity in women with supra-normal left ventricular ejection fraction (snLVEF). Eur. J. Nucl. Med. Mol. Imaging 47, 3094–3106 (2020).

    Article  CAS  PubMed  Google Scholar 

  126. Gebhard, C. E. et al. Heart rate reserve is a long-term risk predictor in women undergoing myocardial perfusion imaging. Eur. J. Nucl. Med. Mol. Imaging 46, 2032–2041 (2019).

    Article  PubMed  Google Scholar 

  127. Luzier, A. B. et al. Gender-related effects on metoprolol pharmacokinetics and pharmacodynamics in healthy volunteers. Clin. Pharmacol. Ther. 66, 594–601 (1999).

    Article  CAS  PubMed  Google Scholar 

  128. Mauvais-Jarvis, F. et al. Sex- and gender-based pharmacological response to drugs. Pharmacol. Rev. 73, 730–762 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Khera, A. et al. Race and gender differences in C-reactive protein levels. J. Am. Coll. Cardiol. 46, 464–469 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Sullivan, S. et al. Young women with coronary artery disease exhibit higher concentrations of interleukin-6 at baseline and in response to mental stress. J. Am. Heart Assoc. 7, e010329 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Fiechter, M. et al. Sex differences in the association between inflammation and ischemic heart disease. Thromb. Haemost. 119, 1471–1480 (2019).

    Article  PubMed  Google Scholar 

  132. Diggelmann,F. et al. Potential impact of statins on neuronal stress responses in patients at risk for cardiovascular disease. J. Pers. Med. 11, 261 (2021).

    Article  PubMed  Google Scholar 

  133. Martin, E. A. et al. Sex differences in vascular and endothelial responses to acute mental stress. Clin. Auton. Res. 18, 339–345 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Vaccarino, V. et al. Sex differences in mental stress-induced myocardial ischemia in young survivors of an acute myocardial infarction. Psychosom. Med. 76, 171–180 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Triposkiadis, F. et al. The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. J. Am. Coll. Cardiol. 54, 1747–1762 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Tadic, M. et al. Sex and heart failure with preserved ejection fraction: from pathophysiology to clinical studies. J. Clin. Med. 8, 792 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Aranda, G. et al. Cardiovascular risk associated with gender affirming hormone therapy in transgender population. Front. Endocrinol. 12, 718200 (2021).

    Article  Google Scholar 

  138. Caceres, B. A. et al. Assessing and addressing cardiovascular health in LGBTQ adults: a scientific statement from the American Heart Association. Circulation 142, e321–e332 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Azagba, S., Latham, K. & Shan, L. Cigarette, smokeless tobacco, and alcohol use among transgender adults in the United States. Int. J. Drug Policy 73, 163–169 (2019).

    Article  PubMed  Google Scholar 

  140. Alzahrani, T. et al. Cardiovascular disease risk factors and myocardial infarction in the transgender population. Circ. Cardiovasc. Qual. Outcomes 12, e005597 (2019).

    Article  PubMed  Google Scholar 

  141. de Blok, C. J. et al. Mortality trends over five decades in adult transgender people receiving hormone treatment: a report from the Amsterdam cohort of gender dysphoria. Lancet Diabetes Endocrinol. 9, 663–670 (2021).

    Article  PubMed  Google Scholar 

  142. Reisner, S. L. et al. Global health burden and needs of transgender populations: a review. Lancet 388, 412–436 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Defreyne, J., Van de Bruaene, L. D. L., Rietzschel, E., Van Schuylenbergh, J. & T’Sjoen, G. G. R. Effects of gender-affirming hormones on lipid, metabolic, and cardiac surrogate blood markers in transgender persons. Clin. Chem. 65, 119–134 (2019).

    Article  CAS  PubMed  Google Scholar 

  144. Streed, C. G. Jr et al. Cardiovascular disease among transgender adults receiving hormone therapy: a narrative review. Ann. Intern. Med. 167, 256–267 (2017).

    Article  PubMed  Google Scholar 

  145. Wierckx, K. et al. Prevalence of cardiovascular disease and cancer during cross-sex hormone therapy in a large cohort of trans persons: a case-control study. Eur. J. Endocrinol. 169, 471–478 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Maraka, S. et al. Sex steroids and cardiovascular outcomes in transgender individuals: a systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 102, 3914–3923 (2017).

    Article  PubMed  Google Scholar 

  147. Asscheman, H., Gooren, L. J. & Eklund, P. L. Mortality and morbidity in transsexual patients with cross-gender hormone treatment. Metabolism 38, 869–873 (1989).

    Article  CAS  PubMed  Google Scholar 

  148. Wierckx, K. et al. Cross-sex hormone therapy in trans persons is safe and effective at short-time follow-up: results from the European network for the investigation of gender incongruence. J. Sex. Med. 11, 1999–2011 (2014).

    Article  CAS  PubMed  Google Scholar 

  149. Dekker, M. J. et al. A European network for the investigation of gender incongruence: endocrine part. J. Sex. Med. 13, 994–999 (2016).

    Article  CAS  PubMed  Google Scholar 

  150. Connelly, P. J. et al. Gender-affirming hormone therapy, vascular health and cardiovascular disease in transgender adults. Hypertension 74, 1266–1274 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Susan Bengs (University Hospital Zurich, Zurich, Switzerland) for preparing the illustrations for initial submission and Nicola Lott (University Hospital Zurich, Zurich, Switzerland) for proofreading. V.R.-Z. has received research funding from GE Academy H2020-SwafS-2018-2020/EU: 824585; Gendage (01GL1716A), Bundesministerium für Bildung und Forschung (BMBF), Germany; and Gender/Sex in Multiple Sclerosis (ZMV I 1 - 25 20 FSB 431), Bundesministerium für Gesundheit (BMG), Germany. C.G. has received research funding from the Swiss National Science Foundation (SNSF); the Olga Mayenfisch Foundation, Switzerland; the OPO Foundation, Switzerland; the Novartis Foundation, Switzerland; the Swiss Heart Foundation; the Olten Heart Foundation, Switzerland, the Helmut Horten Foundation, Switzerland; the EMDO Foundation, Switzerland; the Iten-Kohaut Foundation, Switzerland, the University Zurich (UZH) Foundation, Switzerland; the University Hospital Zurich (USZ) Foundation, Switzerland; and the LOOP Zurich, Switzerland.

Author information

Authors and Affiliations

Authors

Contributions

V.R.-Z. researched data for the article. Both authors wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Vera Regitz-Zagrosek.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Sanne Peters, Valeria Raparelli and Eva Swahn for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Gendered Innovations: https://genderedinnovations.stanford.edu

International Society for Gender Medicine: http://www.isogem.eu/

Organization for the Study of Sex Differences: https://www.ossdweb.org/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Regitz-Zagrosek, V., Gebhard, C. Gender medicine: effects of sex and gender on cardiovascular disease manifestation and outcomes. Nat Rev Cardiol 20, 236–247 (2023). https://doi.org/10.1038/s41569-022-00797-4

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41569-022-00797-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing