Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The gut microbiota in thrombosis

Abstract

The gut microbiota has emerged as an environmental risk factor that affects thrombotic phenotypes in several cardiovascular diseases. Evidence includes the identification of marker species by sequencing studies of the gut microbiomes of patients with thrombotic disease, the influence of antithrombotic therapies on gut microbial diversity, and preclinical studies in mouse models of thrombosis that have demonstrated the functional effects of the gut microbiota on vascular inflammatory phenotypes and thrombus formation. In addition to impaired gut barrier function promoting low-grade inflammation, gut microbiota-derived metabolites have been shown to act on vascular cell types and promote thrombus formation. Therefore, these meta-organismal pathways that link the metabolic capacities of gut microorganisms with host immune functions have emerged as potential diagnostic markers and novel drug targets. In this Review, we discuss the link between the gut microbiota, its metabolites and thromboembolic diseases.

Key points

  • Gut microbial composition is associated with thromboembolic disease states.

  • Intestinal barrier function is crucial to prevent the translocation of microbial components from the gut lumen into the blood circulation, including microbial patterns that can activate innate immune pathways and affect thrombosis potential via the gut–liver axis.

  • Gut microbial metabolites can influence vascular cells and myeloid cells, affecting platelet responsiveness and cellular interactions with the vessel wall.

  • Well-studied examples of gut microbial metabolites include choline-derived and carnitine-derived trimethylamine N-oxide, essential amino acid-derived metabolites (indoxyl sulfate, p-cresol sulfate and phenylacetylglutamine) and dietary fibre-derived short-chain fatty acids.

  • The gut microbiota and its metabolites are promising diagnostic markers and potential novel targets for the prevention and treatment of thromboembolic diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gut microbiota-derived pattern recognition involved in thrombosis.
Fig. 2: Gut microbiota-derived metabolites modulate platelet responsiveness.

Similar content being viewed by others

References

  1. Mackman, N. Triggers, targets and treatments for thrombosis. Nature 451, 914–918 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Münzel, T. et al. Heart healthy cities: genetics loads the gun but the environment pulls the trigger. Eur. Heart J. 42, 2422–2438 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Enav, H., Bäckhed, F. & Ley, R. E. The developing infant gut microbiome: a strain-level view. Cell Host Microbe 30, 627–638 (2022).

    Article  PubMed  Google Scholar 

  4. Esser, D. et al. Functions of the microbiota for the physiology of animal metaorganisms. J. Innate Immun. 11, 393–404 (2019).

    Article  PubMed  Google Scholar 

  5. Wu, M. et al. Gut complement induced by the microbiota combats pathogens and spares commensals. Cell 187, 897–913.e18 (2024).

    Article  PubMed  Google Scholar 

  6. Motta, J. P. et al. Active thrombin produced by the intestinal epithelium controls mucosal biofilms. Nat. Commun. 10, 3224 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jäckel, S. et al. Gut microbiota regulate hepatic von Willebrand factor synthesis and arterial thrombus formation via Toll-like receptor-2. Blood 130, 542–553 (2017).

    Article  PubMed  Google Scholar 

  8. Sommer, F. & Bäckhed, F. The gut microbiota – masters of host development and physiology. Nat. Rev. Microbiol. 11, 227–238 (2013).

    Article  PubMed  Google Scholar 

  9. Gola, A. et al. Commensal-driven immune zonation of the liver promotes host defence. Nature 589, 131–136 (2021).

    Article  PubMed  Google Scholar 

  10. Formes, H. et al. The gut microbiota instructs the hepatic endothelial cell transcriptome. iScience 24, 103092 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhu, W. et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165, 111–124 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Witkowski, M. et al. Vascular endothelial tissue factor contributes to trimethylamine N-oxide-enhanced arterial thrombosis. Cardiovasc. Res. 118, 2367–2384 (2022).

    Article  PubMed  Google Scholar 

  13. Carnevale, R. et al. Low-grade endotoxaemia enhances artery thrombus growth via Toll-like receptor 4: implication for myocardial infarction. Eur. Heart J. 41, 3156–3165 (2020).

    Article  PubMed  Google Scholar 

  14. Skye, S. M. et al. Microbial transplantation with human gut commensals containing cutC is sufficient to transmit enhanced platelet reactivity and thrombosis potential. Circ. Res. 123, 1164–1176 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004).

    Article  PubMed  Google Scholar 

  16. Chang, P. V., Hao, L., Offermanns, S. & Medzhitov, R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl Acad. Sci. USA 111, 2247–2252 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nemet, I. et al. A cardiovascular disease-linked gut microbial metabolite acts via adrenergic receptors. Cell 180, 862–877.e22 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nemet, I. et al. Microbe-derived uremic solutes enhance thrombosis potential in the host. mBio 14, e0133123 (2023).

    Article  PubMed  Google Scholar 

  19. Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677–689 (2009).

    Article  PubMed  Google Scholar 

  20. Schaupp, L. et al. Microbiota-induced type I interferons instruct a poised basal state of dendritic cells. Cell 181, 1080–1096.e19 (2020).

    Article  PubMed  Google Scholar 

  21. Reininger, A. J. et al. A 2-step mechanism of arterial thrombus formation induced by human atherosclerotic plaques. J. Am. Coll. Cardiol. 55, 1147–1158 (2010).

    Article  PubMed  Google Scholar 

  22. Oppi, S., Luscher, T. F. & Stein, S. Mouse models for atherosclerosis research – which is my line? Front. Cardiovasc. Med. 6, 46 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kiouptsi, K. et al. The microbiota promotes arterial thrombosis in low-density lipoprotein receptor-deficient mice. mBio 10, e02298-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Frost, F. et al. A structured weight loss program increases gut microbiota phylogenetic diversity and reduces levels of Collinsella in obese type 2 diabetics: a pilot study. PLoS ONE 14, e0219489 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Karlsson et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun. 3, 1245 (2012).

    Article  PubMed  Google Scholar 

  27. Jie, Z. et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 8, 845 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jie, Z. et al. A consortium of three-bacteria isolated from human feces inhibits formation of atherosclerotic deposits and lowers lipid levels in a mouse model. iScience 26, 106960 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ferrell, M. et al. Fecal microbiome composition does not predict diet-induced TMAO production in healthy adults. J. Am. Heart Assoc. 10, e021934 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ott, S. J. et al. Fungal rDNA signatures in coronary atherosclerotic plaques. Env. Microbiol. 9, 3035–3045 (2007).

    Article  Google Scholar 

  31. Koren, O. et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc. Natl Acad. Sci. USA 108, 4592–4598 (2011).

    Article  PubMed  Google Scholar 

  32. Lehtiniemi, J., Karhunen, P. J., Goebeler, S., Nikkari, S. & Nikkari, S. T. Identification of different bacterial DNAs in human coronary arteries. Eur. J. Clin. Invest. 35, 13–16 (2005).

    Article  PubMed  Google Scholar 

  33. Ott, S. J. et al. Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease. Circulation 113, 929–937 (2006).

    Article  PubMed  Google Scholar 

  34. Lindskog Jonsson, A. et al. Bacterial profile in human atherosclerotic plaques. Atherosclerosis 263, 177–183 (2017).

    Article  PubMed  Google Scholar 

  35. Yang, M. et al. Large-scale correlation analysis of deep venous thrombosis and gut microbiota. Front. Cardiovasc. Med. 9, 1025918 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Shannon, O. et al. Severe streptococcal infection is associated with M protein-induced platelet activation and thrombus formation. Mol. Microbiol. 65, 1147–1157 (2007).

    Article  PubMed  Google Scholar 

  37. Kiouptsi, K., Pontarollo, G. & Reinhardt, C. Gut microbiota and the microvasculature. Cold Spring Harb. Perspect. Med. 13, a041179 (2023).

    Article  PubMed  Google Scholar 

  38. Stappenbeck, T. S., Hooper, L. V. & Gordon, J. I. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc. Natl Acad. Sci. USA 99, 15451–15455 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Reinhardt, C. et al. Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodelling. Nature 483, 627–631 (2012).

    Article  PubMed  Google Scholar 

  40. Suh, S. H. et al. Gut microbiota regulates lacteal integrity by inducing VEGF-C in intestinal villus macrophages. EMBO Rep. 20, e46927 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tang, A. T. et al. Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Nature 545, 305–310 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Komatsu, S., Berg, R. D., Russell, J. M., Nimura, Y. & Granger, D. N. Enteric microflora contribute to constitutive ICAM-1 expression on vascular endothelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 279, G186–G191 (2000).

    Article  PubMed  Google Scholar 

  43. Balmer, M. L. et al. Microbiota-derived compounds drive steady-state granulopoiesis via MyD88/TICAM signaling. J. Immunol. 193, 5273–5283 (2014).

    Article  PubMed  Google Scholar 

  44. Zhang, D. et al. Neutrophil ageing is regulated by the microbiome. Nature 525, 528–532 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Clarke, T. B. et al. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat. Med. 16, 228–231 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Haghikia, A. et al. Gut microbiota-dependent trimethylamine N-oxide predicts risk of cardiovascular events in patients with stroke and is related to proinflammatory monocytes. Arterioscler. Thromb. Vasc. Biol. 38, 2225–2235 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yano, J. M. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161, 264–276 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Massberg, S. et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat. Med. 16, 887–896 (2010).

    Article  PubMed  Google Scholar 

  49. Engelmann, B. & Massberg, S. Thrombosis as an intravascular effector of innate immunity. Nat. Rev. Immunol. 13, 34–45 (2013).

    Article  PubMed  Google Scholar 

  50. Deppermann, C. et al. Gray platelet syndrome and defective thrombo-inflammation in Nbeal2-deficient mice. J. Clin. Invest. 123, 3331–3342 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Roewe, J. et al. Bacterial polyphosphates interfere with the innate host defense to infection. Nat. Commun. 11, 4035 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Su, L. et al. Targeted epithelial tight junction dysfunction causes immune activation and contributes to development of experimental colitis. Gastroenterology 136, 551–563 (2009).

    Article  PubMed  Google Scholar 

  53. Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).

    Article  PubMed  Google Scholar 

  54. Zhou, X. et al. Gut-dependent microbial translocation induces inflammation and cardiovascular events after ST-elevation myocardial infarction. Microbiome 6, 66 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Turner, J. R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 9, 799–809 (2009).

    Article  PubMed  Google Scholar 

  56. Vieira-Silva, S. et al. Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature 581, 310–315 (2020).

    Article  PubMed  Google Scholar 

  57. Cani, P. D. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008).

    Article  PubMed  Google Scholar 

  58. Thevaranjan, N. et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe 21, 455–466.e4 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Inczefi, O. et al. Targeted intestinal tight junction hyperpermeability alters the microbiome, behavior, and visceromotor responses. Cell Mol. Gastroenterol. Hepatol. 10, 206–208.e3 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zaki, M. H. et al. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity 32, 379–391 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Franchimont, D. et al. Deficient host-bacteria interactions in inflammatory bowel disease? The toll-like receptor (TLR)-4 Asp299gly polymorphism is associated with Crohn’s disease and ulcerative colitis. Gut 53, 987–992 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Hayes, C. L. et al. Commensal microbiota induces colonic barrier structure and functions that contribute to homeostasis. Sci. Rep. 8, 14184 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Pontarollo, G. et al. Commensal bacteria weaken the intestinal barrier by suppressing epithelial neuropilin-1 and Hedgehog signaling. Nat. Metab. 5, 1174–1187 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Wiedermann, C. J. et al. Association of endotoxemia with carotid atherosclerosis and cardiovascular disease: prospective results from the Bruneck study. J. Am. Coll. Cardiol. 34, 1975–1981 (1999).

    Article  PubMed  Google Scholar 

  65. Carnevale, R. et al. Localization of lipopolysaccharide from Escherichia coli into human atherosclerotic plaque. Sci. Rep. 8, 3598 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Liu, C. et al. Circulating LPS from gut microbiota leverages stenosis-induced deep vein thrombosis in mice. Thromb. J. 21, 71 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Aburima, A. et al. Thrombospondin-1 promotes hemostasis through modulation of cAMP signaling in blood platelets. Blood 137, 678–689 (2021).

    Article  PubMed  Google Scholar 

  68. Semeraro, N. et al. Direct induction of tissue factor synthesis by endotoxin in human macrophages from diverse anatomical sites. Immunology 50, 529–535 (1983).

    PubMed  PubMed Central  Google Scholar 

  69. Carnevale, R. et al. Gut-derived endotoxin stimulates factor VIII secretion from endothelial cells. Implications for hypercoagulability in cirrhosis. J. Hepatol. 67, 950–956 (2017).

    Article  PubMed  Google Scholar 

  70. Biswas, S., Zimman, A., Gao, D., Byzova, T. V. & Podrez, E. A. TLR2 plays a key role in platelet hyperreactivity and accelerated thrombosis associated with hyperlipidemia. Circ. Res. 121, 951–962 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Blair, P. et al. Stimulation of toll-like receptor 2 in human platelets induces a thromboinflammatory response through activation of phosphoinositide 3-kinase. Circ. Res. 104, 346–354 (2009).

    Article  PubMed  Google Scholar 

  72. Gerold, G. et al. A toll-like receptor 2-integrin β3 complex senses bacterial lipopeptides via vitronectin. Nat. Immunol. 9, 761–768 (2008).

    Article  PubMed  Google Scholar 

  73. Parra-Izquierdo, I. et al. The toll-like receptor 2 ligand Pam2CSK4 activates platelet nuclear factor-κB and Bruton’s tyrosine kinase signaling to promote platelet-endothelial cell interactions. Front. Immunol. 12, 729951 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Li, G. et al. Gut microbiota aggravates neutrophil extracellular traps-induced pancreatic injury in hypertriglyceridemic pancreatitis. Nat. Commun. 14, 6179 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ma, Y. et al. Mechanism of taurine reducing inflammation and organ injury in sepsis mice. Cell Immunol. 375, 104503 (2022).

    Article  PubMed  Google Scholar 

  76. Ascher, S. et al. Gut microbiota restricts NETosis in acute mesenteric ischemia-reperfusion injury. Arterioscler. Thromb. Vasc. Biol. 40, 2279–2292 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Parker, L. C. et al. Endotoxin tolerance induces selective alterations in neutrophil function. J. Leukoc. Biol. 78, 1301–1305 (2005).

    Article  PubMed  Google Scholar 

  78. Zmora, N., Suez, J. & Elinav, E. You are what you eat: diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 16, 35–56 (2019).

    Article  PubMed  Google Scholar 

  79. Witkowski, M., Weeks, T. L. & Hazen, S. L. Gut microbiota and cardiovascular disease. Circ. Res. 127, 553–570 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zhu, Y. et al. Two distinct gut microbial pathways contribute to meta-organismal production of phenylacetylglutamine with links to cardiovascular disease. Cell Host Microbe 31, 18–32.e9 (2023).

    Article  PubMed  Google Scholar 

  81. Koeth, R. A. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Tang, W. H. et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368, 1575–1584 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Koeth, R. A. et al. l-Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans. J. Clin. Invest. 129, 373–387 (2019).

    Article  PubMed  Google Scholar 

  84. Martinez-del Campo, A. et al. Characterization and detection of a widely distributed gene cluster that predicts anaerobic choline utilization by human gut bacteria. mBio 6, e00042-15 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Koeth, R. A. et al. γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of l-carnitine to TMAO. Cell Metab. 20, 799–812 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Buffa, J. A. et al. The microbial gbu gene cluster links cardiovascular disease risk associated with red meat consumption to microbiota l-carnitine catabolism. Nat. Microbiol. 7, 73–86 (2022).

    Article  PubMed  Google Scholar 

  87. Romano, K. A., Vivas, E. I., Amador-Noguez, D. & Rey, F. E. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. mBio 6, e02481 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Rath, S., Heidrich, B., Pieper, D. H. & Vital, M. Uncovering the trimethylamine-producing bacteria of the human gut microbiota. Microbiome 5, 54 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Seim, H., Löster, H., Claus, R., Kleber, H.-P. & Strack, E. Splitting of the C–N bond in carnitine by an enzyme (trimethylamine forming) from membranes of Acinetobacter calcoaceticus. FEMS Microbiol. Lett. 15, 165–167 (1982).

    Article  Google Scholar 

  90. Unemoto, T., Hayashi, M., Miyaki, K. & Hayashi, M. Formation of trimethylamine from dl-carnitine by Serratia marcescens. Biochim. Biophys. Acta 121, 220–222 (1966).

    Article  PubMed  Google Scholar 

  91. Bennett, B. J. et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 17, 49–60 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Aldana-Hernandez, P. et al. Dietary choline or trimethylamine N-oxide supplementation does not influence atherosclerosis development in Ldlr−/− and Apoe−/− male mice. J. Nutr. 150, 249–255 (2020).

    Article  PubMed  Google Scholar 

  93. Lindskog Jonsson, A. et al. Impact of gut microbiota and diet on the development of atherosclerosis in Apoe−/− mice. Arterioscler. Thromb. Vasc. Biol. 38, 2318–2326 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Koay, Y. C. et al. Plasma levels of trimethylamine-N-oxide can be increased with ‘healthy’ and ‘unhealthy’ diets and do not correlate with the extent of atherosclerosis but with plaque instability. Cardiovasc. Res. 117, 435–449 (2021).

    Article  PubMed  Google Scholar 

  95. Huang, K. et al. Gut microbial co-metabolite 2-methylbutyrylcarnitine exacerbates thrombosis via binding to and activating integrin α2β1. Cell Metab. 36, 598–616.e9 (2024).

    Article  PubMed  Google Scholar 

  96. Emonds, J. J. et al. Influence of trimethylamine N-oxide on platelet activation. Nutrients 14, 3261 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Zhu, W. et al. Gut microbes impact stroke severity via the trimethylamine N-oxide pathway. Cell Host Microbe 29, 1199–1208.e5 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Sun, X. et al. Trimethylamine N-oxide induces inflammation and endothelial dysfunction in human umbilical vein endothelial cells via activating ROS-TXNIP-NLRP3 inflammasome. Biochem. Biophys. Res. Commun. 481, 63–70 (2016).

    Article  PubMed  Google Scholar 

  99. Ma, G. et al. Trimethylamine N-oxide in atherogenesis: impairing endothelial self-repair capacity and enhancing monocyte adhesion. Biosci. Rep. 37, BSR20160244 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Cybulsky, M. I. et al. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J. Clin. Invest. 107, 1255–1262 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Querio, G., Antoniotti, S., Geddo, F., Levi, R. & Gallo, M. P. Trimethylamine N-oxide (TMAO) impairs purinergic induced intracellular calcium increase and nitric oxide release in endothelial cells. Int. J. Mol. Sci. 23, 3982 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Ren, D., Liu, Y., Zhao, Y. & Yang, X. Hepatotoxicity and endothelial dysfunction induced by high choline diet and the protective effects of phloretin in mice. Food Chem. Toxicol. 94, 203–212 (2016).

    Article  PubMed  Google Scholar 

  103. Jomard, A. et al. Effects of acute administration of trimethylamine N-oxide on endothelial function: a translational study. Sci. Rep. 12, 8664 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Wang, M. et al. Trimethylamine N-oxide is associated with long-term mortality risk: the multi-ethnic study of atherosclerosis. Eur. Heart J. 44, 1608–1618 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Yin, J. et al. Dysbiosis of gut microbiota with reduced trimethylamine-N-oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack. J. Am. Heart Assoc. 4, e002699 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ringel, C. et al. Association of plasma trimethylamine N-oxide levels with atherosclerotic cardiovascular disease and factors of the metabolic syndrome. Atherosclerosis 335, 62–67 (2021).

    Article  PubMed  Google Scholar 

  107. Wang, M. et al. Dietary meat, trimethylamine N-oxide-related metabolites, and incident cardiovascular disease among older adults: the Cardiovascular Health Study. Arterioscler. Thromb. Vasc. Biol. 42, e273–e288 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Lemaitre, R. N. et al. Plasma trimethylamine-N-oxide and incident ischemic stroke: the Cardiovascular Health Study and the Multi-Ethnic Study of Atherosclerosis. J. Am. Heart Assoc. 12, e8711 (2023).

    Article  PubMed  Google Scholar 

  109. Tan, Y. et al. Association between plasma trimethylamine N-oxide and neoatherosclerosis in patients with very late stent thrombosis. Can. J. Cardiol. 36, 1252–1260 (2020).

    Article  PubMed  Google Scholar 

  110. Liu, X. et al. Plasma trimethylamine N-oxide is associated with vulnerable plaque characteristics in CAD patients as assessed by optical coherence tomography. Int. J. Cardiol. 265, 18–23 (2018).

    Article  PubMed  Google Scholar 

  111. Fu, Q. et al. Coronary plaque characterization assessed by optical coherence tomography and plasma trimethylamine-N-oxide levels in patients with coronary artery disease. Am. J. Cardiol. 118, 1311–1315 (2016).

    Article  PubMed  Google Scholar 

  112. Bordoni, L. et al. Trimethylamine N-oxide and the reverse cholesterol transport in cardiovascular disease: a cross-sectional study. Sci. Rep. 10, 18675 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Zhu, W., Wang, Z., Tang, W. H. W. & Hazen, S. L. Gut microbe-generated trimethylamine N-oxide from dietary choline is prothrombotic in subjects. Circulation 135, 1671–1673 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Yu, F. et al. Phenylacetylglutamine, a novel biomarker in acute ischemic stroke. Front. Cardiovasc. Med. 8, 798765 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Fang, C. et al. Dysbiosis of gut microbiota and metabolite phenylacetylglutamine in coronary artery disease patients with stent stenosis. Front. Cardiovasc. Med. 9, 832092 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Romano, K. A. et al. Gut microbiota-generated phenylacetylglutamine and heart failure. Circ. Heart Fail. 16, e009972 (2023).

    Article  PubMed  Google Scholar 

  117. Kim, D. K. et al. Expression cloning of a Na+-independent aromatic amino acid transporter with structural similarity to H+/monocarboxylate transporters. J. Biol. Chem. 276, 17221–17228 (2001).

    Article  PubMed  Google Scholar 

  118. Chen, C., Yin, Y., Tu, Q. & Yang, H. Glucose and amino acid in enterocyte: absorption, metabolism and maturation. Front. Biosci. 23, 1721–1739 (2018).

    Article  Google Scholar 

  119. Asano, Y. et al. Phenylalanine dehydrogenase of Bacillus badius. Purification, characterization and gene cloning. Eur. J. Biochem. 168, 153–159 (1987).

    Article  PubMed  Google Scholar 

  120. Mavrides, C. & Orr, W. Multispecific aspartate and aromatic amino acid aminotransferases in Escherichia coli. J. Biol. Chem. 250, 4128–4133 (1975).

    Article  PubMed  Google Scholar 

  121. Mayrand, D. Identification of clinical isolates of selected species of Bacteroides: production of phenylacetic acid. Can. J. Microbiol. 25, 927–928 (1979).

    Article  PubMed  Google Scholar 

  122. Russell, W. R. et al. Major phenylpropanoid-derived metabolites in the human gut can arise from microbial fermentation of protein. Mol. Nutr. Food Res. 57, 523–535 (2013).

    Article  PubMed  Google Scholar 

  123. Feng, R. et al. Gut microbiome-generated phenylacetylglutamine from dietary protein is associated with Crohn’s disease and exacerbates colitis in mouse model possibly via platelet activation. J. Crohns Colitis 17, 1833–1846 (2023).

    Article  PubMed  Google Scholar 

  124. Webster, L. T., Siddiqui, U. A., Lucas, S. V., Strong, J. M. & Mieyal, J. J. Identification of separate acyl-CoA:glycine and acyl-CoA:L-glutamine N-acyltransferase activities in mitochondrial fractions from liver of rhesus monkey and man. J. Biol. Chem. 251, 3352–3358 (1976).

    Article  PubMed  Google Scholar 

  125. Paeslack, N. et al. Microbiota-derived tryptophan metabolites in vascular inflammation and cardiovascular disease. Amino Acids 54, 1339–1356 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Agus, A., Planchais, J. & Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 23, 716–724 (2018).

    Article  PubMed  Google Scholar 

  127. Lee, J. H., Wood, T. K. & Lee, J. Roles of indole as an interspecies and interkingdom signaling molecule. Trends Microbiol. 23, 707–718 (2015).

    Article  PubMed  Google Scholar 

  128. Barreto, F. C. et al. Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin. J. Am. Soc. Nephrol. 4, 1551–1558 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Nemet, I. et al. Atlas of gut microbe-derived products from aromatic amino acids and risk of cardiovascular morbidity and mortality. Eur. Heart J. 44, 3085–3096 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Adijiang, A., Goto, S., Uramoto, S., Nishijima, F. & Niwa, T. Indoxyl sulphate promotes aortic calcification with expression of osteoblast-specific proteins in hypertensive rats. Nephrol. Dial. Transpl. 23, 1892–1901 (2008).

    Article  Google Scholar 

  131. Wu, C. C. et al. Serum indoxyl sulfate associates with postangioplasty thrombosis of dialysis grafts. J. Am. Soc. Nephrol. 27, 1254–1264 (2016).

    Article  PubMed  Google Scholar 

  132. Yang, K. et al. Indoxyl sulfate induces platelet hyperactivity and contributes to chronic kidney disease-associated thrombosis in mice. Blood 129, 2667–2679 (2017).

    Article  PubMed  Google Scholar 

  133. Karbowska, M. et al. The uremic toxin indoxyl sulfate accelerates thrombotic response after vascular injury in animal models. Toxins 9, 229 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Niwa, T. Uremic toxicity of indoxyl sulfate. Nagoya J. Med. Sci. 72, 1–11 (2010).

    PubMed  PubMed Central  Google Scholar 

  135. Dou, L. et al. The uremic solute indoxyl sulfate induces oxidative stress in endothelial cells. J. Thromb. Haemost. 5, 1302–1308 (2007).

    Article  PubMed  Google Scholar 

  136. Xu, K. et al. Rapid gut dysbiosis induced by stroke exacerbates brain infarction in turn. Gut https://doi.org/10.1136/gutjnl-2020-323263 (2021).

    Article  PubMed  Google Scholar 

  137. Ito, S. et al. Indoxyl sulfate induces leukocyte-endothelial interactions through up-regulation of E-selectin. J. Biol. Chem. 285, 38869–38875 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Gondouin, B. et al. Indolic uremic solutes increase tissue factor production in endothelial cells by the aryl hydrocarbon receptor pathway. Kidney Int. 84, 733–744 (2013).

    Article  PubMed  Google Scholar 

  139. Rothhammer, V. & Quintana, F. J. The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease. Nat. Rev. Immunol. 19, 184–197 (2019).

    Article  PubMed  Google Scholar 

  140. Martinez, A. W., Recht, N. S., Hostetter, T. H. & Meyer, T. W. Removal of p-cresol sulfate by hemodialysis. J. Am. Soc. Nephrol. 16, 3430–3436 (2005).

    Article  PubMed  Google Scholar 

  141. Saito, Y., Sato, T., Nomoto, K. & Tsuji, H. Identification of phenol- and p-cresol-producing intestinal bacteria by using media supplemented with tyrosine and its metabolites. FEMS Microbiol. Ecol. 94, fly125 (2018).

    Article  Google Scholar 

  142. Gryp, T., Vanholder, R., Vaneechoutte, M. & Glorieux, G. p-Cresyl sulfate. Toxins (Basel) 9, 52 (2017).

    Article  PubMed  Google Scholar 

  143. Gross, P. et al. Para-cresyl sulfate acutely impairs vascular reactivity and induces vascular remodeling. J. Cell Physiol. 230, 2927–2935 (2015).

    Article  PubMed  Google Scholar 

  144. Jing, Y. J. et al. p-Cresyl sulfate is associated with carotid arteriosclerosis in hemodialysis patients and promotes atherogenesis in apoE−/− mice. Kidney Int. 89, 439–449 (2016).

    Article  PubMed  Google Scholar 

  145. Cummings, J. H. Fermentation in the human large intestine: evidence and implications for health. Lancet 1, 1206–1209 (1983).

    Article  PubMed  Google Scholar 

  146. Cummings, J. H., Pomare, E. W., Branch, W. J., Naylor, C. P. & Macfarlane, G. T. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28, 1221–1227 (1987).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Topping, D. L. & Clifton, P. M. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 81, 1031–1064 (2001).

    Article  PubMed  Google Scholar 

  148. Rey, F. E. et al. Dissecting the in vivo metabolic potential of two human gut acetogens. J. Biol. Chem. 285, 22082–22090 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Miller, T. L. & Wolin, M. J. Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Appl. Env. Microbiol. 62, 1589–1592 (1996).

    Article  Google Scholar 

  150. Reichardt, N. et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 8, 1323–1335 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Scott, K. P., Martin, J. C., Campbell, G., Mayer, C. D. & Flint, H. J. Whole-genome transcription profiling reveals genes up-regulated by growth on fucose in the human gut bacterium “Roseburia inulinivorans”. J. Bacteriol. 188, 4340–4349 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Vital, M., Howe, A. C. & Tiedje, J. M. Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. mBio 5, e00889 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Aguilar, E. C. et al. Butyrate impairs atherogenesis by reducing plaque inflammation and vulnerability and decreasing NFκB activation. Nutr. Metab. Cardiovasc. Dis. 24, 606–613 (2014).

    Article  PubMed  Google Scholar 

  154. Aguilar, E. C. et al. Oral butyrate reduces oxidative stress in atherosclerotic lesion sites by a mechanism involving NADPH oxidase down-regulation in endothelial cells. J. Nutr. Biochem. 34, 99–105 (2016).

    Article  PubMed  Google Scholar 

  155. Kasahara, K. et al. Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nat. Microbiol. 3, 1461–1471 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Liu, H. et al. Alterations in the gut microbiome and metabolism with coronary artery disease severity. Microbiome 7, 68 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Dremova, O. et al. Sterility testing of germ-free mouse colonies. Front. Immunol. 14, 1275109 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Li, J., Lin, S., Vanhoutte, P. M., Woo, C. W. & Xu, A. Akkermansia muciniphila protects against atherosclerosis by preventing metabolic endotoxemia-induced inflammation in Apoe−/− mice. Circulation 133, 2434–2446 (2016).

    Article  PubMed  Google Scholar 

  159. Brandsma, E. et al. A proinflammatory gut microbiota increases systemic inflammation and accelerates atherosclerosis. Circ. Res. 124, 94–100 (2019).

    Article  PubMed  Google Scholar 

  160. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    Article  PubMed  Google Scholar 

  161. Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).

    Article  PubMed  Google Scholar 

  162. Dürholz, K. et al. Microbiota-derived propionate modulates megakaryopoiesis and platelet function. Front. Immunol. 13, 908174 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Fukumoto, S. et al. Short-chain fatty acids stimulate colonic transit via intraluminal 5-HT release in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284, R1269–R1276 (2003).

    Article  PubMed  Google Scholar 

  164. Atarashi, K. et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500, 232–236 (2013).

    Article  PubMed  Google Scholar 

  165. Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282–1286 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Trompette, A. et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20, 159–166 (2014).

    Article  PubMed  Google Scholar 

  167. Kamp, M. E. et al. G protein-coupled receptor 43 modulates neutrophil recruitment during acute inflammation. PLoS ONE 11, e0163750 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    Article  PubMed  Google Scholar 

  169. Haghikia, A. et al. Propionate attenuates atherosclerosis by immune-dependent regulation of intestinal cholesterol metabolism. Eur. Heart J. 43, 518–533 (2022).

    Article  PubMed  Google Scholar 

  170. Garber, K. Drugging the gut microbiome. Nat. Biotechnol. 33, 228–231 (2015).

    Article  PubMed  Google Scholar 

  171. de Groot, P. et al. Faecal microbiota transplantation halts progression of human new-onset type 1 diabetes in a randomised controlled trial. Gut 70, 92–105 (2021).

    Article  PubMed  Google Scholar 

  172. Roubaud-Baudron, C. et al. Long-term effects of early-life antibiotic exposure on resistance to subsequent bacterial infection. mBio 10, e02820-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Feuerstadt, P. et al. SER-109, an oral microbiome therapy for recurrent Clostridioides difficile infection. N. Engl. J. Med. 386, 220–229 (2022).

    Article  PubMed  Google Scholar 

  174. Carvalho, T. First oral fecal microbiota transplant therapy approved. Nat. Med. 29, 1581–1582 (2023).

    Article  PubMed  Google Scholar 

  175. Barmparas, G. et al. Clostridium difficile increases the risk for venous thromboembolism. Am. J. Surg. 208, 703–709 (2014).

    Article  PubMed  Google Scholar 

  176. Kumar, A., Ghazanfar, H. & Davidson, J. M. A rare case of arterial and venous thromboembolism in a patient with severe Clostridium difficile infection. Cureus 13, e16103 (2021).

    PubMed  PubMed Central  Google Scholar 

  177. Kim, E. S. et al. Fecal microbiota transplantation ameliorates atherosclerosis in mice with C1q/TNF-related protein 9 genetic deficiency. Exp. Mol. Med. 54, 103–114 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Mohammed, Y. et al. The intestinal microbiome potentially affects thrombin generation in human subjects. J. Thromb. Haemost. 18, 642–650 (2020).

    Article  PubMed  Google Scholar 

  179. Ott, S. J. et al. Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile infection. Gastroenterology 152, 799–811.e7 (2017).

    Article  PubMed  Google Scholar 

  180. Zuo, T. et al. Bacteriophage transfer during faecal microbiota transplantation in Clostridium difficile infection is associated with treatment outcome. Gut 67, 634–643 (2018).

    PubMed  Google Scholar 

  181. DeFilipp, Z. et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N. Engl. J. Med. 381, 2043–2050 (2019).

    Article  PubMed  Google Scholar 

  182. Smits, L. P. et al. Effect of vegan fecal microbiota transplantation on carnitine- and choline-derived trimethylamine-N-oxide production and vascular inflammation in patients with metabolic syndrome. J. Am. Heart Assoc. 7, e008342 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Wang, Z. et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163, 1585–1595 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Roberts, A. B. et al. Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential. Nat. Med. 24, 1407–1417 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Quareshy, M. et al. Structural basis of carnitine monooxygenase CntA substrate specificity, inhibition, and intersubunit electron transfer. J. Biol. Chem. 296, 100038 (2021).

    Article  PubMed  Google Scholar 

  186. Collins, H. L. et al. l-Carnitine intake and high trimethylamine N-oxide plasma levels correlate with low aortic lesions in ApoE−/− transgenic mice expressing CETP. Atherosclerosis 244, 29–37 (2016).

    Article  PubMed  Google Scholar 

  187. Shi, W., Huang, Y., Yang, Z., Zhu, L. & Yu, B. Reduction of TMAO level enhances the stability of carotid atherosclerotic plaque through promoting macrophage M2 polarization and efferocytosis. Biosci. Rep. 41, BSR20204250 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Mitchell, S. C. & Smith, R. L. Trimethylaminuria: the fish malodor syndrome. Drug. Metab. Dispos. 29, 517–521 (2001).

    PubMed  Google Scholar 

  189. Benson, T. W. et al. Gut microbiota-derived trimethylamine N-oxide contributes to abdominal aortic aneurysm through inflammatory and apoptotic mechanisms. Circulation 147, 1079–1096 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Vilskersts, R. et al. Myocardial infarct size-limiting and anti-arrhythmic effects of mildronate orotate in the rat heart. Cardiovasc. Drugs Ther. 23, 281–288 (2009).

    Article  PubMed  Google Scholar 

  191. Chen, S. et al. Trimethylamine N-oxide binds and activates PERK to promote metabolic dysfunction. Cell Metab. 30, 1141–1151.e5 (2019).

    Article  PubMed  Google Scholar 

  192. Nakabayashi, I. et al. Effects of synbiotic treatment on serum level of p-cresol in haemodialysis patients: a preliminary study. Nephrol. Dial. Transpl. 26, 1094–1098 (2011).

    Article  Google Scholar 

  193. Donckier, J., Anderson, J. V., Yeo, T. & Bloom, S. R. Diurnal rhythm in the plasma concentration of atrial natriuretic peptide. N. Engl. J. Med. 315, 710–711 (1986).

    Article  PubMed  Google Scholar 

  194. Graboski, A. L. et al. Mechanism-based inhibition of gut microbial tryptophanases reduces serum indoxyl sulfate. Cell Chem. Biol. 30, 1402–1413.e7 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Lee, C. T. et al. Effects of AST-120 on blood concentrations of protein-bound uremic toxins and biomarkers of cardiovascular risk in chronic dialysis patients. Blood Purif. 37, 76–83 (2014).

    Article  PubMed  Google Scholar 

  196. Yamamoto, S. et al. Oral activated charcoal adsorbent (AST-120) ameliorates extent and instability of atherosclerosis accelerated by kidney disease in apolipoprotein E-deficient mice. Nephrol. Dial. Transpl. 26, 2491–2497 (2011).

    Article  Google Scholar 

  197. Anderson, R. C. et al. Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation. BMC Microbiol. 10, 316 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Zhao, X. et al. Probiotics mixture reinforces barrier function to ameliorate necrotizing enterocolitis by regulating PXR-JNK pathway. Cell Biosci. 11, 20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Souza, D. G., Senchenkova, E. Y., Russell, J. & Granger, D. N. MyD88 mediates the protective effects of probiotics against the arteriolar thrombosis and leukocyte recruitment associated with experimental colitis. Inflamm. Bowel Dis. 21, 888–900 (2015).

    Article  PubMed  Google Scholar 

  200. Ali, F. Y. et al. Antiplatelet actions of statins and fibrates are mediated by PPARs. Arterioscler. Thromb. Vasc. Biol. 29, 706–711 (2009).

    Article  PubMed  Google Scholar 

  201. Undas, A., Brummel, K. E., Musial, J., Mann, K. G. & Szczeklik, A. Simvastatin depresses blood clotting by inhibiting activation of prothrombin, factor V, and factor XIII and by enhancing factor Va inactivation. Circulation 103, 2248–2253 (2001).

    Article  PubMed  Google Scholar 

  202. Colli, S. et al. Vastatins inhibit tissue factor in cultured human macrophages. A novel mechanism of protection against atherothrombosis. Arterioscler. Thromb. Vasc. Biol. 17, 265–272 (1997).

    Article  PubMed  Google Scholar 

  203. Vieira-Silva, S. et al. Quantitative microbiome profiling disentangles inflammation- and bile duct obstruction-associated microbiota alterations across PSC/IBD diagnoses. Nat. Microbiol. 4, 1826–1831 (2019).

    Article  PubMed  Google Scholar 

  204. Wilmanski, T. et al. Heterogeneity in statin responses explained by variation in the human gut microbiome. Med 3, 388–405.e6 (2022).

    Article  PubMed  Google Scholar 

  205. Wang, L. et al. The gut microbes, Enterococcus and Escherichia-Shigella, affect the responses of heart valve replacement patients to the anticoagulant warfarin. Pharmacol. Res. 159, 104979 (2020).

    Article  PubMed  Google Scholar 

  206. Valgimigli, M. et al. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS: the Task Force for dual antiplatelet therapy in coronary artery disease of the European Society of Cardiology (ESC) and of the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 39, 213–260 (2018).

    Article  PubMed  Google Scholar 

  207. Zhang, X. et al. Gut microbiota induces high platelet response in patients with ST segment elevation myocardial infarction after ticagrelor treatment. Elife 11, e70240 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Guasch-Ferre, M. et al. Plasma metabolites from choline pathway and risk of cardiovascular disease in the PREDIMED (Prevention With Mediterranean Diet) study. J. Am. Heart Assoc. 6, e006524 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Mueller, D. M. et al. Plasma levels of trimethylamine-N-oxide are confounded by impaired kidney function and poor metabolic control. Atherosclerosis 243, 638–644 (2015).

    Article  PubMed  Google Scholar 

  210. Senthong, V. et al. Trimethylamine N-oxide and mortality risk in patients with peripheral artery disease. J. Am. Heart Assoc. 5, e004237 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Matsuzawa, Y. et al. Microbiota-derived trimethylamine N-oxide predicts cardiovascular risk after STEMI. Sci. Rep. 9, 11647 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Han, Y. et al. Dysbiosis of gut microbiota in patients with acute myocardial infarction. Front. Microbiol. 12, 680101 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Raju, S. C. et al. Microbial-derived imidazole propionate links the heart failure-associated microbiome alterations to disease severity. Genome Med. 16, 27 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Liang, Z. et al. Trimethylamine N-oxide as a risk marker for ischemic stroke in patients with atrial fibrillation. J. Biochem. Mol. Toxicol. 33, e22246 (2019).

    Article  PubMed  Google Scholar 

  215. Luciani, M. et al. Trimethylamine-N-oxide is associated with cardiovascular mortality and vascular brain lesions in patients with atrial fibrillation. Heart 109, 396–404 (2023).

    PubMed  Google Scholar 

  216. Meyer, K. A. et al. Microbiota-dependent metabolite trimethylamine N-oxide and coronary artery calcium in the Coronary Artery Risk Development in Young Adults Study (CARDIA). J. Am. Heart Assoc. 5, e003970 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Kijpaisalratana, N. et al. Trimethylamine N-oxide and white matter hyperintensity volume among patients with acute ischemic stroke. JAMA Netw. Open. 6, e2330446 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Gagne, M. A. et al. Dysbiotic microbiota contributes to the extent of acute myocardial infarction in rats. Sci. Rep. 12, 16517 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Chen, C., Zhang, H., Xie, R., Wang, Y. & Ma, Y. Gut microbiota aggravate cardiac ischemia-reperfusion injury via regulating the formation of neutrophils extracellular traps. Life Sci. 303, 120670 (2022).

    Article  PubMed  Google Scholar 

  220. Moludi, J. et al. Probiotics supplementation on cardiac remodeling following myocardial infarction: a single-center double-blind clinical study. J. Cardiovasc. Transl. Res. 14, 299–307 (2021).

    Article  PubMed  Google Scholar 

  221. Lopez-Aladid, R. et al. Determining the most accurate 16S rRNA hypervariable region for taxonomic identification from respiratory samples. Sci. Rep. 13, 3974 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Quince, C., Walker, A. W., Simpson, J. T., Loman, N. J. & Segata, N. Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol. 35, 833–844 (2017).

    Article  PubMed  Google Scholar 

  223. Brüssow, H. Problems with the concept of gut microbiota dysbiosis. Microb. Biotechnol. 13, 423–434 (2020).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

M.P.K., N.P., and O.D. are PhD students at the Mainz Research School of Translational Biomedicine (TransMed) and members of Young DZHK. K.K. is supported by the German Center for Cardiovascular Research (DZHK) “Promotion of women scientists” Excellence Programme and is a member of Young DZHK. C.R. acknowledges funding from the Forschungsinitiative Rheinland-Pfalz and ReALity (project MORE), the Wilhelm Sander-Stiftung (Nr. 2022.131.1), the BMBF Cluster4Future CurATime (project MicrobAIome, 03ZU1202CA) and the Deutsche Zentren der Gesundheitsforschung (DZG) Innovation Fund “Microbiome” (81X2210129); is a scientist at DZHK; is a member of the Center for Translational Vascular Biology (CTVB), the Research Center for Immunotherapy (FZI), the Potentialbereich EXPOHEALTH at the Johannes Gutenberg-University Mainz, and the DFG Research Unit 5644 INFINITE (RE 3450/15-1); and was awarded a Fellowship from the Gutenberg Research College at the Johannes Gutenberg-University Mainz.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed substantially to all aspects of the article.

Corresponding author

Correspondence to Christoph Reinhardt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Kazuyuki Kasahara and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Altered Schaedler flora

Minimal gut microbial consortium composed of eight defined common bacterial species found in mice.

Endothelial cell adhesion molecules

Cell surface proteins expressed on endothelial cells that mediate the adhesion and infiltration of leukocytes and other blood cells; these adhesion molecules can be divided into integrins, selectins and immunoglobulin superfamily members.

Germ-free mouse models

Mice lacking all microorganisms and housed in a sterile environment; this model is used to study gut microbiota–host interactions.

Gnotobiotic

An engineered state of an organism in which all forms of life in or on it, including the gut microbiota, have been identified; model organisms can be colonized with a specific community of known microorganisms or can contain no microorganisms (germ-free).

Gut–liver axis

Bidirectional relationship between the intestine, including the gut microbiota, and the liver.

Immunothrombosis

Physiological host response to invading pathogens, involving the recruitment of innate immune cells and activation of the coagulation cascade; monocytes and neutrophils trigger thrombus formation, which impedes the spread and invasion of pathogens.

Low-grade endotoxaemia

Low levels of circulating endotoxins that influence inflammatory and metabolic conditions.

Microbiome

Collection of all microorganisms and their genomic content in a defined environment.

Microbiota

Collection of all microorganisms, including eukaryotes, archaea, bacteria and viruses, inhabiting a defined environment, such as a host or a specific niche.

Mutualistic

Describing a beneficial relationship between different organisms.

Pathogen-associated molecular patterns

Structural motifs conserved within a group of related microorganisms that are recognized by receptors of the innate immune system.

Prebiotic

Nutritional supplement that nurtures specific groups of beneficial microorganisms.

Probiotic

Selected and living microorganisms that are intended to confer health benefits to consumers if consumed in sufficient amounts.

ST-segment elevation myocardial infarction

Myocardial infarction caused by the occlusion of a coronary artery and associated with ST-segment elevation on an electrocardiogram.

Synbiotics

Combination of selected living microorganisms (probiotics) and nutritional substrates (prebiotics) that are intended to confer a health benefit to the host.

T helper 17 cells

Lineage of T helper cells that can express various cytokines, such as IL-17, and which are involved in host defence and autoimmune diseases.

Thromboinflammation

Pathological process in which inflammatory and thrombotic pathways are dysregulated, contributing to tissue damage.

Thrombosis

The pathological formation of a blood clot in a vessel, which can obstruct the blood flow.

Tissue factor

A primary initiator of the coagulation cascade and a member of the type 2 cytokine receptor family (extrinsic coagulation pathway).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khuu, M.P., Paeslack, N., Dremova, O. et al. The gut microbiota in thrombosis. Nat Rev Cardiol 22, 121–137 (2025). https://doi.org/10.1038/s41569-024-01070-6

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41569-024-01070-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing