Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The spleen in ischaemic heart disease

Abstract

Ischaemic heart disease is a consequence of coronary atherosclerosis, and atherosclerosis is a systemic inflammatory disease. The spleen releases various immune cells in temporally distinct patterns. Neutrophils, monocytes, macrophages, B cells and T cells execute innate and adaptive immune processes in the coronary atherosclerotic plaque and in the ischaemic myocardium. Prolonged inflammation contributes to ischaemic heart failure. The spleen is also a target of neuromodulation through vagal, sympathetic and sensory nerve activation. Efferent vagal activation and subsequent activation of the noradrenergic splenic nerve activate β2-adrenergic receptors on splenic T cells, which release acetylcholine that ultimately results in attenuation of cytokine secretion from splenic macrophages. Coeliac vagal nerve activation increases splenic sympathetic nerve activity and drives the release of T cells, a process that depends on placental growth factor. Activation of the vagosplenic axis protects acutely from ischaemia–reperfusion injury during auricular tragus vagal stimulation and remote ischaemic conditioning. Splenectomy abrogates all these deleterious and beneficial actions on the cardiovascular system. The aggregate effect of splenectomy in humans is a long-term increase in mortality from ischaemic heart disease. The spleen has been appreciated as an important immune organ for inflammatory processes in atherosclerosis, myocardial infarction and heart failure, whereas its complex interaction with circulating blood factors and with the autonomic and somatic nervous systems, as well as its role in cardioprotection, have emerged only in the past decade. In this Review, we describe this newly identified cardioprotective function of the spleen and highlight the potential for translating the findings to patients with ischaemic heart disease.

Key points

  • The spleen is a central immune organ and provides an interface to the autonomic nervous system and the circulating blood.

  • Immune cells originating in the spleen contribute to atherosclerotic plaque inflammation and the inflammatory response to myocardial infarction.

  • Efferent vagal nerve activation induces the activation of splenic noradrenergic nerves that project onto splenic T cells, which then release acetylcholine to activate α7-nicotinic receptors on macrophages, resulting in decreased macrophage cytokine release.

  • Coeliac vagal nerve activation increases splenic sympathetic nerve activity and drives the release of T cells from the spleen, a process that is mediated by placental growth factor.

  • Activation of the vagosplenic axis is decisive for myocardial infarct size reduction by auricular tragus stimulation and remote ischaemic conditioning in rats, pigs and humans.

  • Splenectomy in humans is associated with increased mortality from ischaemic heart disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spleen-derived immune cells in coronary atherosclerosis and reperfused acute myocardial infarction.
Fig. 2: Structure of the spleen.
Fig. 3: Splenic innervation and its activation during myocardial ischaemia–reperfusion and cardioprotection.
Fig. 4: Cardioprotection by vagosplenic axis activation.
Fig. 5: Interaction between the ischaemic–reperfused brain, the heart and the spleen in stroke.

Similar content being viewed by others

References

  1. Heusch, G. Myocardial ischemia/reperfusion: translational pathophysiology of ischemic heart disease. Med 5, 10–31 (2024).

    Article  CAS  PubMed  Google Scholar 

  2. Libby, P. The changing landscape of atherosclerosis. Nature 592, 524–533 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Döring, Y., van der Vorst, E. P. C. & Weber, C. Targeting immune cell recruitment in atherosclerosis. Nat. Rev. Cardiol. 21, 824–840 (2024).

    Article  PubMed  Google Scholar 

  4. Heusch, G. Alpha-adrenergic mechanisms in myocardial ischemia. Circulation 81, 1–13 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Heusch, G. et al. α-Adrenergic coronary vasoconstriction and myocardial ischemia in humans. Circulation 101, 689–694 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Heusch, G. Vagal cardioprotection in reperfused acute myocardial infarction. JACC Cardiovasc. Interv. 10, 1521–1522 (2017).

    Article  PubMed  Google Scholar 

  7. Mohanta, S. K. et al. Neuroimmune cardiovascular interfaces control atherosclerosis. Nature 605, 152–159 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Mohanta, S. K. et al. Cardiovascular brain circuits. Circ. Res. 132, 1546–1565 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Weber, C., Habenicht, A. J. R. & von Hundelshausen, P. Novel mechanisms and therapeutic targets in atherosclerosis: inflammation and beyond. Eur. Heart J. 44, 2672–2681 (2023).

    Article  CAS  PubMed  Google Scholar 

  10. Carnevale, L. et al. Celiac vagus nerve stimulation recapitulates angiotensin II-induced splenic noradrenergic activation, driving egress of CD8 effector cells. Cell Rep. 33, 108494 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carnevale, D. Neuroimmune axis of cardiovascular control: mechanisms and therapeutic implications. Nat. Rev. Cardiol. 19, 379–394 (2022).

    Article  PubMed  Google Scholar 

  12. Swirski, F. K. et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325, 612–616 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van der Laan, A. M. et al. Monocyte subset accumulation in the human heart following acute myocardial infarction and the role of the spleen as monocyte reservoir. Eur. Heart J. 35, 376–385 (2014).

    Article  PubMed  Google Scholar 

  14. Dutta, P. et al. Myocardial infarction accelerates atherosclerosis. Nature 487, 325–329 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rein, H. Über ein Regulationssystem “Milz-Leber” für den oxydativen Stoffwechsel der Körpergewebe und besonders des Herzens. Naturwissenschaften 36, 233–239 (1949).

    Article  Google Scholar 

  16. Rein, H. The role of the spleen and liver in coronary or hypoxic myocardial insufficiency. Pflug. Arch. Gesamt. Physiol. Menschen Tiere 253, 435–458 (1951).

    Article  CAS  Google Scholar 

  17. Meesmann, W. & Schmier, J. Effects of electric stimulation of the splenic nerve on coronary blood flow. Pflügers Arch. 263, 293–303 (1956).

    Article  CAS  Google Scholar 

  18. Meesmann, W. & Schmier, J. Oxygen consumption of the heart in spleen-liver mechanism. Pflügers Arch. 263, 304–314 (1956).

    Article  CAS  Google Scholar 

  19. Lieder, H. R. et al. Vago-splenic axis in signal transduction of remote ischemic preconditioning in pigs and rats. Circ. Res. 123, 1152–1163 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lieder, H. et al. Vago-splenic signal transduction of cardioprotection in humans. Eur. Heart J. 45, 3164–3177 (2024).

    Article  CAS  PubMed  Google Scholar 

  21. Heusch, G. The spleen in myocardial infarction. Circ. Res. 124, 26–28 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Cesta, M. F. Normal structure, function, and histology of the spleen. Toxicol. Pathol. 34, 455–465 (2006).

    Article  PubMed  Google Scholar 

  23. Mebius, R. E. & Kraal, G. Structure and function of the spleen. Nat. Rev. Immunol. 5, 606–616 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Steiniger, B. S. Human spleen microanatomy: why mice do not suffice. Immunology 145, 334–346 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Alexandre, Y. O. & Mueller, S. N. Splenic stromal niches in homeostasis and immunity. Nat. Rev. Immunol. 23, 705–719 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Lewis, S. M., Williams, A. & Eisenbarth, S. C. Structure and function of the immune system in the spleen. Sci. Immunol. 4, eaau6085 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Crean, P. A. et al. The fractional distribution of the cardiac output in man using microspheres labelled with technetium 99m. Br. J. Radiol. 59, 209–215 (1986).

    Article  CAS  PubMed  Google Scholar 

  28. Steiniger, B. S., Pfeffer, H., Guthe, M. & Lobachev, O. Exploring human splenic red pulp vasculature in virtual reality: details of sheathed capillaries and the open capillary network. Histochem. Cell Biol. 155, 341–354 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Steiniger, B. S., Pfeffer, H., Gaffling, S. & Lobachev, O. The human splenic microcirculation is entirely open as shown by 3D models in virtual reality. Sci. Rep. 12, 16487 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pereira, M. R. & Leite, P. E. The involvement of parasympathetic and sympathetic nerve in the inflammatory reflex. J. Cell Physiol. 231, 1862–1869 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Rosas-Ballina, M. et al. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc. Natl Acad. Sci. USA 105, 11008–11013 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rosas-Ballina, M. et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334, 98–101 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ji, H. et al. Central cholinergic activation of a vagus nerve-to-spleen circuit alleviates experimental colitis. Mucosal Immunol. 7, 335–347 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Straub, R. H., Lang, B., Falk, W., Scholmerich, J. & Singer, E. A. In vitro superfusion method for the investigation of nerve-immune cell interaction in murine spleen. J. Neuroimmunol. 61, 53–60 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Mota, C. M. D. & Madden, C. J. Neural control of the spleen as an effector of immune responses to inflammation: mechanisms and treatments. Am. J. Physiol. Regul. Integr. Comp. Physiol. 323, R375–R384 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gonzalez-Gonzalez, M. A., Bendale, G. S., Wang, K., Wallace, G. G. & Romero-Ortega, M. Platinized graphene fiber electrodes uncover direct spleen-vagus communication. Commun. Biol. 4, 1097 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kawashima, K., Fujii, T., Moriwaki, Y., Misawa, H. & Horiguchi, K. Non-neuronal cholinergic system in regulation of immune function with a focus on α7 nAChRs. Int. Immunopharmacol. 29, 127–134 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Inoue, T. et al. Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through α7nAChR+ splenocytes. J. Clin. Invest. 126, 1939–1952 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. de Jonge, W. J. et al. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat. Immunol. 6, 844–851 (2005).

    Article  PubMed  Google Scholar 

  40. Bratton, B. O. et al. Neural regulation of inflammation: no neural connection from the vagus to splenic sympathetic neurons. Exp. Physiol. 97, 1180–1185 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Kobori, N., Moore, A. N., Redell, J. B. & Dash, P. K. Caudal DMN neurons innervate the spleen and release CART peptide to regulate neuroimmune function. J. Neuroinflammation 20, 158 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tanaka, S. et al. Vagus nerve stimulation activates two distinct neuroimmune circuits converging in the spleen to protect mice from kidney injury. Proc. Natl Acad. Sci. USA 118, e2021758118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mestas, J. & Hughes, C. C. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Zschaler, J., Schlorke, D. & Arnhold, J. Differences in innate immune response between man and mouse. Crit. Rev. Immunol. 34, 433–454 (2014).

    PubMed  Google Scholar 

  45. Donega, M. et al. Human-relevant near-organ neuromodulation of the immune system via the splenic nerve. Proc. Natl Acad. Sci. USA 118, e2025428118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Verlinden, T. J. M. et al. Innervation of the human spleen: a complete hilum-embedding approach. Brain Behav. Immun. 77, 92–100 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Wu, M. et al. Innervation of nociceptor neurons in the spleen promotes germinal center responses and humoral immunity. Cell 187, 2935–2951 (2024).

    Article  CAS  PubMed  Google Scholar 

  48. Medeiros, A., Peres-Buzalaf, C., Fortino Verdan, F. & Serezani, C. H. Prostaglandin E2 and the suppression of phagocyte innate immune responses in different organs. Mediators Inflamm. 2012, 327568 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gilmore, N., Vane, J. R. & Wyllie, J. H. Prostaglandins released by the spleen. Nature 218, 1135–1140 (1968).

    Article  CAS  PubMed  Google Scholar 

  50. Smith, J. N. et al. 15-PGDH inhibition activates the splenic niche to promote hematopoietic regeneration. JCI Insight 6, e143658 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wolfrum, S. et al. Calcitonin gene related peptide mediates cardioprotection by remote preconditioning. Regul. Pept. 127, 217–224 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Ketelhuth, D. F. & Hansson, G. K. Adaptive response of T and B cells in atherosclerosis. Circ. Res. 118, 668–678 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Wagner, J. U. G. et al. Aging impairs the neurovascular interface in the heart. Science 381, 897–906 (2023).

    Article  CAS  PubMed  Google Scholar 

  54. Murphy, A. J. et al. ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice. J. Clin. Invest. 10, 4138–4149 (2011).

    Article  Google Scholar 

  55. Westerterp, M. et al. Regulation of hematopoietic stem and progenitor cell mobilization by cholesterol efflux pathways. Cell Stem Cell 11, 195–206 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Al-Sharea, A. et al. Nicotinic acetylcholine receptor alpha 7 stimulation dampens splenic myelopoiesis and inhibits atherogenesis in Apoe−/− mice. Atherosclerosis 265, 47–53 (2017).

    Article  CAS  PubMed  Google Scholar 

  57. Potteaux, S., Ait-Oufella, H. & Mallat, Z. Role of splenic monocytes in atherosclerosis. Curr. Opin. Lipidol. 26, 457–463 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Fernandez-Garcia, V., Gonzalez-Ramos, S., Martin-Sanz, P., Castrillo, A. & Bosca, L. Contribution of extramedullary hematopoiesis to atherosclerosis. The spleen as a neglected hub of inflammatory cells. Front. Immunol. 11, 586527 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Depuydt, M. A. C. et al. Microanatomy of the human atherosclerotic plaque by single-cell transcriptomics. Circ. Res. 127, 1437–1455 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yan, C., Li, Y. Z., Luo, X. M., Quan, X. J. & Feng, Y. M. Roles of hematopoietic stem and progenitor cells in ischemic cardiovascular disease. Curr. Stem Cell Res. Ther. 16, 589–598 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Asai, K., Kuzuya, M., Naito, M., Funaki, C. & Kuzuya, F. Effects of splenectomy on serum lipids and experimental atherosclerosis. Angiology 39, 497–504 (1988).

    Article  CAS  PubMed  Google Scholar 

  62. Ai, X. M. et al. The role of splenectomy in lipid metabolism and atherosclerosis (AS). Lipids Health Dis. 17, 186 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Akbar, N. et al. Endothelium-derived extracellular vesicles promote splenic monocyte mobilization in myocardial infarction. JCI Insight 2, e93344 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Akbar, N. et al. Rapid neutrophil mobilization by VCAM-1+ endothelial cell-derived extracellular vesicles. Cardiovasc. Res. 119, 236–251 (2023).

    Article  CAS  PubMed  Google Scholar 

  65. Panda, R. & Kubes, P. Extracellular vesicles selectively mobilize splenic neutrophils. Cardiovasc. Res. 119, 1–2 (2023).

    Article  CAS  PubMed  Google Scholar 

  66. Rasheed, A. et al. Hyperlipidemia-induced hematopoiesis is repressed by MLKL in endothelial cells of the splenic niche. Nat. Cardiovasc. Res. 3, 594–611 (2024).

    Article  CAS  PubMed  Google Scholar 

  67. Robbins, C. S. et al. Extramedullary hematopoiesis generates Ly-6Chigh monocytes that infiltrate atherosclerotic lesions. Circulation 125, 364–374 (2012).

    Article  PubMed  Google Scholar 

  68. Soehnlein, O. & Libby, P. Targeting inflammation in atherosclerosis – from experimental insights to the clinic. Nat. Rev. Drug. Discov. 20, 589–610 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tay, C. et al. B-cell-specific depletion of tumour necrosis factor alpha inhibits atherosclerosis development and plaque vulnerability to rupture by reducing cell death and inflammation. Cardiovasc. Res. 111, 385–397 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Grasset, E. K. et al. Sterile inflammation in the spleen during atherosclerosis provides oxidation-specific epitopes that induce a protective B-cell response. Proc. Natl Acad. Sci. USA 112, E2030–E2038 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jones, P. W., Mallat, Z. & Nus, M. T-cell/B-cell interactions in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 44, 1502–1511 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. O’Brien, J. W., Case, A., Kemper, C., Zhao, T. X. & Mallat, Z. Therapeutic avenues to modulate B-cell function in patients with cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 44, 1512–1522 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Swirski, F. K. & Nahrendorf, M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 339, 161–166 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tarnawski, L. et al. Cholinergic regulation of vascular endothelial function by human ChAT+ T cells. Proc. Natl Acad. Sci. USA 120, e2212476120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang, Z. et al. Pairing of single-cell RNA analysis and T cell antigen receptor profiling indicates breakdown of T cell tolerance checkpoints in atherosclerosis. Nat. Cardiovasc. Res. 2, 290–306 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Khan, A., Roy, P. & Ley, K. Breaking tolerance: the autoimmune aspect of atherosclerosis. Nat. Rev. Immunol. 24, 670–679 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dutta, P. et al. E-selectin inhibition mitigates splenic HSC activation and myelopoiesis in hypercholesterolemic mice with myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 36, 1802–1808 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Natarajan, N. & Dutta, P. ‘Training’ of innate immunity following myocardial infarction exacerbates atherosclerosis. Eur. Heart J. 45, 685–687 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dong, Z. et al. Myocardial infarction drives trained immunity of monocytes, accelerating atherosclerosis. Eur. Heart J. 45, 669–684 (2024).

    Article  CAS  PubMed  Google Scholar 

  80. Riksen, N. P., Bekkering, S., Mulder, W. J. M. & Netea, M. G. Trained immunity in atherosclerotic cardiovascular disease. Nat. Rev. Cardiol. 20, 799–811 (2023).

    Article  PubMed  Google Scholar 

  81. Tian, Y. et al. The spleen contributes importantly to myocardial infarct exacerbation during post-ischemic reperfusion in mice via signaling between cardiac HMGB1 and splenic RAGE. Basic. Res. Cardiol. 111, 62 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Hilgendorf, I., Frantz, S. & Frangogiannis, N. G. Repair of the infarcted heart: cellular effectors, molecular mechanisms and therapeutic opportunities. Circ. Res. 134, 1718–1751 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ramos-Regalado, L., Alcover, S., Badimon, L. & Vilahur, G. The influence of metabolic risk factors on the inflammatory response triggered by myocardial infarction: bridging pathophysiology to treatment. Cells 13, 1125 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Xie, D. et al. Splenic monocytes mediate inflammatory response and exacerbate myocardial ischemia/reperfusion injury in a mitochondrial cell-free DNA-TLR9-NLRP3-dependent fashion. Basic. Res. Cardiol. 118, 44 (2023).

    Article  CAS  PubMed  Google Scholar 

  85. Yap, J. et al. Macrophages in cardiac remodelling after myocardial infarction. Nat. Rev. Cardiol. 20, 373–385 (2023).

    Article  PubMed  Google Scholar 

  86. Dewald, O. et al. CCL2/monocyte chemoattractant protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ. Res. 96, 881–889 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Dutta, P. et al. Myocardial infarction activates CCR2+ hematopoietic stem and progenitor cells. Cell Stem Cell 16, 477–487 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Heusch, G., Deussen, A. & Thämer, V. Cardiac sympathetic nerve activity and progressive vasoconstriction distal to coronary stenoses: feed-back aggravation of myocardial ischemia. J. Auton. Nerv. Syst. 13, 311–326 (1985).

    Article  CAS  PubMed  Google Scholar 

  89. Swirski, F. K. & Nahrendorf, M. Cardioimmunology: the immune system in cardiac homeostasis and disease. Nat. Rev. Immunol. 18, 733–744 (2018).

    Article  CAS  PubMed  Google Scholar 

  90. Moggio, A., Schunkert, H., Kessler, T. & Sager, H. B. Quo vadis? Immunodynamics of myeloid cells after myocardial infarction. Int. J. Mol. Sci. 23, 15814 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Dewald, O. et al. Of mice and dogs: species-specific differences in the inflammatory response following myocardial infarction. Am. J. Pathol. 164, 665–677 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yan, X. et al. Temporal dynamics of cardiac immune cell accumulation following acute myocardial infarction. J. Mol. Cell Cardiol. 62, 24–35 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Lindsey, M. L. et al. Guidelines for experimental models of myocardial ischemia and infarction. Am. J. Physiol. Heart Circ. Physiol. 314, H812–H838 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Schnitter, F. et al. Characterizing the immune response to myocardial infarction in pigs. Basic. Res. Cardiol. 119, 453–479 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Weinberger, T. et al. Resident and recruited macrophages differentially contribute to cardiac healing after myocardial ischemia. eLife 12, RP89377 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Lavine, K. J. et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc. Natl Acad. Sci. USA 111, 16029–16034 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Epelman, S. et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40, 91–104 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Heinrichs, M. et al. The healing myocardium mobilizes a distinct B-cell subset through a CXCL13-CXCR5-dependent mechanism. Cardiovasc. Res. 117, 2664–2676 (2021).

    CAS  PubMed  Google Scholar 

  99. Rieckmann, M. et al. Myocardial infarction triggers cardioprotective antigen-specific T helper cell responses. J. Clin. Invest. 129, 4922–4936 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Delgobo, M. et al. Myocardial milieu favors local differentiation of regulatory T cells. Circ. Res. 132, 565–582 (2023).

    Article  CAS  PubMed  Google Scholar 

  101. Gladow, N. et al. Role of CD4+ T-cells for regulating splenic myelopoiesis and monocyte differentiation after experimental myocardial infarction. Basic. Res. Cardiol. 119, 261–275 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu, H. et al. Exosomes derived from dendritic cells improve cardiac function via activation of CD4+ T lymphocytes after myocardial infarction. J. Mol. Cell Cardiol. 91, 123–133 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Wu, L. et al. IL-10-producing B cells are enriched in murine pericardial adipose tissues and ameliorate the outcome of acute myocardial infarction. Proc. Natl Acad. Sci. USA 116, 21673–21684 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zouggari, Y. et al. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat. Med. 19, 1273–1280 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sun, Y. et al. Splenic marginal zone B lymphocytes regulate cardiac remodeling after acute myocardial infarction in mice. J. Am. Coll. Cardiol. 79, 632–647 (2022).

    Article  CAS  PubMed  Google Scholar 

  106. Fredman, G. & Serhan, C. N. Specialized pro-resolving mediators in vascular inflammation and atherosclerotic cardiovascular disease. Nat. Rev. Cardiol. 21, 808–823 (2024).

    Article  PubMed  Google Scholar 

  107. Halade, G. V., Norris, P. C., Kain, V., Serhan, C. N. & Ingle, K. A. Splenic leukocytes define the resolution of inflammation in heart failure. Sci. Signal. 11, eaao1818 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Gao, X. M. et al. Splenic release of platelets contributes to increased circulating platelet size and inflammation after myocardial infarction. Clin. Sci. 130, 1089–1104 (2016).

    Article  CAS  Google Scholar 

  109. Lieder, H. R. et al. Platelet-mediated transfer of cardioprotection by remote ischemic conditioning and its abrogation by aspirin, but not by ticagrelor. Cardiovasc. Drugs Ther. 37, 865–876 (2023).

    Article  PubMed  Google Scholar 

  110. Kleinbongard, P., Andreadou, I. & Vilahur, G. The platelet paradox of injury versus protection in myocardial infarction – has it been overlooked? Basic. Res. Cardiol. 116, 37 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Tomczyk, M. et al. Splenic Ly6Chi monocytes contribute to adverse late post-ischemic left ventricular remodeling in heme oxygenase-1 deficient mice. Basic. Res. Cardiol. 112, 39 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Ismahil, M. A. et al. Remodeling of the mononuclear phagocyte network underlies chronic inflammation and disease progression in heart failure: critical importance of the cardiosplenic axis. Circ. Res. 114, 266–282 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Prabhu, S. D. The cardiosplenic axis is essential for the pathogenesis of ischemic heart failure. Trans. Am. Clin. Climatol. Assoc. 129, 202–214 (2018).

    PubMed  PubMed Central  Google Scholar 

  114. Bryan, A. M. & Del Poeta, M. Sphingosine-1-phosphate receptors and innate immunity. Cell Microbiol. 20, e12836 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Means, C. K. & Brown, J. H. Sphingosine-1-phosphate receptor signalling in the heart. Cardiovasc. Res. 82, 193–200 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Keul, P. et al. Sphingosine-1-phosphate receptor 1 regulates cardiac function by modulating Ca2+ sensitivity and Na+/H+ exchange and mediates protection by ischemic preconditioning. J. Am. Heart Assoc. 5, e003393 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Gowda, S. B. et al. Sphingosine-1-phosphate interactions in the spleen and heart reflect extent of cardiac repair in mice and failing human hearts. Am. J. Physiol. Heart Circ. Physiol. 321, H599–H611 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Antipenko, S. et al. Neutrophils are indispensable for adverse cardiac remodeling in heart failure. J. Mol. Cell Cardiol. 189, 1–11 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bansal, S. S. et al. Activated T lymphocytes are essential drivers of pathological remodeling in ischemic heart failure. Circ. Heart Fail. 10, e003688 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Adamo, L., Rocha-Resende, C., Prabhu, S. D. & Mann, D. L. Reappraising the role of inflammation in heart failure. Nat. Rev. Cardiol. 17, 269–285 (2020).

    Article  PubMed  Google Scholar 

  121. Maeda, D. et al. Splenic volume index determined using computed tomography upon admission is associated with readmission for heart failure among patients with acute decompensated heart failure. Int. Heart J. 62, 584–591 (2021).

    Article  PubMed  Google Scholar 

  122. Hiraiwa, H. et al. Splenic size as an indicator of hemodynamics and prognosis in patients with heart failure. Heart Vessel. 37, 1344–1355 (2022).

    Article  Google Scholar 

  123. Maisel, A. et al. Experimental autoimmune myocarditis produced by adoptive transfer of splenocytes after myocardial infarction. Circ. Res. 82, 458–463 (1998).

    Article  CAS  PubMed  Google Scholar 

  124. Adamo, L. et al. B cell-mediated antigen presentation promotes adverse cardiac remodeling in chronic heart failure. Preprint at Res. Sq. https://doi.org/10.21203/rs.3.rs-4536350/v1 (2024).

  125. Kelly, M. J., Breathnach, C., Tracey, K. J. & Donnelly, S. C. Manipulation of the inflammatory reflex as a therapeutic strategy. Cell Rep. Med. 3, 100696 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kaplan, A. et al. Cooling down inflammation in the cardiovascular system via the nicotinic acetylcholine receptor. J. Cardiovasc. Pharmacol. 82, 241–265 (2023).

    Article  CAS  PubMed  Google Scholar 

  127. Fang, J. et al. α7nAChR deletion aggravates myocardial infarction and enhances systemic inflammatory reaction via mTOR-signaling-related autophagy. Inflammation 42, 1190–1202 (2019).

    Article  CAS  PubMed  Google Scholar 

  128. Yu, L. et al. Low-level tragus stimulation for the treatment of ischemia and reperfusion injury in patients with ST-segment elevation myocardial infarction: a proof-of-concept study. JACC Cardiovasc. Interv. 10, 1511–1520 (2017).

    Article  PubMed  Google Scholar 

  129. Heusch, G., Bøtker, H. E., Przyklenk, K., Redington, A. & Yellon, D. M. Remote ischemic conditioning. J. Am. Coll. Cardiol. 65, 177–195 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hausenloy, D. J. et al. Effect of remote ischaemic preconditioning on myocardial injury in patients undergoing coronary artery bypass graft surgery: a randomized controlled trial. Lancet 370, 575–579 (2007).

    Article  PubMed  Google Scholar 

  131. Thielmann, M. et al. Cardioprotective and prognostic effects of remote ischaemic preconditioning in patients undergoing coronary artery bypass surgery: a single-centre randomised, double-blind, controlled trial. Lancet 382, 597–604 (2013).

    Article  PubMed  Google Scholar 

  132. Kleinbongard, P., Peters, J., Jakob, H., Heusch, G. & Thielmann, M. Persistent survival benefit from remote ischemic preconditioning in patients undergoing coronary artery bypass surgery. J. Am. Coll. Cardiol. 71, 251–262 (2018).

    Article  Google Scholar 

  133. Bøtker, H. E. et al. Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: a randomised trial. Lancet 375, 727–734 (2010).

    Article  PubMed  Google Scholar 

  134. Gaspar, A. et al. Randomized controlled trial of remote ischemic conditioning in ST-elevation myocardial infarction as adjuvant to primary angioplasty (RIC-STEMI). Basic. Res. Cardiol. 113, 14 (2018).

    Article  PubMed  Google Scholar 

  135. Hildebrandt, H. A. et al. Kinetics and signal activation properties of circulating factor(s) from healthy volunteers undergoing remote ischemic pre-conditioning. JACC Basic. Transl. Sci. 1, 3–13 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Skyschally, A. et al. Humoral transfer and intra-myocardial signal transduction of protection by remote ischemic perconditioning in pigs, rats, and mice. Am. J. Physiol. Heart Circ. Physiol. 315, H159–H172 (2018).

    Article  CAS  PubMed  Google Scholar 

  137. Badimon, J., Kiss, A. & Podesser, B. K. Spleen in action for cardioprotection. Eur. Heart J. 45, 3178–3180 (2024).

    Article  PubMed  Google Scholar 

  138. Tian, Y. et al. Stimulation of the beta2 adrenergic receptor at reperfusion limits myocardial reperfusion injury via an interleukin-10-dependent anti-inflammatory pathway in the spleen. Circ. J. 82, 2829–2836 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Pang, L. X. et al. Bone marrow-derived mesenchymal stem cells attenuate myocardial ischemia-reperfusion injury via upregulation of splenic regulatory T cells. BMC Cardiovasc. Disord. 21, 215 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Garnica, M. R., Silva, J. S. & de Andrade Junior, H. F. Stromal cell-derived factor-1 production by spleen cells is affected by nitric oxide in protective immunity against blood-stage Plasmodium chabaudi CR in C57BL/6j mice. Immunol. Lett. 89, 133–142 (2003).

    Article  CAS  PubMed  Google Scholar 

  141. Davidson, S. M. et al. Remote ischaemic preconditioning involves signalling through the SDF-1α/CXCR4 signalling axis. Basic. Res. Cardiol. 108, 377 (2013).

    Article  PubMed  Google Scholar 

  142. Korf-Klingebiel, M. et al. Myeloid-derived growth factor (C19orf10) mediates cardiac repair following myocardial infarction. Nat. Med. 21, 140–149 (2015).

    Article  CAS  PubMed  Google Scholar 

  143. Ruthirago, D., Julayanont, P., Tantrachoti, P., Kim, J. & Nugent, K. Cardiac arrhythmias and abnormal electrocardiograms after acute stroke. Am. J. Med. Sci. 351, 112–118 (2016).

    Article  PubMed  Google Scholar 

  144. Scheitz, J. F., Stengl, H., Nolte, C. H., Landmesser, U. & Endres, M. Neurological update: use of cardiac troponin in patients with stroke. J. Neurol. 268, 2284–2292 (2021).

    Article  PubMed  Google Scholar 

  145. Mochmann, H. C. et al. Coronary angiographic findings in acute ischemic stroke patients with elevated cardiac troponin: the TRoponin ELevation in Acute Ischemic Stroke (TRELAS) Study. Circulation 133, 1228–1229 (2016).

    Article  Google Scholar 

  146. Blaszczyk, E. et al. Myocardial injury in patients with acute ischemic stroke detected by cardiovascular magnetic resonance imaging. Eur. J. Radiol. 165, 110908 (2023).

    Article  CAS  PubMed  Google Scholar 

  147. Stengl, H. et al. Frequency, associated variables, and outcomes of acute myocardial injury according to the fourth universal definition of myocardial infarction in patients with acute ischemic stroke. Eur. Stroke J. 7, 413–420 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Bourhy, L. et al. Neuro-inflammatory response and brain-peripheral crosstalk in sepsis and stroke. Front. Immunol. 13, 834649 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Cao, J. et al. DNA-sensing inflammasomes cause recurrent atherosclerotic stroke. Nature 633, 433–441 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Courties, G., Moskowitz, M. A. & Nahrendorf, M. The innate immune system after ischemic injury: lessons to be learned from the heart and brain. JAMA Neurol. 71, 233–236 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Ding, Y., DeGracia, D., Geng, X. & Ding, Y. Perspectives on effect of spleen in ischemic stroke. Brain Circ. 8, 117–120 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Ran, Y. et al. Splenectomy fails to provide long-term protection against ischemic stroke. Aging Dis. 9, 467–479 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Sternak, M., Glasnovic, A., Josic, P., Romic, D. & Gajovic, S. The effects of splenectomy in murine models of ischemic stroke: a systematic review and meta-analysis. J. Neuroinflammation 19, 233 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Han, D., Liu, H., Gao, Y. & Feng, J. Targeting brain-spleen crosstalk after stroke: new insights into stroke pathology and treatment. Curr. Neuropharmacol. 19, 1590–1605 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Yu, H. et al. The “dialogue” between central and peripheral immunity after ischemic stroke: focus on spleen. Front. Immunol. 12, 792522 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Simats, A. et al. Innate immune memory after brain injury drives inflammatory cardiac dysfunction. Cell 187, 4637–4655.e26 (2024).

    Article  CAS  PubMed  Google Scholar 

  157. Liu, C., Yang, J., Zhang, C., Geng, X. & Zhao, H. The changes of systemic immune responses during the neuroprotection induced by remote ischemic postconditioning against focal cerebral ischemia in mice. Neurol. Res. 41, 26–36 (2019).

    Article  CAS  PubMed  Google Scholar 

  158. Yu, H. H. et al. Remote limb ischemic postconditioning protects against ischemic stroke by promoting regulatory T cells thriving. J. Am. Heart Assoc. 10, e023077 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Chen, C. et al. Splenic responses play an important role in remote ischemic preconditioning-mediated neuroprotection against stroke. J. Neuroinflammation 15, 167 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Kees, M. G., Pongratz, G., Kees, F., Schölmerich, J. & Straub, R. H. Via beta-adrenoceptors, stimulation of extrasplenic sympathetic nerve fibers inhibits lipopolysaccharide-induced TNF secretion in perfused rat spleen. J. Neuroimmunol. 145, 77–85 (2003).

    Article  CAS  PubMed  Google Scholar 

  161. Rogausch, H., del Rey, A., Oertel, J. & Besedovsky, H. O. Norepinephrine stimulates lymphoid cell mobilization from the perfused rat spleen via β-adrenergic receptors. Am. J. Physiol. 276, R724–R730 (1999).

    CAS  PubMed  Google Scholar 

  162. Grisanti, L. A. et al. Leukocyte-expressed β2-adrenergic receptors are essential for survival after acute myocardial injury. Circulation 134, 153–167 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Grisanti, L. A. et al. Prior β-blocker treatment decreases leukocyte responsiveness to injury. JCI Insight 5, e99485 (2019).

    Article  PubMed  Google Scholar 

  164. Leuschner, F. et al. Angiotensin-converting enzyme inhibition prevents the release of monocytes from their splenic reservoir in mice with myocardial infarction. Circ. Res. 107, 1364–1373 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Mao, Y. et al. Nanoparticle-mediated delivery of pitavastatin to monocytes/macrophages inhibits left ventricular remodeling after acute myocardial infarction by inhibiting monocyte-mediated inflammation. Int. Heart J. 58, 615–623 (2017).

    Article  CAS  PubMed  Google Scholar 

  166. Ferreira, S. H., Moncada, S. & Vane, J. R. Indomethacin and aspirin abolish prostaglandin release from the spleen. Nat. New Biol. 231, 237–239 (1971).

    Article  CAS  PubMed  Google Scholar 

  167. Zhang, X. et al. Aspirin attenuates cardiac allograft rejection by inhibiting the maturation of dendritic cells via the NF-κB signaling pathway. Front. Pharmacol. 12, 706748 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Huang, Z. et al. Ticagrelor regulates the differentiation of MDSCs after acute myocardial infarction to reduce cardiac injury. Biomed. Pharmacother. 172, 116209 (2024).

    Article  CAS  PubMed  Google Scholar 

  169. Kottenberg, E. et al. Protection by remote ischaemic preconditioning during coronary artery bypass grafting with isoflurane but not with propofol anesthesia – a clinical trial. Acta Anaesthesiol. Scand. 56, 30–38 (2012).

    Article  CAS  PubMed  Google Scholar 

  170. Ruparelia, N. et al. Acute myocardial infarction activates distinct inflammation and proliferation pathways in circulating monocytes, prior to recruitment, and identified through conserved transcriptional responses in mice and humans. Eur. Heart J. 36, 1923–1934 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Scheitz, J. F. et al. Stroke-heart syndrome: recent advances and challenges. J. Am. Heart Assoc. 11, e026528 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Emami, H. et al. Splenic metabolic activity predicts risk of future cardiovascular events: demonstration of a cardiosplenic axis in humans. JACC Cardiovasc. Imaging 8, 121–130 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Patel, N. H. et al. Heightened splenic and bone marrow uptake of 18F-FDG PET/CT is associated with systemic inflammation and subclinical atherosclerosis by CCTA in psoriasis: an observational study. Atherosclerosis 339, 20–26 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Rorholt, M., Ghanima, W., Farkas, D. K. & Norgaard, M. Risk of cardiovascular events and pulmonary hypertension following splenectomy – a Danish population-based cohort study from 1996-2012. Haematologica 102, 1333–1341 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Robinette, C. D. & Fraumeni, J. F. Jr Splenectomy and subsequent mortality in veterans of the 1939-45 war. Lancet 2, 127–129 (1977).

    Article  CAS  PubMed  Google Scholar 

  176. Kristinsson, S. Y., Gridley, G., Hoover, R. N., Check, D. & Landgren, O. Long-term risks after splenectomy among 8,149 cancer-free American veterans: a cohort study with up to 27 years follow-up. Haematologica 99, 392–398 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Long, B., Koyfman, A. & Gottlieb, M. Complications in the adult asplenic patient: a review for the emergency clinician. Am. J. Emerg. Med. 44, 452–457 (2021).

    Article  PubMed  Google Scholar 

  178. Palmer, J. A., Rosenthal, N., Teichmann, S. A. & Litvinukova, M. Revisiting cardiac biology in the era of single cell and spatial omics. Circ. Res. 134, 1681–1702 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Mocci, G. et al. Single-cell gene-regulatory networks of advanced symptomatic atherosclerosis. Circ. Res. 134, 1405–1423 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Bajpai, G. et al. The human heart contains distinct macrophage subsets with divergent origins and functions. Nat. Med. 24, 1234–1245 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. de Winter, N. et al. Persistent transcriptional changes in cardiac adaptive immune cells following myocardial infarction: new evidence from the re-analysis of publicly available single cell and nuclei RNA-sequencing data sets. J. Mol. Cell Cardiol. 192, 48–64 (2024).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This article is dedicated to the memory of G.H.’s predecessor as chair of the Institute for Pathophysiology at the University of Essen Medical School, Werner Meesmann, who had been a scholar of Hermann Rein. We appreciate the assistance of E. A. Chowanietz in the collection of references and preliminary drafts for the figures. G.H. and P.K. were supported by the German Research Foundation (CRC 1116 B8, RTG 2989 P5), the European Union Cost Action CARDIOPROTECTION (CA 16225 and IGI 16225) and METAHEART (CA22169).

Author information

Authors and Affiliations

Authors

Contributions

G.H. wrote the manuscript. Both authors researched data for the article, discussed its content, and reviewed or edited it before submission.

Corresponding author

Correspondence to Gerd Heusch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Daniela Carnevale, Andrew Murphy and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heusch, G., Kleinbongard, P. The spleen in ischaemic heart disease. Nat Rev Cardiol 22, 497–509 (2025). https://doi.org/10.1038/s41569-024-01114-x

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41569-024-01114-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing