Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lysosomes in the immunometabolic reprogramming of immune cells in atherosclerosis

Abstract

Lysosomes have a central role in the disposal of extracellular and intracellular cargo and also function as metabolic sensors and signalling platforms in the immunometabolic reprogramming of macrophages and other immune cells in atherosclerosis. Lysosomes can rapidly sense the presence of nutrients within immune cells, thereby switching from catabolism of extracellular material to the recycling of intracellular cargo. Such a fine-tuned degradative response supports the generation of metabolic building blocks through effectors such as mTORC1 or TFEB. By coupling nutrients to downstream signalling and metabolism, lysosomes serve as a crucial hub for cellular function in innate and adaptive immune cells. Lysosomal dysfunction is now recognized to be a hallmark of atherogenesis. Perturbations in nutrient-sensing and signalling have profound effects on the capacity of immune cells to handle cholesterol, perform phagocytosis and efferocytosis, and limit the activation of the inflammasome and other inflammatory pathways. Strategies to improve lysosomal function hold promise as novel modulators of the immunoinflammatory response associated with atherosclerosis. In this Review, we describe the crosstalk between lysosomal biology and immune cell function and polarization, with a particular focus on cellular immunometabolic reprogramming in the context of atherosclerosis.

Key points

  • Lysosomes are centralized hubs for metabolic sensing and functional reprogramming of cells.

  • Lysosomal metabolic sensing governs immune cell homeostasis and function.

  • Lysosome dysfunction contributes to the immunoinflammatory response and metabolic impairment in vascular atherosclerotic lesions.

  • Lysosomes are a compelling target for the modulation of immune responses in atherosclerosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lysosomes orchestrate macrophage metabolic reprogramming.
Fig. 2: Lysosomes govern the immunometabolic phenotype of lymphocytes.
Fig. 3: Macrophage lysosomes promote inflammation or its resolution in atherosclerosis.

Similar content being viewed by others

References

  1. Mony, V. K., Benjamin, S. & O’Rourke, E. J. A lysosome-centered view of nutrient homeostasis. Autophagy 12, 619–631 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu, G. Y. & Sabatini, D. M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 21, 183–203 (2020). A review discussing the intimate association between lysosomes and mTORC that is required to regulate cellular metabolic fate in states of nutrition or starvation in health and disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Platt, F. M., d’Azzo, A., Davidson, B. L., Neufeld, E. F. & Tifft, C. J. Lysosomal storage diseases. Nat. Rev. Dis. Primers 4, 27 (2018).

    Article  PubMed  Google Scholar 

  4. de Duve, C. The participation of lysosomes in the transformation of smooth muscle cells to foamy cells in the aorta of cholesterol-fed rabbits. Acta Cardiol. 20, 9–25 (1974). Recognition of atherosclerotic plaque as a form of LSD as a consequence of neutral lipid deposition in lysosomes of foam cells.

    Google Scholar 

  5. Bar-Peled, L. & Sabatini, D. M. Regulation of mTORC1 by amino acids. Trends Cell Biol. 24, 400–406 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Meng, Y., Heybrock, S., Neculai, D. & Saftig, P. Cholesterol handling in lysosomes and beyond. Trends Cell Biol. 30, 452–466 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, X. et al. High-protein diets increase cardiovascular risk by activating macrophage mTOR to suppress mitophagy. Nat. Metab. 2, 110–125 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zernecke, A. et al. Meta-analysis of leukocyte diversity in atherosclerotic mouse aortas. Circ. Res. 127, 402–426 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chinetti-Gbaguidi, G., Colin, S. & Staels, B. Macrophage subsets in atherosclerosis. Nat. Rev. Cardiol. 12, 10–17 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Wculek, S. K., Dunphy, G., Heras-Murillo, I., Mastrangelo, A. & Sancho, D. Metabolism of tissue macrophages in homeostasis and pathology. Cell. Mol. Immunol. 19, 384–408 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. O’Neill, L. A. J. & Artyomov, M. N. Itaconate: the poster child of metabolic reprogramming in macrophage function. Nat. Rev. Immunol. 19, 273–281 (2019).

    Article  PubMed  Google Scholar 

  12. West, A. P. et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472, 476–480 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nomura, M. et al. Fatty acid oxidation in macrophage polarization. Nat. Immunol. 17, 216–217 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huang, S. C. C. et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat. Immunol. 15, 846–855 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xu, R. et al. Lipid-associated macrophages between aggravation and alleviation of metabolic diseases. Trends Endocrinol. Metab. https://doi.org/10.1016/j.tem.2024.04.009 (2024).

  16. Jaitin, D. A. et al. Lipid-associated macrophages control metabolic homeostasis in a Trem2-dependent manner. Cell 178, 686–698.e14 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dib, L. et al. Lipid-associated macrophages transition to an inflammatory state in human atherosclerosis, increasing the risk of cerebrovascular complications. Nat. Cardiovasc. Res. 2, 656–672 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Viaud, M. et al. Lysosomal cholesterol hydrolysis couples efferocytosis to anti-inflammatory oxysterol production. Circ. Res. 122, 1369–1384 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jha, A. K. et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419–430 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yan, C. et al. Macrophage-specific expression of human lysosomal acid lipase corrects inflammation and pathogenic phenotypes in lal−/− mice. Am. J. Pathol. 169, 916–926 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, F. et al. Hepatic lysosomal acid lipase drives the autophagy-lysosomal response and alleviates cholesterol metabolic disorder in ApoE deficient mice. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1866, 159027 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Schott, M. B. et al. Lipid droplet size directs lipolysis and lipophagy catabolism in hepatocytes. J. Cell Biol. 218, 3320–3335 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ouimet, M. et al. Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab. 13, 655–667 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tavakoli, S., Zamora, D., Ullevig, S. & Asmis, R. Bioenergetic profiles diverge during macrophage polarization: implications for the interpretation of 18F-FDG PET imaging of atherosclerosis. J. Nucl. Med. 54, 1661–1667 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Susser, L. I. et al. Mitochondrial fragmentation promotes inflammation resolution responses in macrophages via histone lactylation. Mol. Cell. Biol. 43, 531–546 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Afroz, S. F. et al. Mitochondrial dynamics in macrophages: divide to conquer or unite to survive? Biochem. Soc. Trans. 51, 41–56 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vergadi, E., Ieronymaki, E., Lyroni, K., Vaporidi, K. & Tsatsanis, C. Akt signaling pathway in macrophage activation and M1/M2 polarization. J. Immunol. 198, 1006–1014 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Huang, S. C. C. et al. Metabolic reprogramming mediated by the mTORC2–IRF4 signaling axis is essential for macrophage alternative activation. Immunity 45, 817–830 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Viola, A., Munari, F., Sánchez-Rodríguez, R., Scolaro, T. & Castegna, A. The metabolic signature of macrophage responses. Front. Immunol. 10, 1462 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen, Y. et al. Regulation of CD8+ T memory and exhaustion by the mTOR signals. Cell. Mol. Immunol. 20, 1023–1039 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sinclair, L. V. et al. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat. Immunol. 14, 500–508 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bonacina, F. et al. The low-density lipoprotein receptor–mTORC1 axis coordinates CD8+ T cell activation. J. Cell Biol. 221, e202202011 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kidani, Y. et al. Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nat. Immunol. 14, 489–499 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ma, E. H., Poffenberger, M. C., Wong, A. H. T. & Jones, R. G. The role of AMPK in T cell metabolism and function. Curr. Opin. Immunol. 46, 45–52 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. O’Sullivan, D. et al. Memory CD8+ T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity 41, 75–88 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Berod, L. et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat. Med. 20, 1327–1333 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Pua, H. H., Dzhagalov, I., Chuck, M., Mizushima, N. & He, Y.-W. A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J. Cell Biol. 176, 25–31 (2007).

    Article  Google Scholar 

  39. Carleton, G. & Lum, J. J. Autophagy metabolically suppresses CD8+ T cell antitumor immunity. Autophagy 15, 1648–1649 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wei, J. et al. Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nat. Immunol. 17, 277–285 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Delamarre, L., Pack, M., Chang, H., Mellman, I. & Trombetta, E. S. Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science 307, 1630–1634 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Reversat, A. et al. Polarity protein Par3 controls B-cell receptor dynamics and antigen extraction at the immune synapse. Mol. Biol. Cell 26, 1273–1285 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yuseff, M. I. et al. Polarized secretion of lysosomes at the B cell synapse couples antigen extraction to processing and presentation. Immunity 35, 361–374 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Iwata, T. N. et al. Conditional disruption of raptor reveals an essential role for mTORC1 in B cell development, survival, and metabolism. J. Immunol. 197, 2250–2260 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jia, R. & Bonifacino, J. S. Lysosome positioning influences mTORC2 and AKT signaling. Mol. Cell 75, 26–38.e3 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Marques, A. R. A. & Saftig, P. Lysosomal storage disorders — challenges, concepts and avenues for therapy: beyond rare diseases. J. Cell Sci. 132, jcs221739 (2019).

    Article  PubMed  Google Scholar 

  47. Korbelius, M., Kuentzel, K. B., Bradić, I., Vujić, N. & Kratky, D. Recent insights into lysosomal acid lipase deficiency. Trends Mol. Med. 29, 425–438 (2023). A review of the cellular, clinical and epidemiological implications of LAL-D and the consequent impaired hydrolysis of cholesterol esters and triglycerides.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gomaraschi, M., Bonacina, F. & Norata, G. D. Lysosomal acid lipase: from cellular lipid handler to immunometabolic target. Trends Pharmacol. Sci. 40, 104–115 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Baronio, F. et al. Diagnosis, treatment, and follow-up of a case of Wolman disease with hemophagocytic lymphohistiocytosis. Mol. Genet. Metab. Rep. 30, 100833 (2022).

    CAS  PubMed  Google Scholar 

  50. Qu, P., Du, H., Wilkes, D. S. & Yan, C. Critical roles of lysosomal acid lipase in T cell development and function. Am. J. Pathol. 174, 944–956 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Qu, P. et al. Critical roles of lysosomal acid lipase in myelopoiesis. Am. J. Pathol. 176, 2394–2404 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lipiński, P. et al. Progressive macrophage accumulation in lysosomal acid lipase deficiency. Mol. Genet. Metab. Rep. 23, 100594 (2020).

    PubMed  PubMed Central  Google Scholar 

  53. Hoffman, E. P. et al. Lysosomal acid lipase deficiency. In GeneReviews (Univ. Washington, 2016).

  54. Gomaraschi, M. et al. Lipid accumulation impairs lysosomal acid lipase activity in hepatocytes: evidence in NAFLD patients and cell cultures. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1864, 158523 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Vanier, M. T. Niemann–Pick disease type C. Orphanet J. Rare Dis. 5, 16 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Platt, N. et al. Immune dysfunction in Niemann–Pick disease type C. J. Neurochem. 136, 74–80 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Rigante, D., Cipolla, C., Basile, U., Gulli, F. & Savastano, M. C. Overview of immune abnormalities in lysosomal storage disorders. Immunol. Lett. 188, 79–85 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. DiRosario, J. et al. Innate and adaptive immune activation in the brain of MPS IIIB mouse model. J. Neurosci. Res. 87, 978–990 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Mauhin, W. et al. Innate and adaptive immune response in Fabry disease. JIMD Rep. 22, 1–10 (2015).

    PubMed  PubMed Central  Google Scholar 

  60. Jou, I. et al. Gangliosides trigger inflammatory responses via TLR4 in brain glia. Am. J. Pathol. 168, 1619–1630 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schuchman, E. H. & Desnick, R. J. Types A and B Niemann–Pick disease. Mol. Genet. Metab. 120, 27–33 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Stirnemann, J. Ô. et al. A review of Gaucher disease pathophysiology, clinical presentation and treatments. Int. J. Mol. Sci. 18, 441 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Barak, V. et al. Cytokines in Gaucher’s disease. Eur. Cytokine Netw. 10, 205–210 (1999).

    CAS  PubMed  Google Scholar 

  64. Shoenfeld, Y. et al. Gaucher’s disease: a disease with chronic stimulation of the immune system. Arch. Pathol. Lab. Med. 106, 388–391 (1982).

    CAS  PubMed  Google Scholar 

  65. Allen, M. J., Myer, B. J., Khokher, A. M., Rushton, N. & Cox, T. M. Pro-inflammatory cytokines and the pathogenesis of Gaucher’s disease: increased release of interleukin-6 and interleukin-10. QJM Int. J. Med. 90, 19–25 (1997).

    Article  CAS  Google Scholar 

  66. Zahran, A. M. et al. Activated and memory T lymphocytes in children with Gaucher disease. Arch. Immunol. Ther. Exp. 65, 263–269 (2017).

    Article  CAS  Google Scholar 

  67. Parenti, G., Pignata, C., Vajro, P. & Salerno, M. New strategies for the treatment of lysosomal storage diseases (review). Int. J. Mol. Med. 31, 11–20 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Klapan, K. et al. Evidence for lysosomal dysfunction within the epidermis in psoriasis and atopic dermatitis. J. Invest. Dermatol. 141, 2838–2848.e4 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Jansen, E. J. R. et al. ATP6AP1 deficiency causes an immunodeficiency with hepatopathy, cognitive impairment and abnormal protein glycosylation. Nat. Commun. 7, 11600 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Spalinger, M. R., Rogler, G. & Scharl, M. Crohn’s disease: loss of tolerance or a disorder of autophagy? Dig. Dis. 32, 370–377 (2014).

    Article  PubMed  Google Scholar 

  71. Blott, E. J. & Griffiths, G. M. Secretory lysosomes. Nat. Rev. Mol. Cell Biol. 3, 122–131 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Griffiths, G. M. Secretory lysosomes — a special mechanism of regulated secretion in haemopoietic cells. Trends Cell Biol. 6, 329–332 (1996).

    Article  CAS  PubMed  Google Scholar 

  73. Holt, O. J., Gallo, F. & Griffiths, G. M. Regulating secretory lysosomes. J. Biochem. 140, 7–12 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Libby, P. et al. Atherosclerosis. Nat. Rev. Dis. Primers 5, 56 (2019).

    Article  PubMed  Google Scholar 

  75. Yvan-Charvet, L., Bonacina, F., Guinamard, R. R. & Norata, G. D. Immunometabolic function of cholesterol in cardiovascular disease and beyond. Cardiovasc. Res. 115, 1393–1407 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Bonacina, F., Da Dalt, L., Catapano, A. L. & Norata, G. D. Metabolic adaptations of cells at the vascular–immune interface during atherosclerosis. Mol. Asp. Med. 77, 100918 (2021).

    Article  CAS  Google Scholar 

  77. Haka, A. S. et al. Macrophages create an acidic extracellular hydrolytic compartment to digest aggregated lipoproteins. Mol. Biol. Cell 20, 4932–4940 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Burtenshaw, D., Kitching, M., Redmond, E. M., Megson, I. L. & Cahill, P. A. Reactive oxygen species (ROS), intimal thickening, and subclinical atherosclerotic disease. Front. Cardiovasc. Med. 6, 89 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Emanuel, R. et al. Induction of lysosomal biogenesis in atherosclerotic macrophages can rescue lipid-induced lysosomal dysfunction and downstream sequelae. Arterioscler. Thromb. Vasc. Biol. 34, 1942–1952 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Perrotta, I. The use of electron microscopy for the detection of autophagy in human atherosclerosis. Micron 50, 7–13 (2013).

    Article  PubMed  Google Scholar 

  81. Chen, Y. et al. Mitochondrial metabolic reprogramming by CD36 signaling drives macrophage inflammatory responses. Circ. Res. 125, 1087–1102 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Marques, A. R. A., Ramos, C., Machado-Oliveira, G. & Vieira, O. V. Lysosome (dys)function in atherosclerosis — a big weight on the shoulders of a small organelle. Front. Cell Dev. Biol. 9, 658995 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Ding, Z. et al. Oxidant stress in mitochondrial DNA damage, autophagy and inflammation in atherosclerosis. Sci. Rep. 3, 1077 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Cox, B. E., Griffin, E. E., Ullery, J. C. & Jerome, W. G. Effects of cellular cholesterol loading on macrophage foam cell lysosome acidification. J. Lipid Res. 48, 1012–1021 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Kumar, A. et al. Role of pyruvate kinase M2 in oxidized LDL-induced macrophage foam cell formation and inflammation. J. Lipid Res. 61, 351–364 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hajjar, S. & Zhou, X. pH sensing at the intersection of tissue homeostasis and inflammation. Trends Immunol. 44, 807–825 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Heuser, J. Changes in lysosome shape and distribution correlated with changes in cytoplasmic pH. J. Cell Biol. 108, 855–864 (1989).

    Article  CAS  PubMed  Google Scholar 

  88. Febbraio, M., Guy, E. & Silverstein, R. L. Stem cell transplantation reveals that absence of macrophage CD36 is protective against atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 24, 2333–2338 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Pfeffer, S. R. Clues to NPC1-mediated cholesterol export from lysosomes. Proc. Natl Acad. Sci. USA 113, 7941–7943 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Awan, S. et al. Wnt5a promotes lysosomal cholesterol egress and protects against atherosclerosis. Circ. Res. 130, 184–199 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Liao, X. et al. Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab. 15, 545–553 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Qiao, L. et al. Deficient chaperone-mediated autophagy promotes inflammation and atherosclerosis. Circ. Res. 129, 1141–1157 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Diab, D. L. et al. Autophagy links inflammasomes to atherosclerotic progression. Cell Metab. 6, 1249–1254 (2009).

    Google Scholar 

  94. Wen, Y. & Leake, D. S. Low density lipoprotein undergoes oxidation within lysosomes in cells. Circ. Res. 100, 1337–1343 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Hoff, H. F. & Hoppe, G. Structure of cholesterol-containing particles accumulating in atherosclerotic lesions and the mechanisms of their derivation. Curr. Opin. Lipidol. 6, 317–325 (1995).

    Article  CAS  PubMed  Google Scholar 

  96. O’Neil, J., Hoppe, G., Sayre, L. M. & Hoff, H. F. Inactivation of cathepsin B by oxidized LDL involves complex formation induced by binding of putative reactive sites exposed at low pH to thiols on the enzyme. Free Radic. Biol. Med. 23, 215–225 (1997).

    Article  PubMed  Google Scholar 

  97. Ahmad, F. & Leake, D. S. Lysosomal oxidation of LDL alters lysosomal pH, induces senescence, and increases secretion of pro-inflammatory cytokines in human macrophages. J. Lipid Res. 60, 98–110 (2019).

    Article  CAS  PubMed  Google Scholar 

  98. Binder, C. J., Papac-Milicevic, N. & Witztum, J. L. Innate sensing of oxidation-specific epitopes in health and disease. Nat. Rev. Immunol. 16, 485–497 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sheedy, F. J. et al. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat. Immunol. 14, 812–820 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tall, A. R. & Yvan-Charvet, L. Cholesterol, inflammation and innate immunity. Nat. Rev. Immunol. 15, 104–116 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gibson, M. S., Domingues, N. & Vieira, O. V. Lipid and non-lipid factors affecting macrophage dysfunction and inflammation in atherosclerosis. Front. Physiol. 9, 654 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Wang, M. X. et al. TNF compromises lysosome acidification and reduces α-synuclein degradation via autophagy in dopaminergic cells. Exp. Neurol. 271, 112–121 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. York, A. G. et al. Limiting cholesterol biosynthetic flux spontaneously engages type I IFN signaling. Cell 163, 1716–1729 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Canfrán-Duque, A. et al. Macrophage-derived 25-hydroxycholesterol promotes vascular inflammation, atherogenesis, and lesion remodeling. Circulation 147, 388–408 (2023).

    Article  PubMed  Google Scholar 

  106. Chu, T. T. et al. Tonic prime-boost of STING signalling mediates Niemann–Pick disease type C. Nature 596, 570–575 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tabas, I. & Bornfeldt, K. E. Macrophage phenotype and function in different stages of atherosclerosis. Circ. Res. 118, 653–667 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang, S. et al. Efferocytosis fuels requirements of fatty acid oxidation and the electron transport chain to polarize macrophages for tissue repair. Cell Metab. 29, 443–456.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Schrijvers, D. M., De Meyer, G. R. Y., Kockx, M. M., Herman, A. G. & Martinet, W. Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 25, 1256–1261 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Boada-Romero, E., Martinez, J., Heckmann, B. L. & Green, D. R. The clearance of dead cells by efferocytosis. Nat. Rev. Mol. Cell Biol. 21, 398–414 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mehrotra, P. & Ravichandran, K. S. Drugging the efferocytosis process: concepts and opportunities. Nat. Rev. Drug Discov. 21, 601–620 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhang, Y. et al. ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages. Cell Res. 23, 898–914 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yvan-Charvet, L. et al. ABCA1 and ABCG1 protect against oxidative stress-induced macrophage apoptosis during efferocytosis. Circ. Res. 106, 1861–1869 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Li, G., Scull, C., Ozcan, L. & Tabas, I. NADPH oxidase links endoplasmic reticulum stress, oxidative stress, and PKR activation to induce apoptosis. J. Cell Biol. 191, 1113–1125 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zinkevich, N. S. & Gutterman, D. D. ROS-induced ROS release in vascular biology: redox–redox signaling. Am. J. Physiol. Heart Circ. Physiol. 301, H647–H653 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wang, Y. & Tabas, I. Emerging roles of mitochondria ROS in atherosclerotic lesions: causation or association? J. Atheroscler. Thromb. 21, 381–390 (2014).

    Article  PubMed  Google Scholar 

  117. Medina, C. B. et al. Metabolites released from apoptotic cells act as tissue messengers. Nature 580, 130–135 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yurdagul, A. et al. Macrophage metabolism of apoptotic cell-derived arginine promotes continual efferocytosis and resolution of injury. Cell Metab. 31, 518–533.e10 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ngai, D., Schilperoort, M. & Tabas, I. Efferocytosis-induced lactate enables the proliferation of pro-resolving macrophages to mediate tissue repair. Nat. Metab. 5, 2206–2219 (2023). A study exploring the metabolic consequence of efferocytosis in the resolution of inflammation triggered by apoptotic cell digestion in the lysosome, pushing immunometabolic reprogramming of macrophages towards glycolysis and pro-resolving functions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Curnock, R. et al. TFEB‐dependent lysosome biogenesis is required for senescence. EMBO J. 42, e111241 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Roh, K. et al. Lysosomal control of senescence and inflammation through cholesterol partitioning. Nat. Metab. 5, 398–413 (2023).

    Article  CAS  PubMed  Google Scholar 

  122. Childs, B. G. et al. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354, 472–477 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hall, B. M. et al. p16(Ink4a) and senescence-associated β-galactosidase can be induced in macrophages as part of a reversible response to physiological stimuli. Aging 9, 1867–1884 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Evangelou, K. et al. Robust, universal biomarker assay to detect senescent cells in biological specimens. Aging Cell 16, 192–197 (2017).

    Article  CAS  PubMed  Google Scholar 

  125. De Silva, N. S. et al. Nuclear envelope disruption triggers hallmarks of aging in lung alveolar macrophages. Nat. Aging 3, 1251–1268 (2023).

    Article  PubMed  Google Scholar 

  126. Fabre, T. et al. Identification of a broadly fibrogenic macrophage subset induced by type 3 inflammation. Sci. Immunol. 8, eadd8945 (2023).

    Article  CAS  PubMed  Google Scholar 

  127. Pols, M. S. & Klumperman, J. Trafficking and function of the tetraspanin CD63. Exp. Cell Res. 315, 1584–CD1592 (2009).

    Article  CAS  PubMed  Google Scholar 

  128. Ryter, S. W., Lee, S. J., Smith, A. & Choi, A. M. K. Autophagy in vascular disease. Proc. Am. Thorac. Soc. 7, 40–47 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Grootaert, M. O. J. et al. Defective autophagy in vascular smooth muscle cells accelerates senescence and promotes neointima formation and atherogenesis. Autophagy 11, 2014–2032 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. De Meyer, G. R. Y. et al. Autophagy in vascular disease. Circ. Res. 116, 468–479 (2015).

    Article  PubMed  Google Scholar 

  131. Mandatori, S. et al. Altered Tregs differentiation and impaired autophagy correlate to atherosclerotic disease. Front. Immunol. 11, 350 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Amersfoort, J. et al. Defective autophagy in T cells impairs the development of diet-induced hepatic steatosis and atherosclerosis. Front. Immunol. 9, 2937 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Clement, M. et al. Impaired autophagy in CD11b+ dendritic cells expands CD4+ regulatory T cells and limits atherosclerosis in mice. Circ. Res. 125, 1019–1034 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Arnold, J. et al. Autophagy is dispensable for B-cell development but essential for humoral autoimmune responses. Cell Death Differ. 23, 853–864 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Stroope, C. et al. Dysregulated cellular metabolism in atherosclerosis: mediators and therapeutic opportunities. Nat. Metab. 6, 617–638 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Bonacina, F. et al. The heterogeneous cellular landscape of atherosclerosis: implications for future research and therapies. A collaborative review from the EAS young fellows. Atherosclerosis 372, 48–56 (2023).

    Article  CAS  PubMed  Google Scholar 

  137. Schaum, N. et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018).

    Article  PubMed Central  Google Scholar 

  138. Schrijvers, D. M., De Meyer, G. R. Y. & Martinet, W. Autophagy in atherosclerosis: a potential drug target for plaque stabilization. Arterioscler. Thromb. Vasc. Biol. 31, 2787–2791 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Sardiello, M. et al. A gene network regulating lysosomal biogenesis and function. Science 325, 473–477 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Settembre, C. et al. TFEB links autophagy to lysosomal biogenesis. Science 332, 1429–1433 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Sergin, I. et al. Exploiting macrophage autophagy–lysosomal biogenesis as a therapy for atherosclerosis. Nat. Commun. 8, 15750 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Tao, H. et al. Macrophage SR-BI modulates autophagy via VPS34 complex and PPARα transcription of TFEB in atherosclerosis. J. Clin. Invest. 131, e94229 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Fang, S. et al. Arsenic trioxide induces macrophage autophagy and atheroprotection by regulating ROS-dependent TFEB nuclear translocation and AKT/mTOR pathway. Cell Death Dis. 12, 88 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Jeong, S. J. et al. Trehalose causes low-grade lysosomal stress to activate TFEB and the autophagy–lysosome biogenesis response. Autophagy 17, 3740–3752 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Blessing, A. M. et al. Transcriptional regulation of core autophagy and lysosomal genes by the androgen receptor promotes prostate cancer progression. Autophagy 13, 506–521 (2017).

    Article  CAS  PubMed  Google Scholar 

  146. Carling, P. J. et al. Multiparameter phenotypic screening for endogenous TFEB and TFE3 translocation identifies novel chemical series modulating lysosome function. Autophagy 19, 692–705 (2023).

    Article  CAS  PubMed  Google Scholar 

  147. Wang, C. et al. Small-molecule TFEB pathway agonists that ameliorate metabolic syndrome in mice and extend C. elegans lifespan. Nat. Commun. 8, 2270 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Lin, Y. et al. A small-molecule drug inhibits autophagy gene expression through the central regulator TFEB. Proc. Natl Acad. Sci. USA 120, e2213670120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Zhang, X. et al. Use of acidic nanoparticles to rescue macrophage lysosomal dysfunction in atherosclerosis. Autophagy 19, 886–903 (2023).

    Article  CAS  PubMed  Google Scholar 

  150. Du, H. et al. Reduction of atherosclerotic plaques by lysosomal acid lipase supplementation. Arterioscler. Thromb. Vasc. Biol. 24, 147–154 (2004).

    Article  CAS  PubMed  Google Scholar 

  151. Jia, J. et al. Galectin-3 coordinates a cellular system for lysosomal repair and removal. Dev. Cell 52, 69–87.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. Jia, J. et al. Galectins control mTOR in response to endomembrane damage. Mol. Cell 70, 120–135.e8 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sharma, U. C. et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation 110, 3121–3128 (2004).

    Article  CAS  PubMed  Google Scholar 

  154. Falcone, C. et al. Galectin-3 plasma levels and coronary artery disease: a new possible biomarker of acute coronary syndrome. Int. J. Immunopathol. Pharmacol. 24, 905–913 (2011).

    Article  CAS  PubMed  Google Scholar 

  155. Arar, C., Gaudin, J. C., Capron, L. & Legrand, A. Galectin-3 gene (LGALS3) expression in experimental atherosclerosis and cultured smooth muscle cells. FEBS Lett. 430, 307–311 (1998).

    Article  CAS  PubMed  Google Scholar 

  156. Di Gregoli, K. et al. Galectin-3 identifies a subset of macrophages with a potential beneficial role in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 40, 1491–1509 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Shen, D. et al. Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release. Nat. Commun. 3, 731 (2012).

    Article  PubMed  Google Scholar 

  158. Scotto Rosato, A. et al. TRPML1 links lysosomal calcium to autophagosome biogenesis through the activation of the CaMKKβ/VPS34 pathway. Nat. Commun. 10, 5630 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Somogyi, A. et al. The synthetic TRPML1 agonist ML-SA1 rescues Alzheimer-related alterations of the endosomal–autophagic–lysosomal system. J. Cell Sci. 136, jcs259875 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zhong, D. et al. Induction of lysosomal exocytosis and biogenesis via TRPML1 activation for the treatment of uranium-induced nephrotoxicity. Nat. Commun. 14, 3997 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Martina, J. A., Chen, Y., Gucek, M. & Puertollano, R. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8, 903–914 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Castro, C. et al. Rapamycin attenuates atherosclerosis induced by dietary cholesterol in apolipoprotein-deficient mice through a p27Kip1-independent pathway. Atherosclerosis 172, 31–38 (2004).

    Article  CAS  PubMed  Google Scholar 

  163. Stone, G. W. et al. Differential clinical responses to everolimus-eluting and paclitaxel-eluting coronary stents in patients with and without diabetes mellitus. Circulation 124, 893–900 (2011).

    Article  CAS  PubMed  Google Scholar 

  164. Gerlach, B. D. et al. Efferocytosis induces macrophage proliferation to help resolve tissue injury. Cell Metab. 33, 2445–2463.e8 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Zhang, X. et al. Loss of macrophage mTORC2 drives atherosclerosis via FoxO1 and IL-1β signaling. Circ. Res. 133, 200–219 (2023). This research shows how elevated blood leucine levels owing to a high-protein diet promote mTORC1 activation in macrophages, increasing the risk of atherosclerosis in experimental models.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Ai, D. et al. Disruption of mammalian target of rapamycin complex 1 in macrophages decreases chemokine gene expression and atherosclerosis. Circ. Res. 114, 1576–1584 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Zhang, Q. et al. Rheb (Ras homolog enriched in brain 1) deficiency in mature macrophages prevents atherosclerosis by repressing macrophage proliferation, inflammation, and lipid uptake. Arterioscler. Thromb. Vasc. Biol. 39, 1787–1801 (2019).

    Article  CAS  PubMed  Google Scholar 

  168. Zhang, X. et al. Identification of a leucine-mediated threshold effect governing macrophage mTOR signalling and cardiovascular risk. Nat. Metab. 6, 359–377 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kaldirim, M. et al. Modulation of mTOR signaling in cardiovascular disease to target acute and chronic inflammation. Front. Cardiovasc. Med. 9, 907348 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Valvezan, A. J. & Manning, B. D. Molecular logic of mTORC1 signalling as a metabolic rheostat. Nat. Metab. 1, 321–333 (2019).

    Article  CAS  PubMed  Google Scholar 

  171. Settembre, C., Fraldi, A., Medina, D. L. & Ballabio, A. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat. Rev. Mol. Cell Biol. 14, 283–296 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Shin, H. R. et al. Lysosomal GPCR-like protein LYCHOS signals cholesterol sufficiency to mTORC1. Science 377, 1290–1298 (2022). This study identifies the lysosomal cholesterol signalling protein, a G protein-coupled receptor, as a cholesterol sensor that interacts with mTORC1 and participates in its activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Castellano, B. M. et al. Lysosomal cholesterol activates mTORC1 via an SLC38A9–Niemann–Pick C1 signaling complex. Science 355, 1306–1311 (2017). Report of how the transmembrane protein SLC38A9 senses LDLR-derived free cholesterol concentration in the lysosome and participates in mTORC1 clustering on the lysosomal membrane.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Menon, D. et al. ARL8B mediates lipid droplet contact and delivery to lysosomes for lipid remobilization. Cell Rep. 42, 113203 (2023).

    Article  CAS  PubMed  Google Scholar 

  175. Murley, A. et al. Ltc1 is an ER-localized sterol transporter and a component of ER–mitochondria and ER–vacuole contacts. J. Cell Biol. 209, 539–548 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Wilhelm, L. P. et al. STARD 3 mediates endoplasmic reticulum‐to‐endosome cholesterol transport at membrane contact sites. EMBO J. 36, 1412–1433 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Wu, H., Carvalho, P. & Voeltz, G. K. Here, there, and everywhere: the importance of ER membrane contact sites. Science 361, eaan5835 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Brown, M. S. & Goldstein, J. L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89, 331–340 (1997).

    Article  CAS  PubMed  Google Scholar 

  179. Pu, J., Guardia, C. M., Keren-Kaplan, T. & Bonifacino, J. S. Mechanisms and functions of lysosome positioning. J. Cell Sci. 129, 4329–4339 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Korolchuk, V. I. et al. Lysosomal positioning coordinates cellular nutrient responses. Nat. Cell Biol. 13, 453–462 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Mindell, J. A. Lysosomal acidification mechanisms. Annu. Rev. Physiol. 74, 69–86 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

G.D.N. was supported by Progetti di Rilevante Interesse Nazionale (PRIN 2022 7KTSAT), Ricerca Finalizzata, Ministry of Health (RF-2019-12370896), Nanokos (European Commission Ref. EUROPEAID/173691/DD/ACT/XK), PNRR Missione 4 (Progetto CN3 — National Center for Gene Therapy and Drugs based on RNA Technology), PNRR Missione 4 (Progetto MUSA — Multilayered Urban Sustainability Action), PNRR Missione 6 (PNRR-MAD-2022-12375913) and CARDINNOV, Ministry of Research and University under the umbrella of the Partnership fostering a European Research Area for Health (ERA4Health) (GA number 101095426 of the EU Horizon Europe Research and Innovation Programme). F.B. was supported by Progetti di Rilevante Interesse Nazionale (PRIN 2022 2022NBKCWP), Fondazione Cariplo (1560-2019) and Piano di Sostegno alla Ricerca, Università degli studi di Milano (PSR2022_DIP_022_AZIONE_A_FBONA). L.Y.-C. was supported by grants from the European Research Council (ERC) consolidator programme (ERC2016COG724838), ANR (MacBurn) and IHU RespirERA (Respiratory Health, Environment and Ageing).

Author information

Authors and Affiliations

Authors

Contributions

F.B., X.Z. and N.M. researched data for the article. F.B., L.Y.-C. and G.D.N. discussed its content. F.B., X.Z., N.M., L.Y.-C. and G.D.N. wrote the manuscript. F.B., L.Y.-C., B.R. and G.D.N. reviewed and edited it before submission.

Corresponding author

Correspondence to Giuseppe D. Norata.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Otilia Vieira, Hanrui Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonacina, F., Zhang, X., Manel, N. et al. Lysosomes in the immunometabolic reprogramming of immune cells in atherosclerosis. Nat Rev Cardiol 22, 149–164 (2025). https://doi.org/10.1038/s41569-024-01072-4

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41569-024-01072-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing