Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Interventional therapies for pulmonary embolism

Abstract

Pulmonary embolism (PE) is the leading cause of in-hospital death and the third most frequent cause of cardiovascular death. The clinical presentation of PE is variable, and choosing the appropriate treatment for individual patients can be challenging. Traditionally, treatment of PE has involved a choice of anticoagulation, thrombolysis or surgery; however, a range of percutaneous interventional technologies have been developed that are under investigation in patients with intermediate–high-risk or high-risk PE. These interventional technologies include catheter-directed thrombolysis (with or without ultrasound assistance), aspiration thrombectomy and combinations of the aforementioned principles. These interventional treatment options might lead to a more rapid improvement in right ventricular function and pulmonary and/or systemic haemodynamics in particular patients. However, evidence from randomized controlled trials on the safety and efficacy of these interventions compared with conservative therapies is lacking. In this Review, we discuss the underlying pathophysiology of PE, provide assistance with decision-making on patient selection and critically appraise the available clinical evidence on interventional, catheter-based approaches for PE treatment. Finally, we discuss future perspectives and unmet needs.

Key points

  • Pulmonary embolism (PE) remains the leading cause of preventable death in hospitalized patients; risk stratification of PE is advised on the basis of clinical presentation, haemodynamics and comorbidities.

  • Patients with low-risk or intermediate–low-risk PE benefit from anticoagulation alone, whereas treatment of patients with intermediate–high-risk or high-risk PE poses difficulties; systemic thrombolysis is the first-line recommendation for patients with high-risk PE but is associated with severe adverse events, especially bleeding.

  • In patients with intermediate–high-risk PE and those with high-risk PE and contraindications to thrombolysis, interventional therapies, such as catheter-directed thrombolysis (CDT), ultrasound-assisted CDT (USCDT), pharmacomechanical CDT and aspiration thrombectomy, are possible options.

  • Despite showing promising results in reducing right ventricular dysfunction and relief of haemodynamic compromise in small studies and registries, these interventional therapies have not been rigorously investigated in adequately powered randomized controlled trials.

  • CDT, USCDT and pharmacomechanical CDT reduce the dose of thrombolytics used, whereas aspiration thrombectomy eliminates the use of thrombolytics.

  • Large, adequately powered, randomized controlled trials investigating low-dose thrombolysis, CDT, USCDT and large-bore thrombectomy are ongoing and more are planned.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of studies of interventional therapies in PE.
Fig. 2: Pathophysiology of PE and concomitant pulmonary hypertension after pulmonary artery obstruction and vasoconstriction.
Fig. 3: Treatment algorithm for PE.
Fig. 4: Large-bore thrombectomy.

Similar content being viewed by others

References

  1. Raskob, G. E. et al. Thrombosis: a major contributor to global disease burden. Arterioscler. Thromb. Vasc. Biol. 34, 2363–2371 (2014).

    CAS  PubMed  Google Scholar 

  2. Wendelboe, A. M. & Raskob, G. E. Global burden of thrombosis. Circ. Res. 118, 1340–1347 (2016).

    CAS  PubMed  Google Scholar 

  3. Heit, J. A. The epidemiology of venous thromboembolism in the community. Arterioscler. Thromb. Vasc. Biol. 28, 370–372 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Heit, J. A., Cohen, A. T. & Anderson, F. A. Estimated annual number of incident and recurrent, non-fatal and fatal venous thromboembolism (VTE) events in the US. Blood 106, 910–910 (2005).

    Google Scholar 

  5. Cohen, A. T. et al. Venous thromboembolism (VTE) in Europe. The number of VTE events and associated morbidity and mortality. Thromb. Haemost. 98, 756–764 (2007).

    CAS  PubMed  Google Scholar 

  6. Lehnert, P., Lange, T., Møller, C., Olsen, P. & Carlsen, J. Acute pulmonary embolism in a national danish cohort: increasing incidence and decreasing mortality. Thromb. Haemost. 118, 539–546 (2018).

    PubMed  Google Scholar 

  7. Jiménez, D. et al. Epidemiology, patterns of care and mortality for patients with hemodynamically unstable acute symptomatic pulmonary embolism. Int. J. Cardiol. 269, 327–333 (2018).

    PubMed  Google Scholar 

  8. Konstantinides, S. V., Barco, S., Lankeit, M. & Meyer, G. Management of pulmonary embolism: an update. J. Am. Coll. Cardiol. 67, 976–990 (2016).

    PubMed  Google Scholar 

  9. Jiménez, D. et al. Trends in the management and outcomes of acute pulmonary embolism: analysis from the RIETE registry. J. Am. Coll. Cardiol. 67, 162–170 (2016).

    PubMed  Google Scholar 

  10. Keller, K. et al. Trends in thrombolytic treatment and outcomes of acute pulmonary embolism in Germany. Eur. Heart J. 41, 522–529 (2020).

    PubMed  Google Scholar 

  11. Mauritz, G.-J., Marcus, J. T., Westerhof, N., Postmus, P. E. & Vonk-Noordegraaf, A. Prolonged right ventricular post-systolic isovolumic period in pulmonary arterial hypertension is not a reflection of diastolic dysfunction. Heart 97, 473–478 (2011).

    PubMed  Google Scholar 

  12. Marcus, J. T. et al. Interventricular mechanical asynchrony in pulmonary arterial hypertension. J. Am. Coll. Cardiol. 51, 750–757 (2008).

    PubMed  Google Scholar 

  13. Begieneman, M. P. V. et al. Pulmonary embolism causes endomyocarditis in the human heart. Heart 94, 450–456 (2007).

    PubMed  Google Scholar 

  14. McIntyre, K. M. & Sasahara, A. A. The hemodynamic response to pulmonary embolism in patients without prior cardiopulmonary disease. Am. J. Cardiol. 28, 288–294 (1971).

    CAS  PubMed  Google Scholar 

  15. Smulders, Y. Pathophysiology and treatment of haemodynamic instability in acute pulmonary embolism: the pivotal role of pulmonary vasoconstriction. Cardiovasc. Res. 48, 23–33 (2000).

    CAS  PubMed  Google Scholar 

  16. Lankhaar, J.-W. et al. Quantification of right ventricular afterload in patients with and without pulmonary hypertension. Am. J. Physiol. Heart Circ. Physiol. 291, H1731–H1737 (2006).

    CAS  PubMed  Google Scholar 

  17. Rogers, M. A. M. et al. Triggers of hospitalization for venous thromboembolism. Circulation 125, 2092–2099 (2012).

    PubMed  PubMed Central  Google Scholar 

  18. Anderson, F. A. Jr & Spencer, F. A. Risk factors for venous thromboembolism. Circulation 107, I9–I16 (2003).

    PubMed  Google Scholar 

  19. Ku, G. H. et al. Venous thromboembolism in patients with acute leukemia: incidence, risk factors, and effect on survival. Blood 113, 3911–3917 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Chew, H. K., Wun, T., Harvey, D., Zhou, H. & White, R. H. Incidence of venous thromboembolism and its effect on survival among patients with common cancers. Arch. Intern. Med. 166, 458–464 (2006).

    PubMed  Google Scholar 

  21. Timp, J. F., Braekkan, S. K., Versteeg, H. H. & Cannegieter, S. C. Epidemiology of cancer-associated venous thrombosis. Blood 122, 1712–1723 (2013).

    CAS  PubMed  Google Scholar 

  22. Blom, J. W., Doggen, C. J. M., Osanto, S. & Rosendaal, F. R. Malignancies, prothrombotic mutations, and the risk of venous thrombosis. J. Am. Med. Assoc. 293, 715–722 (2005).

    CAS  Google Scholar 

  23. Gussoni, G. et al. Three-month mortality rate and clinical predictors in patients with venous thromboembolism and cancer. Findings from the RIETE registry. Thromb. Res. 131, 24–30 (2013).

    CAS  PubMed  Google Scholar 

  24. Blanco-Molina, A. et al. Venous thromboembolism in women using hormonal contraceptives. Findings from the RIETE Registry. Thromb. Haemost. 101, 478–482 (2009).

    CAS  PubMed  Google Scholar 

  25. Blanco-Molina, A. et al. Venous thromboembolism during pregnancy, postpartum or during contraceptive use. Thromb. Haemost. 103, 306–311 (2010).

    CAS  PubMed  Google Scholar 

  26. van Hylckama Vlieg, A. & Middeldorp, S. Hormone therapies and venous thromboembolism: where are we now? J. Thromb. Haemost. 9, 257–266 (2011).

    PubMed  Google Scholar 

  27. Lidegaard, Ø., Nielsen, L. H., Skovlund, C. W., Skjeldestad, F. E. & Løkkegaard, E. Risk of venous thromboembolism from use of oral contraceptives containing different progestogens and oestrogen doses: Danish cohort study, 2001-9. Br. Med. J. 343, d6423 (2011).

    Google Scholar 

  28. de Bastos, M. et al. Combined oral contraceptives: venous thrombosis. Cochrane Database Syst. Rev. 3, CD010813 (2014).

    Google Scholar 

  29. van Vlijmen, E. F. W., Wiewel-Verschueren, S., Monster, T. B. M. & Meijer, K. Combined oral contraceptives, thrombophilia and the risk of venous thromboembolism: a systematic review and meta-analysis. J. Thromb. Haemost. 14, 1393–1403 (2016).

    PubMed  Google Scholar 

  30. Konstantinides, S. V. et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS). Eur. Heart J. 41, 543–603 (2020).

    PubMed  Google Scholar 

  31. Hobohm, L. et al. Pulmonary embolism response team (PERT) implementation and its clinical value across countries: a scoping review and meta-analysis. Clin. Res. Cardiol. https://doi.org/10.1007/s00392-022-02077-0 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kahn, S. R. & de Wit, K. Pulmonary embolism. N. Eng. J. Med. 387, 45–57 (2022).

    Google Scholar 

  33. Germini, F. et al. Pulmonary embolism prevalence among emergency department cohorts: a systematic review and meta‐analysis by country of study. J. Thromb. Haemost. 19, 173–185 (2021).

    PubMed  Google Scholar 

  34. Klok, F. A., Meyer, G. & Konstantinides, S. Management of intermediate-risk pulmonary embolism: uncertainties and challenges. Eur. J. Haematol. 95, 489–497 (2015).

    CAS  PubMed  Google Scholar 

  35. Huisman, M. V. et al. Pulmonary embolism. Nat. Rev. Dis. Prim. 4, 18028 (2018).

    PubMed  Google Scholar 

  36. Romano, K. R. et al. Vancouver general hospital pulmonary embolism response team (VGH PERT): initial three-year experience. Can. J. Anesth. 67, 1806–1813 (2020).

    PubMed  Google Scholar 

  37. Myc, L. A. et al. Adoption of a dedicated multidisciplinary team is associated with improved survival in acute pulmonary embolism. Resp. Res. 21, 159 (2020).

    Google Scholar 

  38. Wiske, C. P. et al. Evaluating time to treatment and in-hospital outcomes of pulmonary embolism response teams. J. Vasc. Surg. Venous Lymph. Disord. 8, 717–724 (2020).

    Google Scholar 

  39. Carroll, B. J. et al. Changes in care for acute pulmonary embolism through a multidisciplinary pulmonary embolism response team. Am. J. Med. 133, 1313–1321.e6 (2020).

    PubMed  PubMed Central  Google Scholar 

  40. Rosovsky, R. et al. Changes in treatment and outcomes after creation of a pulmonary embolism response team (PERT), a 10-year analysis. J. Thromb. Thrombolysis 47, 31–40 (2019).

    PubMed  Google Scholar 

  41. Sanchez, O. et al. Reduced-dose intravenous thrombolysis for acute intermediate-high-risk pulmonary embolism: rationale and design of the Pulmonary Embolism International THrOmbolysis (PEITHO)−3 trial. Thromb. Heamost. 122, 857–866 (2022).

    Google Scholar 

  42. Klok, F. A. et al. Ultrasound-facilitated, catheter-directed thrombolysis vs anticoagulation alone for acute intermediate-high-risk pulmonary embolism: rationale and design of the HI-PEITHO study. Am. Heart J. 251, 43–53 (2022).

    CAS  PubMed  Google Scholar 

  43. Jaff, M. R. et al. Management of massive and submassive pulmonary embolism, iliofemoral deep vein thrombosis, and chronic thromboembolic pulmonary hypertension. Circulation 123, 1788–1830 (2011).

    PubMed  Google Scholar 

  44. Giri, J. et al. Interventional therapies for acute pulmonary embolism: current status and principles for the development of novel evidence: a scientific statement from the American Heart Association. Circulation 140, e774–e801 (2019).

    PubMed  Google Scholar 

  45. Stein, P. D. & Matta, F. Thrombolytic therapy in unstable patients with acute pulmonary embolism: saves lives but underused. Am. J. Med. 125, 465–470 (2012).

    PubMed  Google Scholar 

  46. Stein, P. D., Matta, F., Hughes, P. G. & Hughes, M. J. Nineteen-year trends in mortality of patients hospitalized in the United States with high-risk pulmonary embolism. Am. J. Med. 134, 1260–1264 (2021).

    PubMed  Google Scholar 

  47. Moser, K. M. & LeMoine, J. R. Is embolic risk conditioned by location of deep venous thrombosis? Ann. Intern. Med. 94, 439–444 (1981).

    CAS  PubMed  Google Scholar 

  48. Girard, P. et al. Diagnosis of pulmonary embolism in patients with proximal deep vein thrombosis: specificity of symptoms and perfusion defects at baseline and during anticoagulant therapy. Am. J. Respir. Crit. Care Med. 164, 1033–1037 (2001).

    CAS  PubMed  Google Scholar 

  49. Li, Y. et al. Development and validation of a prediction model to estimate risk of acute pulmonary embolism in deep vein thrombosis patients. Sci. Rep. 12, 649 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Oates, J. A. et al. Clinical implications of prostaglandin and thromboxane A2 formation (2/2). N. Engl. J. Med. 319, 761–767 (1988).

    CAS  PubMed  Google Scholar 

  51. Oates, J. A. et al. Clinical implications of prostaglandin and thromboxane A2 formation (1/2). N. Engl. J. Med. 319, 689–698 (1988).

    CAS  PubMed  Google Scholar 

  52. Reeves, W. C. et al. The release of thromboxane A2 and prostacyclin following experimental acute pulmonary embolism. Prostaglandins Leukot. Med. 11, 1–10 (1983).

    CAS  PubMed  Google Scholar 

  53. Utsunomiya, T. et al. Circulating negative inotropic agent(s) following pulmonary embolism. Surgery 91, 402–408 (1982).

    CAS  PubMed  Google Scholar 

  54. Houston, D. S. & Vanhoutte, P. M. Serotonin and the vascular system. Role in health and disease, and implications for therapy. Drugs 31, 149–163 (1986).

    CAS  PubMed  Google Scholar 

  55. Egermayer, P., Town, G. I. & Peacock, A. J. Role of serotonin in the pathogenesis of acute and chronic pulmonary hypertension. Thorax 54, 161–168 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. MacLean, M. R. Endothelin-1 and serotonin: mediators of primary and secondary pulmonary hypertension? J. Lab. Clin. Med. 134, 105–114 (1999).

    CAS  PubMed  Google Scholar 

  57. Harjola, V.-P. et al. Contemporary management of acute right ventricular failure: a statement from the Heart Failure Association and the Working Group on Pulmonary Circulation and Right Ventricular Function of the European Society of Cardiology. Eur. J. Heart Fail. 18, 226–241 (2016).

    PubMed  Google Scholar 

  58. Rodríguez-Roisin, R. & Roca, J. Mechanisms of hypoxemia. Intensive Care Med. 31, 1017–1019 (2005).

    PubMed  Google Scholar 

  59. Stein, P. D. et al. Clinical, laboratory, roentgenographic, and electrocardiographic findings in patients with acute pulmonary embolism and no pre-existing cardiac or pulmonary disease. Chest 100, 598–603 (1991).

    CAS  PubMed  Google Scholar 

  60. Harjola, V.-P. et al. Contemporary management of acute right ventricular failure: a statement from the Heart Failure Association and the Working Group on Pulmonary Circulation and Right Ventricular Function of the European Society of Cardiology. Eur. J. Heart Fail. 18, 226–241 (2016).

    PubMed  Google Scholar 

  61. Sanchez, O. et al. Prognostic value of right ventricular dysfunction in patients with haemodynamically stable pulmonary embolism: a systematic review. Eur. Heart J. 29, 1569–1577 (2008).

    PubMed  Google Scholar 

  62. Cavallazzi, R., Nair, A., Vasu, T. & Marik, P. E. Natriuretic peptides in acute pulmonary embolism: a systematic review. Intensive Care Med. 34, 2147–2156 (2008).

    CAS  PubMed  Google Scholar 

  63. Klok, F. A., Mos, I. C. M. & Huisman, M. V. Brain-type natriuretic peptide levels in the prediction of adverse outcome in patients with pulmonary embolism: a systematic review and meta-analysis. Am. J. Respir. Crit. Care Med. 178, 425–430 (2008).

    PubMed  Google Scholar 

  64. Becattini, C., Vedovati, M. C. & Agnelli, G. Prognostic value of troponins in acute pulmonary embolism: a meta-analysis. Circulation 116, 427–433 (2007).

    CAS  PubMed  Google Scholar 

  65. Lobo, J. L. et al. Prognostic significance of tricuspid annular displacement in normotensive patients with acute symptomatic pulmonary embolism. J. Thromb. Haemost. 12, 1020–1027 (2014).

    CAS  PubMed  Google Scholar 

  66. Pruszczyk, P. et al. Prognostic value of echocardiography in normotensive patients with acute pulmonary embolism. JACC Cardiovasc. Imaging 7, 553–560 (2014).

    PubMed  Google Scholar 

  67. Kurnicka, K. et al. Echocardiographic pattern of acute pulmonary embolism: analysis of 511 consecutive patients. J. Am. Soc. Echocardiogr. 29, 907–913 (2016).

    PubMed  Google Scholar 

  68. Humbert, M. et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Heart J. 43, 3618–3731 (2022).

    CAS  PubMed  Google Scholar 

  69. Valerio, L. et al. Chronic thromboembolic pulmonary hypertension and impairment after pulmonary embolism: the FOCUS study. Eur. Heart J. 43, 3387–3398 (2022).

    PubMed  PubMed Central  Google Scholar 

  70. Sista, A. K., Miller, L. E., Kahn, S. R. & Kline, J. A. Persistent right ventricular dysfunction, functional capacity limitation, exercise intolerance, and quality of life impairment following pulmonary embolism: systematic review with meta-analysis. Vasc. Med. 22, 37–43 (2017).

    PubMed  Google Scholar 

  71. Vanni, S. et al. Prognostic value of plasma lactate levels among patients with acute pulmonary embolism: the thrombo-embolism lactate outcome study. Ann. Emerg. Med. 61, 330–338 (2013).

    PubMed  Google Scholar 

  72. Grifoni, S. et al. Short-term clinical outcome of patients with acute pulmonary embolism, normal blood pressure, and echocardiographic right ventricular dysfunction. Circulation 101, 2817–2822 (2000).

    CAS  PubMed  Google Scholar 

  73. Kreit, J. W. The impact of right ventricular dysfunction on the prognosis and therapy of normotensive patients with pulmonary embolism. Chest 125, 1539–1545 (2004).

    PubMed  Google Scholar 

  74. Meinel, F. G. et al. Predictive value of computed tomography in acute pulmonary embolism: systematic review and meta-analysis. Am. J. Med. 128, 747–759.e2 (2015).

    PubMed  Google Scholar 

  75. Frémont, B. et al. Prognostic value of echocardiographic right/left ventricular end-diastolic diameter ratio in patients with acute pulmonary embolism: results from a monocenter registry of 1,416 patients. Chest 133, 358–362 (2008).

    PubMed  Google Scholar 

  76. Bova, C. et al. Risk stratification and outcomes in hemodynamically stable patients with acute pulmonary embolism: a prospective, multicentre, cohort study with three months of follow-up. J. Thromb. Haemost. 7, 938–944 (2009).

    CAS  PubMed  Google Scholar 

  77. Sam, A. et al. The shock index and the simplified PESI for identification of low-risk patients with acute pulmonary embolism. Eur. Respir. J. 37, 762–766 (2011).

    CAS  PubMed  Google Scholar 

  78. Righini, M. et al. The simplified pulmonary embolism severity index (PESI): validation of a clinical prognostic model for pulmonary embolism. J. Thromb. Haemost. 9, 2115–2117 (2011).

    CAS  PubMed  Google Scholar 

  79. Jiménez, D. et al. Simplification of the pulmonary embolism severity index for prognostication in patients with acute symptomatic pulmonary embolism. Arch. Intern. Med. 170, 1383–1389 (2010).

    PubMed  Google Scholar 

  80. Donzé, J. et al. Prospective validation of the Pulmonary Embolism Severity Index. Thromb. Heamost. 100, 943–948 (2008).

    Google Scholar 

  81. Elias, A., Mallett, S., Daoud-Elias, M., Poggi, J.-N. & Clarke, M. Prognostic models in acute pulmonary embolism: a systematic review and meta-analysis. BMJ Open 6, e010324 (2016).

    PubMed  PubMed Central  Google Scholar 

  82. Bova, C. et al. A prospective validation of the Bova score in normotensive patients with acute pulmonary embolism. Thromb. Res. 165, 107–111 (2018).

    CAS  PubMed  Google Scholar 

  83. Lankeit, M. et al. A simple score for rapid risk assessment of non-high-risk pulmonary embolism. Clin. Res. Cardiol. 102, 73–80 (2013).

    PubMed  Google Scholar 

  84. Dellas, C. et al. A novel H-FABP assay and a fast prognostic score for risk assessment of normotensive pulmonary embolism. Thromb. Heamost. 111, 996–1003 (2014).

    CAS  Google Scholar 

  85. Hobohm, L., Becattini, C., Konstantinides, S. V., Casazza, F. & Lankeit, M. Validation of a fast prognostic score for risk stratification of normotensive patients with acute pulmonary embolism. Clin. Res. Cardiol. 109, 1008–1017 (2020).

    PubMed  PubMed Central  Google Scholar 

  86. Aujesky, D. et al. Outpatient versus inpatient treatment for patients with acute pulmonary embolism: an international, open-label, randomised, non-inferiority trial. Lancet 378, 41–48 (2011).

    PubMed  Google Scholar 

  87. Stevens, S. M. et al. Executive summary: antithrombotic therapy for VTE disease: second update of the CHEST guideline and expert panel report. Chest 160, 2247–2259 (2021).

    PubMed  Google Scholar 

  88. Dudzinski, D. M. & Piazza, G. Multidisciplinary pulmonary embolism response teams. Circulation 133, 98–103 (2016).

    PubMed  Google Scholar 

  89. Turpie, A. G. G. et al. 36-month clinical outcomes of patients with venous thromboembolism: GARFIELD-VTE. Thromb. Res. 222, 31–39 (2023).

    CAS  PubMed  Google Scholar 

  90. Lyon, A. R. et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur. Heart J. 43, 4229–4361 (2022).

    PubMed  Google Scholar 

  91. van Es, N., Coppens, M., Schulman, S., Middeldorp, S. & Büller, H. R. Direct oral anticoagulants compared with vitamin K antagonists for acute venous thromboembolism: evidence from phase 3 trials. Blood 124, 1968–1975 (2014).

    PubMed  Google Scholar 

  92. Farge, D. et al. 2019 International clinical practice guidelines for the treatment and prophylaxis of venous thromboembolism in patients with cancer. Lancet Oncol. 20, e566–e581 (2019).

    PubMed  Google Scholar 

  93. Mazzolai, L. et al. Diagnosis and management of acute deep vein thrombosis: a joint consensus document from the European Society of Cardiology working groups of aorta and peripheral vascular diseases and pulmonary circulation and right ventricular function. Eur. Heart J. 39, 4208–4218 (2018).

    CAS  PubMed  Google Scholar 

  94. Konstantinides, S. V. & Barco, S. Systemic thrombolytic therapy for acute pulmonary embolism: who is a candidate? Semin. Respir. Crit. Care Med. 38, 56–65 (2017).

    PubMed  Google Scholar 

  95. Marti, C. et al. Systemic thrombolytic therapy for acute pulmonary embolism: a systematic review and meta-analysis. Eur. Heart J. 36, 605–614 (2015).

    CAS  PubMed  Google Scholar 

  96. Chatterjee, S. et al. Thrombolysis for pulmonary embolism and risk of all-cause mortality, major bleeding, and intracranial hemorrhage: a meta-analysis. J. Am. Med. Assoc. 311, 2414–2421 (2014).

    Google Scholar 

  97. Goldhaber, S. Z., Agnelli, G. & Levine, M. N. Reduced dose bolus alteplase vs conventional alteplase infusion for pulmonary embolism thrombolysis. An international multicenter randomized trial. The Bolus Alteplase Pulmonary Embolism Group. Chest 106, 718–724 (1994).

    CAS  PubMed  Google Scholar 

  98. Levine, M. et al. A randomized trial of a single bolus dosage regimen of recombinant tissue plasminogen activator in patients with acute pulmonary embolism. Chest 98, 1473–1479 (1990).

    CAS  PubMed  Google Scholar 

  99. Zhang, Z. et al. Lower dosage of recombinant tissue-type plasminogen activator (rt-PA) in the treatment of acute pulmonary embolism: a systematic review and meta-analysis. Thromb. Res. 133, 357–363 (2014).

    CAS  PubMed  Google Scholar 

  100. Amini, S. et al. Efficacy and safety of different dosage of recombinant tissue-type plasminogen activator (rt-PA) in the treatment of acute pulmonary embolism: a systematic review and meta-analysis. Iran. J. Pharm. Res. 20, 441–454 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Valerio, L., Klok, F. A. & Barco, S. Immediate and late impact of reperfusion therapies in acute pulmonary embolism. Eur. Heart J. Suppl. 21, I1–I13 (2019).

    PubMed  PubMed Central  Google Scholar 

  102. Wang, C. et al. Efficacy and safety of low dose recombinant tissue-type plasminogen activator for the treatment of acute pulmonary thromboembolism: a randomized, multicenter, controlled trial. Chest 137, 254–262 (2010).

    CAS  PubMed  Google Scholar 

  103. Sharifi, M. et al. Moderate pulmonary embolism treated with thrombolysis (from the ‘MOPETT’ trial). Am. J. Cardiol. 111, 273–277 (2013).

    PubMed  Google Scholar 

  104. GUSTO Investigators. An international randomized trial comparing four thrombolytic strategies for acute myocardial infarction. N. Engl. J. Med. 329, 673–682 (1993).

    Google Scholar 

  105. Pruszczyk, P. et al. Percutaneous treatment options for acute pulmonary embolism: a clinical consensus statement by the ESC Working Group on Pulmonary Circulation and Right Ventricular Function and the European Association of Percutaneous Cardiovascular Interventions. EuroIntervention 18, e623–e638 (2022).

    PubMed  Google Scholar 

  106. Piazza, G. et al. A prospective, single-arm, multicenter trial of ultrasound-facilitated, catheter-directed, low-dose fibrinolysis for acute massive and submassive pulmonary embolism: the SEATTLE II study. JACC Cardiovasc. Interv. 8, 1382–1392 (2015).

    PubMed  Google Scholar 

  107. Ouriel, K., Veith, F. J. & Sasahara, A. A. A comparison of recombinant urokinase with vascular surgery as initial treatment for acute arterial occlusion of the legs. Thrombolysis or Peripheral Arterial Surgery (TOPAS) Investigators. N. Engl. J. Med. 338, 1105–1111 (1998).

    CAS  PubMed  Google Scholar 

  108. Chait, J., Aurshina, A., Marks, N., Hingorani, A. & Ascher, E. Comparison of ultrasound-accelerated versus multi-hole infusion catheter-directed thrombolysis for the treatment of acute limb ischemia. Vasc. Endovasc. Surg. 53, 558–562 (2019).

    Google Scholar 

  109. Kroupa, J. et al. A pilot randomised trial of catheter-directed thrombolysis or standard anticoagulation for patients with intermediate-high risk acute pulmonary embolism. EuroIntervention 18, e639–e646 (2022).

    PubMed  Google Scholar 

  110. Sadeghipour, P. et al. Catheter-directed thrombolysis vs anticoagulation in patients with acute intermediate-high–risk pulmonary embolism: the CANARY randomized clinical trial. JAMA Cardiol. 7, 1189–1197 (2022).

    PubMed  Google Scholar 

  111. Pasha, A. K. et al. Catheter directed compared to systemically delivered thrombolysis for pulmonary embolism: a systematic review and meta-analysis. J. Thromb. Thrombolysis 53, 454–466 (2022).

    PubMed  Google Scholar 

  112. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03854266 (2021).

  113. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05591118 (2022).

  114. Tapson, V. F. & Jimenez, D. Catheter-based approaches for the treatment of acute pulmonary embolism. Sem. Respir. Crit. Care Med. 38, 73–83 (2017).

    Google Scholar 

  115. Tapson, V. F., Gurbel, P. A., Witty, L. A., Pieper, K. S. & Stack, R. S. Pharmacomechanical thrombolysis of experimental pulmonary emboli. Rapid low-dose intraembolic therapy. Chest 106, 1558–1562 (1994).

    CAS  PubMed  Google Scholar 

  116. Owens, C. A. Ultrasound-enhanced thrombolysis: EKOS endowave infusion catheter system. Semin. Interv. Radiol. 25, 37–41 (2008).

    Google Scholar 

  117. Engelberger, R. P. et al. Ultrasound-assisted versus conventional catheter-directed thrombolysis for acute iliofemoral deep vein thrombosis: 1-year follow-up data of a randomized-controlled trial. J. Thromb. Haemost. 15, 1351–1360 (2017).

    CAS  PubMed  Google Scholar 

  118. Braaten, J. V., Goss, R. A. & Francis, C. W. Ultrasound reversibly disaggregates fibrin fibers. Thromb. Haemost. 78, 1063–1068 (1997).

    CAS  PubMed  Google Scholar 

  119. Kucher, N. et al. Randomized, controlled trial of ultrasound-assisted catheter-directed thrombolysis for acute intermediate-risk pulmonary embolism. Circulation 129, 479–486 (2014).

    PubMed  Google Scholar 

  120. Avgerinos, E. D. et al. Randomized trial comparing standard versus ultrasound-assisted thrombolysis for submassive pulmonary embolism: the SUNSET sPE trial. JACC Cardiovasc. Interv. 14, 1364–1373 (2021).

    PubMed  PubMed Central  Google Scholar 

  121. Sista, A. K. Is it time to sunset ultrasound-assisted catheter-directed thrombolysis for submassive PE? JACC Cardiovasc. Interv. 14, 1374–1375 (2021).

    PubMed  Google Scholar 

  122. Tapson, V. F. et al. A randomized trial of the optimum duration of acoustic pulse thrombolysis procedure in acute intermediate-risk pulmonary embolism: the OPTALYSE PE trial. JACC Cardiovasc. Interv. 11, 1401–1410 (2018).

    PubMed  Google Scholar 

  123. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03426124 (2023).

  124. Goldhaber, S. et al. International EkoSonic Registry of the Treatment and Clinical Outcomes of Patients with Pulmonary Embolism Prospective Cohort 3-month Data Release. https://www.bostonscientific.com/content/dam/bostonscientific/pi/archive/ekos/ekos/campaign/clinical-evidence/knockout/ekos-knocout-data-summary.pdf.coredownload.inline.pdf (2021).

  125. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04790370 (2023).

  126. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04088292 (2022).

  127. Bashir, R. et al. Pharmacomechanical catheter-directed thrombolysis with the Bashir endovascular catheter for acute pulmonary embolism. JACC Cardiovasc. Interv. 15, 2427–2436 (2022).

    PubMed  Google Scholar 

  128. Sista, A. K. et al. Indigo aspiration system for treatment of pulmonary embolism: results of the EXTRACT-PE trial. JACC Cardiovasc. Interv. 14, 319–329 (2021).

    PubMed  Google Scholar 

  129. Wible, B. C. et al. Safety and efficacy of acute pulmonary embolism treated via large-bore aspiration mechanical thrombectomy using the Inari FlowTriever device. J. Vasc. Interv. Radiol. 30, 1370–1375 (2019).

    PubMed  Google Scholar 

  130. Jaber, W. A. et al. Percutaneous thrombectomy in emergency department patients with pulmonary embolism: the FLARE ED sub-study. J. Emerg. Med. 58, 175–182 (2020).

    PubMed  Google Scholar 

  131. Tu, T. et al. A prospective, single-arm, multicenter trial of catheter-directed mechanical thrombectomy for intermediate-risk acute pulmonary embolism: the FLARE study. JACC Cardiovasc. Interv. 12, 859–869 (2019).

    PubMed  Google Scholar 

  132. Toma, C. et al. Percutaneous mechanical thrombectomy in a real-world pulmonary embolism population: Interim results of the FLASH registry. Catheter. Cardiovasc. Interv. 99, 1345–1355 (2022).

    PubMed  PubMed Central  Google Scholar 

  133. Toma, C. et al. Acute outcomes for the full US cohort of the FLASH mechanical thrombectomy registry in pulmonary embolism. EuroIntervention 18, 1201–1212 (2023).

    PubMed  Google Scholar 

  134. Toma, C. et al. Percutaneous thrombectomy in patients with massive and very high‐risk submassive acute pulmonary embolism. Catheter. Cardiovasc. Interv. 96, 1465–1470 (2020).

    PubMed  Google Scholar 

  135. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05111613 (2023).

  136. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04795167 (2023).

  137. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05133713 (2022).

  138. Araszkiewicz, A. et al. Continuous aspiration thrombectomy in high- and intermediate-high-risk pulmonary embolism in real-world clinical practice. J. Interv. Cardiol. 21, 4191079 (2020).

    Google Scholar 

  139. Ciampi-Dopazo, J. J. et al. Aspiration thrombectomy for treatment of acute massive and submassive pulmonary embolism: initial single-center prospective experience. J. Vasc. Interv. Radiol. 29, 101–106 (2018).

    PubMed  Google Scholar 

  140. Al-Hakim, R., Bhatt, A. & Benenati, J. F. Continuous aspiration mechanical thrombectomy for the management of submassive pulmonary embolism: a single-center experience. J. Vasc. Interv. Radiol. 28, 1348–1352 (2017).

    PubMed  Google Scholar 

  141. Sedhom, R. et al. Complications of Penumbra Indigo aspiration device in pulmonary embolism: Insights from MAUDE database. Cardiovasc. Revasc. Med. 39, 97–100 (2022).

    PubMed  Google Scholar 

  142. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04798261 (2023).

  143. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05684796 (2023).

  144. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04473560 (2020).

  145. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT05612854 (2022).

  146. Meyer, G. et al. Fibrinolysis for patients with intermediate-risk pulmonary embolism. N. Engl. J. Med. 370, 1402–1411 (2014).

    CAS  PubMed  Google Scholar 

  147. Trujillo-Santos, J. et al. Computed tomography-assessed right ventricular dysfunction and risk stratification of patients with acute non-massive pulmonary embolism: systematic review and meta-analysis. J. Thromb. Haemost. 11, 1823–1832 (2013).

    CAS  PubMed  Google Scholar 

  148. Chaudhury, P. et al. Impact of multidisciplinary pulmonary embolism response team availability on management and outcomes. Am. J. Cardiol. 124, 1465–1469 (2019).

    PubMed  Google Scholar 

  149. Khorana, A. A. et al. Rivaroxaban for thromboprophylaxis in high-risk ambulatory patients with cancer. N. Engl. J. Med. 380, 720–728 (2019).

    CAS  PubMed  Google Scholar 

  150. Agnelli, G. et al. Apixaban for the treatment of venous thromboembolism associated with cancer. N. Engl. J. Med. 382, 1599–1607 (2020).

    CAS  PubMed  Google Scholar 

  151. Raskob, G. E. et al. Edoxaban for the treatment of cancer-associated venous thromboembolism. N. Engl. J. Med. 378, 615–624 (2018).

    CAS  PubMed  Google Scholar 

  152. Young, A. M. et al. Comparison of an oral factor Xa inhibitor with low molecular weight heparin in patients with cancer with venous thromboembolism: results of a randomized trial (SELECT-D). J. Clin. Oncol. 36, 2017–2023 (2018).

    CAS  PubMed  Google Scholar 

  153. Klok, F. A. et al. Early switch to oral anticoagulation in patients with acute intermediate-risk pulmonary embolism (PEITHO-2): a multinational, multicentre, single-arm, phase 4 trial. Lancet Haematol. 8, e627–e636 (2021).

    CAS  PubMed  Google Scholar 

  154. Kuo, W. T. & Hofmann, L. V. Drs Kuo and Hofmann respond. J. Vasc. Interv. Radiol. 21, 1776–1777 (2010).

    Google Scholar 

  155. Jones, A. E., Yiannibas, V., Johnson, C. & Kline, J. A. Emergency department hypotension predicts sudden unexpected in-hospital mortality: a prospective cohort study. Chest 130, 941–946 (2006).

    PubMed  Google Scholar 

  156. Jones, A. E. et al. Nontraumatic out-of-hospital hypotension predicts inhospital mortality. Ann. Emerg. Med. 43, 106–113 (2004).

    PubMed  Google Scholar 

  157. Jones, A. E., Trzeciak, S. & Kline, J. A. The Sequential Organ Failure Assessment score for predicting outcome in patients with severe sepsis and evidence of hypoperfusion at the time of emergency department presentation. Crit. Care Med. 37, 1649–1654 (2009).

    PubMed  PubMed Central  Google Scholar 

  158. Higgins, T. L. et al. Assessing contemporary intensive care unit outcome: an updated Mortality Probability Admission Model (MPM0-III). Crit. Care Med. 35, 827–835 (2007).

    PubMed  Google Scholar 

  159. le Gall, J. R. et al. The logistic organ dysfunction system. A new way to assess organ dysfunction in the intensive care unit. ICU scoring group. J. Am. Med. Assoc. 276, 802–810 (1996).

    Google Scholar 

  160. Mayr, V. D. et al. Causes of death and determinants of outcome in critically ill patients. Crit. Care 10, R154 (2006).

    PubMed  PubMed Central  Google Scholar 

  161. Ebner, M. et al. Outcome of patients with different clinical presentations of high-risk pulmonary embolism. Eur. Heart J. Acute Cardiovasc. Care 10, 787–796 (2021).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

F.G. is supported by Deutsche Herzstiftung. M.B. is supported by Deutsche Forschungsgemeinschaft (SFB TRR219, S-01, M-03 and M-05). F.M. is supported by Deutsche Gesellschaft für Kardiologie (DGK), Deutsche Forschungsgemeinschaft (SFB TRR219) and Deutsche Herzstiftung.

Author information

Authors and Affiliations

Authors

Contributions

F.G. and F.M. researched data for the article, discussed its content and wrote the manuscript. All the authors reviewed/edited the article before submission.

Corresponding author

Correspondence to Felix Mahfoud.

Ethics declarations

Competing interests

F.G. has received speaker honoraria from AstraZeneca. L.L. has received speaker honoraria from Medtronic and ReCor Medical. I.M.L. has relationships with the following drug companies: Actelion-Janssen, AOP-Health, Ferrer, Medtronic, MSD, Neutrolis and United Therapeutics; in addition to being an investigator in trials involving these companies, relationships include consultancy services, research grants and membership of scientific advisory boards. S.R. has received fees for lectures and/or consultations from Abbott, Acceleron, Actelion, Aerovate, Altavant, AOP Orphan, AstraZeneca, Bayer, Boehringer Ingelheim, Edwards, Ferrer, Gossamer, Janssen, MSD, United Therapeutics and Vifor; his institution has received research grants from Actelion, AstraZeneca, Bayer and Janssen. S.K. reports grants or contracts from Bayer, Boston Scientific and Daiichi Sankyo, and consulting and lecture fees from Bayer, Boston Scientific, Daiichi Sankyo, MSD and Pfizer–Bristol-Myers Squibb. M.B. is supported by Abbott, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol Myers Squibb, Medtronic, Novartis, ReCor Medical, Servier and Vifor. W.J. is a consultant for Inari Medical and Medtronic. F.M. has received scientific support from Ablative Solutions, Medtronic and ReCor Medical and speaker honoraria/consulting fees from Ablative Solutions, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Inari, Medtronic, Merck, ReCor Medical, Servier and Terumo. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Efthymios Avgerinos, Menno Huisman, David Jiménez and Akhilesh Sista for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Götzinger, F., Lauder, L., Sharp, A.S.P. et al. Interventional therapies for pulmonary embolism. Nat Rev Cardiol 20, 670–684 (2023). https://doi.org/10.1038/s41569-023-00876-0

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41569-023-00876-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing