Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Interventions for adult congenital heart disease

Abstract

Advances in imaging diagnostics, surgical techniques and transcatheter interventions for paediatric patients with severe congenital heart disease (CHD) have substantially reduced mortality, thereby extending the lifespan of these individuals and increasing the number of adults with complex CHD. Transcatheter interventions have emerged as an alternative to traditional open-heart surgery to mitigate congenital defects. The evolution of techniques, the introduction of new devices and the growing experience of operators have enabled the treatment of patients with progressively more complex conditions. The general cardiology community might be less aware of contemporary interventions for adult CHD, their clinical indications and associated outcomes than interventional cardiologists and congenital heart specialists. In this Review, we provide a comprehensive evaluation of the available transcatheter interventions for adult patients with CHD.

Key points

  • The prevalence of adults with congenital heart disease (CHD) has risen and now substantially exceeds the paediatric population with CHD, presenting new challenges in the management of these patients with complex disease.

  • Novel transcatheter procedures have emerged as an alternative to open-heart surgery in adults with CHD, reducing the need for repeat operations and improving both quality of life and prognosis.

  • Transcatheter technology is a rapidly evolving field; new shunt closure devices and techniques for aortic, mitral, pulmonary and tricuspid valve repair or replacement are being developed for use in adults with CHD.

  • Comprehensive, multicentre and population-based registries of adult patients with CHD, including extended periods of follow-up, are needed to address unanswered questions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Main types of atrial and ventricular septal defect.
Fig. 2: Transcatheter ostium secundum ASD and superior SVD closure.
Fig. 3: Transcatheter closure of patent ductus arteriosus and correction of native coarctation of the aorta.
Fig. 4: Transcatheter interventions in right-sided defects.

Similar content being viewed by others

References

  1. Liu, Y. et al. Global birth prevalence of congenital heart defects 1970-2017: updated systematic review and meta-analysis of 260 studies. Int. J. Epidemiol. 48, 455–463 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Van Der Linde, D. et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J. Am. Coll. Cardiol. 58, 2241–2247 (2011).

    Article  PubMed  Google Scholar 

  3. Van Der Bom, T. et al. The changing epidemiology of congenital heart disease. Nat. Rev. Cardiol. 8, 50–60 (2011).

    Article  PubMed  Google Scholar 

  4. Zimmerman, M. S. et al. Global, regional, and national burden of congenital heart disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Child. Adolesc. Health 4, 185–200 (2020).

    Article  Google Scholar 

  5. Su, Z. et al. Global, regional, and national time trends in mortality for congenital heart disease, 1990–2019: an age-period-cohort analysis for the Global Burden of Disease 2019 study. EClinicalMedicine 43, 101249 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Baumgartner, H. et al. 2020 ESC Guidelines for the management of adult congenital heart disease. Eur. Heart J. 42, 563–645 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Stout, K. K. et al. 2018 AHA/ACC guideline for the management of adults with congenital heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 139, e637–e697 (2019).

    PubMed  Google Scholar 

  8. Nathan, M. et al. Impact of major residual lesions on outcomes after surgery for congenital heart disease. J. Am. Coll. Cardiol. 77, 2382–2394 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bhatt, A. B. et al. Congenital heart disease in the older adult. Circulation 131, 1884–1931 (2015).

    Article  PubMed  Google Scholar 

  10. Bouchardy, J. et al. Atrial arrhythmias in adults with congenital heart disease. Circulation 120, 1679–1686 (2009).

    Article  PubMed  Google Scholar 

  11. Verheugt, C. L. et al. The emerging burden of hospital admissions of adults with congenital heart disease. Heart 96, 872–878 (2010).

    Article  PubMed  Google Scholar 

  12. Aboulhosn, J. A. & Hijazi, Z. M. Transcatheter interventions in adult congenital heart disease. Cardiol. Clin. 38, 403–416 (2020).

    Article  PubMed  Google Scholar 

  13. Greutmann, M., Benson, L. & Silversides, C. K. Percutaneous valve interventions in the adult congenital heart disease population: emerging technologies and indications. Can. J. Cardiol. 35, 1740–1749 (2019).

    Article  PubMed  Google Scholar 

  14. Geva, T., Martins, J. D. & Wald, R. M. Atrial septal defects. Lancet 383, 1921–1932 (2014).

    Article  PubMed  Google Scholar 

  15. Webb, G. & Gatzoulis, M. A. Atrial septal defects in the adult: recent progress and overview. Circulation 114, 1095–1097 (2006).

    Article  Google Scholar 

  16. Attie, F. et al. Surgical treatment for secundum atrial septal defects in patients >40 years old. A randomized clinical trial. J. Am. Coll. Cardiol. 38, 2035–2042 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Konstantinides, S. et al. A comparison of surgical and medical therapy for atrial septal defect in adults. N. Engl. J. Med. 333, 469–473 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Maeno, Y. V., Benson, L. N., McLaughlin, P. R. & Boutin, C. Dynamic morphology of the secundum atrial septal defect evaluated by three dimensional transoesophageal echocardiography. Heart 83, 673–677 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Campbell, M. Natural history of atrial septal defect. Br. Heart J. 32, 820–826 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hansen, J. H. et al. Transcatheter correction of superior sinus venosus atrial septal defects as an alternative to surgical treatment. J. Am. Coll. Cardiol. 75, 1266–1278 (2020).

    Article  PubMed  Google Scholar 

  21. Rosenthal, E. et al. Correction of sinus venosus atrial septal defects with the 10 zig covered Cheatham-platinum stent – an international registry. Catheter. Cardiovasc. Interv. 98, 128–136 (2021).

    Article  PubMed  Google Scholar 

  22. Vettukattil, J., Subramanian, A., Barthur, A. & Mahimarangaiah, J. Transcatheter closure of sinus venosus defect: first-in-human implant of a dedicated self-expanding VB stent system. Catheter. Cardiovasc. Interv. 102, 1088–1094 (2023).

    Article  PubMed  Google Scholar 

  23. Torres, A., Gersony, W. M. & Hellenbrand, W. Closure of unroofed coronary sinus with a covered stent in a symptomatic infant. Catheter. Cardiovasc. Interv. 70, 745–748 (2007).

    Article  PubMed  Google Scholar 

  24. Zhou, Z., Gu, Y. & Zheng, H. Transcatheter closure of unroofed coronary sinus syndrome: a short-term result. Eur. Heart J. 43, 1996 (2022).

    Article  PubMed  Google Scholar 

  25. Duarte, D., Suntharos, P., Muniz, J. C. & Prieto, L. R. Multimodality imaging approach for transcatheter closure of an unroofed coronary sinus with a covered stent. JACC Cardiovasc. Interv. 14, e107–e110 (2021).

    Article  PubMed  Google Scholar 

  26. Mohammad Nijres, B., Kenny, D., Kazmouz, S. & Hijazi, Z. M. Transcatheter closure of unroofed coronary sinus using covered stents in an adult with drainage of the coronary sinus to the right ventricle after supra-annular tricuspid valve replacement. Catheter. Cardiovasc. Interv. 90, 1154–1157 (2017).

    Article  PubMed  Google Scholar 

  27. Kim, H. D. et al. Successful transcatheter closure of an inferior sinus venosus atrial septal defect. Korean J. Intern. Med. 31, 176–178 (2016).

    Article  PubMed  Google Scholar 

  28. Di Bernardo, S., Fasnacht, M. & Berger, F. Transcatheter closure of a coronary sinus defect with an Amplatzer septal occluder. Catheter. Cardiovasc. Interv. 60, 287–290 (2003).

    Article  PubMed  Google Scholar 

  29. Masutani, S. & Senzaki, H. Left ventricular function in adult patients with atrial septal defect: implication for development of heart failure after transcatheter closure. J. Card. Fail. 17, 957–963 (2011).

    Article  PubMed  Google Scholar 

  30. Koenig, P., Cao, Q. L., Heitschmidt, M., Waight, D. J. & Hijazi, Z. M. Role of intracardiac echocardiographic guidance in transcatheter closure of atrial septal defects and patent foramen ovale using the Amplatzer device. J. Interv. Cardiol. 16, 51–62 (2003).

    Article  PubMed  Google Scholar 

  31. Snijder, R. J. R. et al. Microtransesophageal echocardiographic guidance during percutaneous interatrial septal closure without general anaesthesia. J. Interv. Cardiol. 2020, 1462140 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jung, S. Y. & Choi, J. Y. Transcatheter closure of atrial septal defect: principles and available devices. J. Thorac. Dis. 10, S2909–S2922 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Abdul Jabbar, A. et al. Systematic review of multiple versus single device closure of secundum atrial septal defects in adults. Cardiovasc. Revasc. Med. 58, 90–97 (2024).

    Article  PubMed  Google Scholar 

  34. Farhaj, Z. et al. Device closure of diverse layout of multi-hole secundum atrial septal defect: different techniques and long-term follow-up. J. Cardiothorac. Surg. 14, 130 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mahadevan, V. S. et al. Transcatheter closure of atrial septal defects with multiple devices in adults: procedural and clinical outcomes. Int. J. Cardiol. 133, 359–363 (2009).

    Article  PubMed  Google Scholar 

  36. Kenny, D. et al. A randomized, controlled, multi-center trial of the efficacy and safety of the Occlutech Figulla Flex-II occluder compared to the Amplatzer septal occluder for transcatheter closure of secundum atrial septal defects. Catheter. Cardiovasc. Interv. 93, 316–321 (2019).

    Article  PubMed  Google Scholar 

  37. El-Said, H. G. et al. Device therapy for atrial septal defects in a multicenter cohort: acute outcomes and adverse events. Catheter. Cardiovasc. Interv. 85, 227–233 (2015).

    Article  PubMed  Google Scholar 

  38. Moore, J. W. et al. Procedural results and safety of common interventional procedures in congenital heart disease: initial report from the National Cardiovascular Data Registry. J. Am. Coll. Cardiol. 64, 2439–2451 (2014).

    Article  PubMed  Google Scholar 

  39. Everett, A. D. et al. Community use of the Amplatzer atrial septal defect occluder: results of the multicenter MAGIC atrial septal defect study. Pediatr. Cardiol. 30, 240–247 (2009).

    Article  PubMed  Google Scholar 

  40. Du, Z. D., Hijazi, Z. M., Kleinman, C. S., Silverman, N. H. & Larntz, K. Comparison between transcatheter and surgical closure of secundum atrial septal defect in children and adults: results of a multicenter nonrandomized trial. J. Am. Coll. Cardiol. 39, 1836–1844 (2002).

    Article  PubMed  Google Scholar 

  41. Vishwanath, V. et al. Comparative effectiveness of devices for transcatheter closure of atrial septal defects: systematic review and network meta-analysis. Arch. Cardiovasc. Dis. 115, 664–674 (2022).

    Article  PubMed  Google Scholar 

  42. Moore, J. et al. Transcatheter device closure of atrial septal defects: a safety review. JACC Cardiovasc. Interv. 6, 433–442 (2013).

    Article  PubMed  Google Scholar 

  43. Abaci, A., Unlu, S., Alsancak, Y., Kaya, U. & Sezenoz, B. Short and long term complications of device closure of atrial septal defect and patent foramen ovale: meta-analysis of 28,142 patients from 203 studies. Catheter. Cardiovasc. Interv. 82, 1123–1138 (2013).

    Article  PubMed  Google Scholar 

  44. Chambault, A. L. et al. Transcatheter versus surgical closure of atrial septal defects: a systematic review and meta-analysis of clinical outcomes. Cardiol. Young 32, 1–9 (2022).

    Article  PubMed  Google Scholar 

  45. Rodés-Cabau, J. et al. Incidence, timing, and predictive factors of new-onset migraine headache attack after transcatheter closure of atrial septal defect or patent foramen ovale. Am. J. Cardiol. 101, 688–692 (2008).

    Article  PubMed  Google Scholar 

  46. Rodés-Cabau, J. et al. Effect of clopidogrel and aspirin vs aspirin alone on migraine headaches after transcatheter atrial septal defect closure: the CANOA randomized clinical trial. JAMA 314, 2147–2154 (2015).

    Article  PubMed  Google Scholar 

  47. Nyboe, C., Olsen, M. S., Nielsen-Kudsk, J. E. & Hjortdal, V. E. Atrial fibrillation and stroke in adult patients with atrial septal defect and the long-term effect of closure. Heart 101, 706–711 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Johnson, J. N. et al. Electrocardiographic changes and arrhythmias following percutaneous atrial septal defect and patent foramen ovale device closure. Catheter. Cardiovasc. Interv. 78, 254–261 (2011).

    Article  PubMed  Google Scholar 

  49. Turner, D. R., Owada, C. Y., Sang, C. J., Khan, M. & Lim, D. S. Closure of secundum atrial septal defects with the AMPLATZER septal occluder: a prospective, multicenter, post-approval study. Circ. Cardiovasc. Interv. 10, e004212 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Krumsdorf, U. et al. Incidence and clinical course of thrombus formation on atrial septal defect and patient foramen ovale closure devices in 1,000 consecutive patients. J. Am. Coll. Cardiol. 43, 302–309 (2004).

    Article  PubMed  Google Scholar 

  51. Walsh, M. A. et al. Atrioventricular block after transcatheter closure of perimembranous ventricular septal defects. Heart 92, 1295 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. McElhinney, D. B., Quartermain, M. D., Kenny, D., Alboliras, E. & Amin, Z. Relative risk factors for cardiac erosion following transcatheter closure of atrial septal defects: a case-control study. Circulation 133, 1738–1746 (2016).

    Article  PubMed  Google Scholar 

  53. Brida, M. et al. Atrial septal defect closure in adulthood is associated with normal survival in the mid to longer term. Heart 105, 1014–1019 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Duong, P. et al. Atrial arrhythmia after transcatheter closure of secundum atrial septal defects in patients ≥40 years of age. Europace 19, 1322–1326 (2017).

    Article  PubMed  Google Scholar 

  55. Himelfarb, J. D. et al. Atrial fibrillation following transcatheter atrial septal defect closure: a systematic review and meta-analysis. Heart 108, 1216–1224 (2022).

    Article  PubMed  Google Scholar 

  56. Veldtman, G. R. et al. Right ventricular form and function after percutaneous atrial septal defect device closure. J. Am. Coll. Cardiol. 37, 2108–2113 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Helber, U., Baumann, R., Seboldt, H., Reinhard, U. & Hoffmeister, H. M. Atrial septal defect in adults: cardiopulmonary exercise capacity before and 4 months and 10 years after defect closure. J. Am. Coll. Cardiol. 29, 1345–1350 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Oster, M., Bhatt, A. B., Zaragoza-Macias, E., Dendukuri, N. & Marelli, A. Interventional therapy versus medical therapy for secundum atrial septal defect: a systematic review (part 2) for the 2018 AHA/ACC guideline for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 73, 1579–1595 (2019).

    Article  PubMed  Google Scholar 

  59. Baroutidou, A. et al. Transcatheter closure of atrial septal defect in the elderly: a systematic review and meta-analysis. Heart 109, 1741 (2023).

    Article  PubMed  Google Scholar 

  60. Abrahamyan, L. et al. Long-term outcomes after atrial septal defect transcatheter closure by age and against population controls. JACC Cardiovasc. Interv. 14, 566–575 (2021).

    Article  PubMed  Google Scholar 

  61. Eren, N. K. et al. Quality of life of patients with atrial septal defect following percutaneous closure. Cardiol. Young 25, 42–46 (2015).

    Article  PubMed  Google Scholar 

  62. Hanninen, M. et al. Atrial septal defect closure in the elderly is associated with excellent quality of life, functional improvement, and ventricular remodelling. Can. J. Cardiol. 27, 698–704 (2011).

    Article  PubMed  Google Scholar 

  63. Relan, J. et al. Clarifying the anatomy of the superior sinus venosus defect. Heart 108, 689–694 (2022).

    Article  PubMed  Google Scholar 

  64. Baruteau, A. E. et al. Transcatheter closure of superior sinus venosus defects. JACC Cardiovasc. Interv. 16, 2587–2599 (2023).

    Article  PubMed  Google Scholar 

  65. Batteux, C. et al. Sinus venosus ASDs: imaging and percutaneous closure. Curr. Cardiol. Rep. 23, 138 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Baruteau, A. E. et al. Transcatheter closure of patent ductus arteriosus: past, present and future. Arch. Cardiovasc. Dis. 107, 122–132 (2014).

    Article  PubMed  Google Scholar 

  67. Hejazi, Y. et al. Novel technique for transcatheter closure of sinus venosus atrial septal defect: the temporary suture-holding technique. Catheter. Cardiovasc. Interv. 100, 1068–1077 (2022).

    Article  PubMed  Google Scholar 

  68. Sivakumar, K., Qureshi, S., Pavithran, S., Vaidyanathan, S. & Rajendran, M. Simple diagnostic tools may guide transcatheter closure of superior sinus venosus defects without advanced imaging techniques. Circ. Cardiovasc. Interv. 13, E009833 (2020).

    Article  PubMed  Google Scholar 

  69. Al Maskari, S. N. et al. Device closure of superior sinus venosus atrial septal defects: a single centre experience. Sultan Qaboos Univ. Med. J. 23, 44–50 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Schleiger, A., Nordmeyer, J., Kramer, P. & Berger, F. Modified approach for transcatheter correction of superior sinus venosus atrial septal defect: a case series. Eur. Heart J. Case Rep. 7, ytad030 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Thejaswi, P., Sagar, P. & Sivakumar, K. Simultaneous transcatheter closure of coexistent superior sinus venosus defects and oval fossa defects. Pediatr. Cardiol. 44, 1591–1598 (2023).

    Article  PubMed  Google Scholar 

  72. Sagar, P., Sivakumar, K., Thejaswi, P. & Rajendran, M. Transcatheter covered stent exclusion of superior sinus venosus defects. J. Am. Coll. Cardiol. 83, 2179–2192 (2024).

    Article  PubMed  Google Scholar 

  73. Lopez, L. et al. Classification of ventricular septal defects for the eleventh iteration of the International Classification of Diseases – striving for consensus: a report from the International Society for Nomenclature of Paediatric and Congenital Heart Disease. Ann. Thorac. Surg. 106, 1578–1589 (2018).

    Article  PubMed  Google Scholar 

  74. Gabriel, H. M. et al. Long-term outcome of patients with ventricular septal defect considered not to require surgical closure during childhood. J. Am. Coll. Cardiol. 39, 1066–1071 (2002).

    Article  PubMed  Google Scholar 

  75. Menting, M. E. et al. The unnatural history of the ventricular septal defect: outcome up to 40 years after surgical closure. J. Am. Coll. Cardiol. 65, 1941–1951 (2015).

    Article  PubMed  Google Scholar 

  76. Turner, M. E., Bouhout, I., Petit, C. J. & Kalfa, D. Transcatheter closure of atrial and ventricular septal defects: JACC focus seminar. J. Am. Coll. Cardiol. 79, 2247–2258 (2022).

    Article  PubMed  Google Scholar 

  77. Tan, W., Stefanescu Schmidt, A. C., Horlick, E. & Aboulhosn, J. Transcatheter interventions in patients with adult congenital heart disease. J. Soc. Cardiovasc. Angiogr. Interv. 1, 100438 (2022).

    PubMed  PubMed Central  Google Scholar 

  78. Morray, B. H. Ventricular septal defect closure devices, techniques, and outcomes. Interv. Cardiol. Clin. 8, 1–10 (2019).

    PubMed  Google Scholar 

  79. Carminati, M. et al. Transcatheter closure of congenital ventricular septal defect with Amplatzer septal occluders. Am. J. Cardiol. 96, 52–58 (2005).

    Article  Google Scholar 

  80. Holzer, R., Balzer, D., Cao, Q. L., Lock, K. & Hijazi, Z. M. Device closure of muscular ventricular septal defects using the Amplatzer muscular ventricular septal defect occluder: immediate and mid-term results of a U.S. registry. J. Am. Coll. Cardiol. 43, 1257–1263 (2004).

    Article  PubMed  Google Scholar 

  81. Yang, J. et al. Transcatheter device closure of perimembranous ventricular septal defects: mid-term outcomes. Eur. Heart J. 31, 2238–2245 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Yang, L., Tai, B. C., Khin, L. W. & Quek, S. C. A systematic review on the efficacy and safety of transcatheter device closure of ventricular septal defects (VSD). J. Interv. Cardiol. 27, 260–272 (2014).

    Article  PubMed  Google Scholar 

  83. Santhanam, H. et al. A meta-analysis of transcatheter device closure of perimembranous ventricular septal defect. Int. J. Cardiol. 254, 75–83 (2018).

    Article  PubMed  Google Scholar 

  84. Backes, C. H. et al. Patent ductus arteriosus: a contemporary perspective for the pediatric and adult cardiac care provider. J. Am. Heart Assoc. 11, 25784 (2022).

    Article  Google Scholar 

  85. Vricella, L. A. Patent ductus arteriosus in the adult. Ann. Thorac. Surg. 115, e57 (2023).

    Article  PubMed  Google Scholar 

  86. Gu, X. et al. Transcatheter closure of calcified patent ductus arteriosus in older adult patients: immediate and 12-month follow-up results. Congenit. Heart Dis. 12, 289–293 (2017).

    Article  PubMed  Google Scholar 

  87. Krichenko, A. et al. Angiographic classification of the isolated, persistently patent ductus arteriosus and implications for percutaneous catheter occlusion. Am. J. Cardiol. 63, 877–880 (1989).

    Article  CAS  PubMed  Google Scholar 

  88. Wilson, W. M. et al. Clinical outcomes after percutaneous patent ductus arteriosus closure in adults. Can. J. Cardiol. 36, 837–843 (2020).

    Article  PubMed  Google Scholar 

  89. Moore, J. W. et al. Percutaneous closure of the small patent ductus arteriosus using occluding spring coils. J. Am. Coll. Cardiol. 23, 759–765 (1994).

    Article  CAS  PubMed  Google Scholar 

  90. Masura, J. et al. Catheter closure of moderate- to large-sized patent ductus arteriosus using the new Amplatzer duct occluder: immediate and short-term results. J. Am. Coll. Cardiol. 31, 878–882 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. Pedra, C. A. C., Sanches, S. A. & Fontes, V. F. Percutaneous occlusion of the patent ductus arteriosus with the Amplatzer device for atrial septal defects. J. Invasive Cardiol. 15, 413–417 (2003).

    PubMed  Google Scholar 

  92. Pass, R. H., Hijazi, Z., Hsu, D. T., Lewis, V. & Hellenbrand, W. E. Multicenter USA Amplatzer patent ductus arteriosus occlusion device trial: initial and one-year results. J. Am. Coll. Cardiol. 44, 513–519 (2004).

    Article  PubMed  Google Scholar 

  93. Ghasemi, A. et al. Trans-catheter closure of patent ductus arteriosus – what is the best device? Catheter. Cardiovasc. Interv. 76, 687–695 (2010).

    Article  PubMed  Google Scholar 

  94. Al-Hijji, M. et al. Coronary artery fistulas: indications, techniques, outcomes, and complications of transcatheter fistula closure. JACC Cardiovasc. Interv. 14, 1393–1406 (2021).

    Article  PubMed  Google Scholar 

  95. Rheault-Henry, M., MacDonald, D., Sallam, Y. & Bittira, B. Incidental finding of a coronary artery fistula in a patient with anterolateral ST-elevation myocardial infarction. CJC Open. 5, 103–106 (2023).

    Article  PubMed  Google Scholar 

  96. Witte, L. S. et al. Closing a right coronary artery fistula draining into the coronary sinus using a covered stent in the coronary sinus. JACC Case Rep. 3, 1589 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Carminati, M. et al. Coronary-cameral fistulas: indications and methods for closure. EuroIntervention 12, X28–X30 (2016).

    Article  PubMed  Google Scholar 

  98. Gowda, S. T. et al. Anatomical classification and posttreatment remodeling characteristics to guide management and follow-up of neonates and infants with coronary artery fistula: a multicenter study from the coronary artery fistula registry. Circ. Cardiovasc. Interv. 14, E009750 (2021).

    Article  CAS  PubMed  Google Scholar 

  99. Inglessis, I. & Landzberg, M. J. Interventional catheterization in adult congenital heart disease. Circulation 115, 1622–1633 (2007).

    Article  PubMed  Google Scholar 

  100. Van De Bruaene, A. & Budts, W. Collaterals in congenital heart disease: when and how to treat? Cardiovasc. Diagn. Ther. 13, 418–426 (2023).

    Article  PubMed  Google Scholar 

  101. O’Brien, P. & Marshall, A. C. Coarctation of the aorta. Circulation 131, e363–e365 (2015).

    Article  PubMed  Google Scholar 

  102. Sillesen, A. S. et al. Prevalence of bicuspid aortic valve and associated aortopathy in newborns in Copenhagen, Denmark. JAMA 325, 561–567 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Buckley, A. D., Han Um, K. Y., Ganame, J. I., Salehian, O. & Karbassi, A. Prevalence of intracranial aneurysms in patients with coarctation of the aorta: a systematic review and meta-analysis. JACC Adv. 2, 100394 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Silberbach, M. et al. Cardiovascular health in Turner syndrome: a scientific statement from the American Heart Association. Circ. Genom. Precis. Med. 11, e000048 (2018).

    Article  PubMed  Google Scholar 

  105. Egbe, A. C. et al. Coronary artery disease in adults with coarctation of aorta: incidence, risk factors, and outcomes. J. Am. Heart Assoc. 8, e012056 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Salciccioli, K. B. & Zachariah, J. P. Coarctation of the aorta: modern paradigms across the lifespan. Hypertension 80, 1970–1979 (2023).

    Article  CAS  PubMed  Google Scholar 

  107. Suárez de Lezo, J. et al. Balloon-expandable stent repair of severe coarctation of aorta. Am. Heart J. 129, 1002–1008 (1995).

    Article  PubMed  Google Scholar 

  108. Forbes, T. J. et al. Comparison of surgical, stent, and balloon angioplasty treatment of native coarctation of the aorta: an observational study by the CCISC (Congenital Cardiovascular Interventional Study Consortium). J. Am. Coll. Cardiol. 58, 2664–2674 (2011).

    Article  PubMed  Google Scholar 

  109. Sohrabi, B. et al. Comparison between covered and bare Cheatham-platinum stents for endovascular treatment of patients with native post-ductal aortic coarctation: immediate and intermediate-term results. JACC Cardiovasc. Interv. 7, 416–423 (2014).

    Article  PubMed  Google Scholar 

  110. Taggart, N. W. et al. Immediate outcomes of covered stent placement for treatment or prevention of aortic wall injury associated with coarctation of the aorta (COAST II). JACC Cardiovasc. Interv. 9, 484–493 (2016).

    Article  PubMed  Google Scholar 

  111. Meadows, J., Minahan, M., McElhinney, D. B., McEnaney, K. & Ringel, R. Intermediate outcomes in the prospective, multicenter Coarctation of the Aorta Stent Trial (COAST). Circulation 131, 1656–1664 (2015).

    Article  PubMed  Google Scholar 

  112. Aboyans, V. et al. Antithrombotic therapies in aortic and peripheral arterial diseases in 2021: a consensus document from the ESC working group on aorta and peripheral vascular diseases, the ESC working group on thrombosis, and the ESC working group on cardiovascular pharmacotherapy. Eur. Heart J. 42, 4013–4024 (2021).

    Article  CAS  PubMed  Google Scholar 

  113. Forbes, T. J. et al. Procedural results and acute complications in stenting native and recurrent coarctation of the aorta in patients over 4 years of age: a multi-institutional study. Catheter. Cardiovasc. Interv. 70, 276–285 (2007).

    Article  PubMed  Google Scholar 

  114. Morray, B. H., Kennedy, K. F. & McElhinney, D. B. Evolving utilization of covered stents for treatment of aortic coarctation: report from the IMPACT registry. Circ. Cardiovasc. Interv. 16, E012697 (2023).

    Article  PubMed  Google Scholar 

  115. Pan, M. et al. Very long-term follow-up after aortic stenting for coarctation of the aorta. Rev. Esp. Cardiol. 77, 332–341 (2024).

    Article  PubMed  Google Scholar 

  116. Masri, A., Svensson, L. G., Griffin, B. P. & Desai, M. Y. Contemporary natural history of bicuspid aortic valve disease: a systematic review. Heart 103, 1323–1330 (2017).

    Article  PubMed  Google Scholar 

  117. Sievers, H. H. & Schmidtke, C. A classification system for the bicuspid aortic valve from 304 surgical specimens. J. Thorac. Cardiovasc. Surg. 133, 1226–1233 (2007).

    Article  PubMed  Google Scholar 

  118. Vahanian, A. et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease: developed by the Task Force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Rev. Esp. Cardiol. 75, 524 (2022).

    PubMed  Google Scholar 

  119. Roberts, W. C. & Ko, J. M. Frequency by decades of unicuspid, bicuspid, and tricuspid aortic valves in adults having isolated aortic valve replacement for aortic stenosis, with or without associated aortic regurgitation. Circulation 111, 920–925 (2005).

    Article  PubMed  Google Scholar 

  120. Makkar, R. R. et al. Association between transcatheter aortic valve replacement for bicuspid vs tricuspid aortic stenosis and mortality or stroke. JAMA 321, 2193–2202 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Montalto, C. et al. Outcomes after transcatheter aortic valve replacement in bicuspid versus tricuspid anatomy: a systematic review and meta-analysis. JACC Cardiovasc. Interv. 14, 2144–2155 (2021).

    Article  PubMed  Google Scholar 

  122. Xiong, T. Y. et al. Transcatheter aortic valve implantation in patients with bicuspid valve morphology: a roadmap towards standardization. Nat. Rev. Cardiol. 20, 52–67 (2022).

    Article  PubMed  Google Scholar 

  123. Vincent, F. et al. Transcatheter aortic valve replacement in bicuspid aortic valve stenosis. Circulation 143, 1043–1061 (2021).

    Article  CAS  PubMed  Google Scholar 

  124. Alkhouli, M. et al. Morbidity and mortality associated with balloon aortic valvuloplasty: a national perspective. Circ. Cardiovasc. Interv. 10, e004481 (2017).

    Article  PubMed  Google Scholar 

  125. Saef, J. M. & Ghobrial, J. Valvular heart disease in congenital heart disease: a narrative review. Cardiovasc. Diagn. Ther. 11, 818 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Moons, P. & Marelli, A. Born to age: when adult congenital heart disease converges with geroscience. JACC: Adv. 1, 100012 (2022).

    PubMed  Google Scholar 

  127. Russo, M. J. et al. MitraClip implantation in a patient with post-surgical repair of primum atrial septal defect and residual mitral cleft. JACC Case Rep. 2, 2027–2029 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Alshawabkeh, L., Mahmud, E. & Reeves, R. Percutaneous mitral valve repair in adults with congenital heart disease: report of the first case-series. Catheter. Cardiovasc. Interv. 97, 542–548 (2021).

    Article  PubMed  Google Scholar 

  129. Willemsen, H. M., Van Den Heuvel, A., Schurer, R., Van Melle, J. & Natour, E. Mitral cleft repair by mitraclipping. Eur. Heart J. 35, 1021–1021 (2014).

    Article  PubMed  Google Scholar 

  130. Stys, T., Gedela, M., Geltser, C. & Stys, A. MitraClip intervention for severe mitral regurgitation with residual mitral valve cleft in a patient with prior partial congenital AV canal defect repair. EuroIntervention 14, 1740–1741 (2019).

    Article  PubMed  Google Scholar 

  131. Schamroth Pravda, N. et al. Transcatheter interventions for atrioventricular dysfunction in patients with adult congenital heart disease: an international case series. J. Clin. Med. 12, 521 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Maschietto, N., Prakash, A., Del Nido, P. & Porras, D. Acute and short-term outcomes of percutaneous transcatheter mitral valve replacement in children. Circ. Cardiovasc. Interv. 14, E009996 (2021).

    Article  PubMed  Google Scholar 

  133. Alperi, A., Granada, J. F., Bernier, M., Dagenais, F. & Rodés-Cabau, J. Current status and future prospects of transcatheter mitral valve replacement: JACC state-of-the-art review. J. Am. Coll. Cardiol. 77, 3058–3078 (2021).

    Article  PubMed  Google Scholar 

  134. Carrel, T. Past, present, and future options for right ventricular outflow tract reconstruction. Front. Surg. 10, 1185324 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  135. O’Brien, P. & Marshall, A. C. Tetralogy of Fallot. Circulation 130, e26–e29 (2014).

    Article  PubMed  Google Scholar 

  136. Batlivala, S. P., Emani, S., Mayer, J. E. & McElhinney, D. B. Pulmonary valve replacement function in adolescents: a comparison of bioprosthetic valves and homograft conduits. Ann. Thorac. Surg. 93, 2007–2016 (2012).

    Article  PubMed  Google Scholar 

  137. Homann, M. et al. Reconstruction of the RVOT with valved biological conduits: 25 years experience with allografts and xenografts. Eur. J. Cardiothorac. Surg. 17, 624–630 (2000).

    Article  CAS  PubMed  Google Scholar 

  138. Bokma, J. P. et al. Improved outcomes after pulmonary valve replacement in repaired tetralogy of Fallot. J. Am. Coll. Cardiol. 81, 2075–2085 (2023).

    Article  PubMed  Google Scholar 

  139. Gröning, M. et al. Pulmonary valve replacement in tetralogy of Fallot: procedural volume and durability of bioprosthetic pulmonary valves. JACC Cardiovasc. Interv. 17, 217–227 (2024).

    Article  PubMed  Google Scholar 

  140. Smith, C. A. et al. Long-term outcomes of tetralogy of Fallot: a study from the Pediatric Cardiac Care Consortium. JAMA Cardiol. 4, 34–41 (2019).

    Article  PubMed  Google Scholar 

  141. Hickey, E. J. et al. Late risk of outcomes for adults with repaired tetralogy of Fallot from an inception cohort spanning four decades. Eur. J. Cardiothorac. Surg. 35, 156–164 (2009).

    Article  PubMed  Google Scholar 

  142. Kovacs, A. H. et al. Patient-reported outcomes after tetralogy of Fallot repair. J. Am. Coll. Cardiol. 81, 1937–1950 (2023).

    Article  PubMed  Google Scholar 

  143. Bokma, J. P. et al. A propensity score-adjusted analysis of clinical outcomes after pulmonary valve replacement in tetralogy of Fallot. Heart 104, 738–744 (2018).

    Article  PubMed  Google Scholar 

  144. Patel, N. D. et al. Transcatheter pulmonary valve replacement: a review of current valve technologies. J. Soc. Cardiovasc. Angiogr. Interv. 1, 100452 (2022).

    PubMed  PubMed Central  Google Scholar 

  145. Oosterhof, T. et al. Preoperative thresholds for pulmonary valve replacement in patients with corrected tetralogy of Fallot using cardiovascular magnetic resonance. Circulation 116, 545–551 (2007).

    Article  PubMed  Google Scholar 

  146. Lee, C. et al. Outcomes of pulmonary valve replacement in 170 patients with chronic pulmonary regurgitation after relief of right ventricular outflow tract obstruction: implications for optimal timing of pulmonary valve replacement. J. Am. Coll. Cardiol. 60, 1005–1014 (2012).

    Article  PubMed  Google Scholar 

  147. Geva, T. Indications for pulmonary valve replacement in repaired tetralogy of Fallot. Circulation 128, 1855–1857 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Kilner, P. J. et al. Recommendations for cardiovascular magnetic resonance in adults with congenital heart disease from the respective working groups of the European Society of Cardiology. Eur. Heart J. 31, 794–805 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Morray, B. H. et al. Risk of coronary artery compression among patients referred for transcatheter pulmonary valve implantation: a multicenter experience. Circ. Cardiovasc. Interv. 6, 535–542 (2013).

    Article  PubMed  Google Scholar 

  150. Bonhoeffer, P. et al. Percutaneous replacement of pulmonary valve in a right-ventricle to pulmonary-artery prosthetic conduit with valve dysfunction. Lancet 356, 1403–1405 (2000).

    Article  CAS  PubMed  Google Scholar 

  151. Zahn, E. M., Hellenbrand, W. E., Lock, J. E. & McElhinney, D. B. Implantation of the Melody transcatheter pulmonary valve in patients with a dysfunctional right ventricular outflow tract conduit early results from the U.S. clinical trial. J. Am. Coll. Cardiol. 54, 1722–1729 (2009).

    Article  PubMed  Google Scholar 

  152. Malekzadeh-Milani, S., Ladouceur, M., Cohen, S., Iserin, L. & Boudjemline, Y. Results of transcatheter pulmonary valvulation in native or patched right ventricular outflow tracts. Arch. Cardiovasc. Dis. 107, 592–598 (2014).

    Article  PubMed  Google Scholar 

  153. Meadows, J. J. et al. Use and performance of the Melody transcatheter pulmonary valve in native and postsurgical, nonconduit right ventricular outflow tracts. Circ. Cardiovasc. Interv. 7, 374–380 (2014).

    Article  PubMed  Google Scholar 

  154. Martin, M. H. et al. Safety and feasibility of Melody transcatheter pulmonary valve replacement in the native right ventricular outflow tract: a multicenter Pediatric Heart Network Scholar study. JACC Cardiovasc. Interv. 11, 1642–1650 (2018).

    Article  PubMed  Google Scholar 

  155. Shahanavaz, S. et al. Transcatheter pulmonary valve replacement with the Sapien prosthesis. J. Am. Coll. Cardiol. 76, 2847–2858 (2020).

    Article  PubMed  Google Scholar 

  156. Gillespie, M. J. et al. 1-year outcomes in a pooled cohort of Harmony transcatheter pulmonary valve clinical trial participants. JACC Cardiovasc. Interv. 16, 1917–1928 (2023).

    Article  PubMed  Google Scholar 

  157. Shahanavaz, S. et al. Alterra adaptive prestent and SAPIEN 3 THV for congenital pulmonic valve dysfunction: an early feasibility study. JACC Cardiovasc. Interv. 13, 2510–2524 (2020).

    Article  PubMed  Google Scholar 

  158. Morgan, G. et al. Medium-term results of percutaneous pulmonary valve implantation using the Venus P-valve: international experience. EuroIntervention 14, 1363–1370 (2019).

    Article  PubMed  Google Scholar 

  159. Lee, S. Y. et al. Mid-term outcomes of the Pulsta transcatheter pulmonary valve for the native right ventricular outflow tract. Catheter. Cardiovasc. Interv. 98, E724–E732 (2021).

    Article  PubMed  Google Scholar 

  160. Chatterjee, A. et al. Transcatheter pulmonary valve implantation: a comprehensive systematic review and meta-analyses of observational studies. J. Am. Heart Assoc. 6, e006432 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Stefanescu Schmidt, A. C. et al. Transcatheter pulmonary valve replacement with balloon-expandable valves: utilization and procedural outcomes from the IMPACT registry. JACC Cardiovasc. Interv. 17, 231–244 (2024).

    Article  PubMed  Google Scholar 

  162. Hascoët, S. et al. Outcomes of transcatheter pulmonary SAPIEN 3 valve implantation: an international registry. Eur. Heart J. 45, 198–210 (2024).

    Article  PubMed  Google Scholar 

  163. McElhinney, D. B. et al. Multicenter study of endocarditis after transcatheter pulmonary valve replacement. J. Am. Coll. Cardiol. 78, 575–589 (2021).

    Article  PubMed  Google Scholar 

  164. Cardoso, R. et al. Prestenting for prevention of Melody valve stent fractures: a systematic review and meta-analysis. Catheter. Cardiovasc. Interv. 87, 534–539 (2016).

    Article  PubMed  Google Scholar 

  165. Lurz, P. et al. Improvement in left ventricular filling properties after relief of right ventricle to pulmonary artery conduit obstruction: contribution of septal motion and interventricular mechanical delay. Eur. Heart J. 30, 2266–2274 (2009).

    Article  PubMed  Google Scholar 

  166. Vezmar, M. et al. Percutaneous pulmonary valve implantation in the young 2-year follow-up. JACC Cardiovasc. Interv. 3, 439–448 (2010).

    Article  PubMed  Google Scholar 

  167. Eicken, A. et al. Percutaneous pulmonary valve implantation: two-centre experience with more than 100 patients. Eur. Heart J. 32, 1260–1265 (2011).

    Article  PubMed  Google Scholar 

  168. Mongeon, F. P. et al. Pulmonary valve replacement for pulmonary regurgitation in adults with tetralogy of Fallot: a meta-analysis – a report for the Writing Committee of the 2019 update of the Canadian Cardiovascular Society guidelines for the management of adults with congenital heart disease. Can. J. Cardiol. 35, 1772–1783 (2019).

    Article  PubMed  Google Scholar 

  169. Andresen, B. et al. In-hospital cost comparison between percutaneous pulmonary valve implantation and surgery. Eur. J. Cardiothorac. Surg. 51, 747–753 (2017).

    PubMed  Google Scholar 

  170. Vergales, J. E., Wanchek, T., Novicoff, W., Kron, I. L. & Lim, D. S. Cost-analysis of percutaneous pulmonary valve implantation compared to surgical pulmonary valve replacement. Catheter. Cardiovasc. Interv. 82, 1147–1153 (2013).

    Article  PubMed  Google Scholar 

  171. Cuypers, J. A. A. E., Witsenburg, M., Van Der Linde, D. & Roos-Hesselink, J. W. Pulmonary stenosis: update on diagnosis and therapeutic options. Heart 99, 339–347 (2013).

    Article  PubMed  Google Scholar 

  172. Kan, J. S., White, R. I. Jr, Mitchell, S. E. & Gardner, T. J. Percutaneous balloon valvuloplasty: a new method for treating congenital pulmonary-valve stenosis. N. Engl. J. Med. 307, 540–542 (1982).

    Article  CAS  PubMed  Google Scholar 

  173. Syamasundar Rao, P. Percutaneous balloon pulmonary valvuloplasty: state of the art. Catheter. Cardiovasc. Interv. 69, 747–763 (2007).

    Article  PubMed  Google Scholar 

  174. Merino-Ingelmo, R., Santos-de Soto, J., Coserria-Sánchez, F., Descalzo-Señoran, A. & Valverde-Pérez, I. Long-term results of percutaneous balloon valvuloplasty in pulmonary valve stenosis in the pediatric population. Rev. Española de. Cardiol.ía 67, 374–379 (2014).

    Article  Google Scholar 

  175. Taggart, N. W., Cetta, F., Cabalka, A. K. & Hagler, D. J. Outcomes for balloon pulmonary valvuloplasty in adults: comparison with a concurrent pediatric cohort. Catheter. Cardiovasc. Interv. 82, 811–815 (2013).

    Article  PubMed  Google Scholar 

  176. Voet, A. et al. Long-term outcome after treatment of isolated pulmonary valve stenosis. Int. J. Cardiol. 156, 11–15 (2012).

    Article  CAS  PubMed  Google Scholar 

  177. Cuypers, J. A. A. E. et al. The natural and unnatural history of the Mustard procedure: long-term outcome up to 40 years. Eur. Heart J. 35, 1666–1674 (2014).

    Article  PubMed  Google Scholar 

  178. Wang, N. et al. Tricuspid regurgitation is associated with increased mortality independent of pulmonary pressures and right heart failure: a systematic review and meta-analysis. Eur. Heart J. 40, 476–484 (2019).

    Article  PubMed  Google Scholar 

  179. Offen, S. et al. Tricuspid valve surgery in adults with congenital heart disease: indications, techniques and outcomes. Int. J. Cardiol. Congenit. Heart Dis. 4, 100159 (2021).

    Google Scholar 

  180. Brown, M. L. et al. Functional status after operation for Ebstein anomaly: the Mayo Clinic experience. J. Am. Coll. Cardiol. 52, 460–466 (2008).

    Article  PubMed  Google Scholar 

  181. Said, S. M. et al. Management of tricuspid regurgitation in congenital heart disease: is survival better with valve repair? J. Thorac. Cardiovasc. Surg. 147, 412–419 (2014).

    Article  PubMed  Google Scholar 

  182. Burri, M. et al. Durability of bioprostheses for the tricuspid valve in patients with congenital heart disease. Eur. J. Cardiothorac. Surg. 50, 988–993 (2016).

    Article  PubMed  Google Scholar 

  183. Roberts, P. A. et al. Percutaneous tricuspid valve replacement in congenital and acquired heart disease. J. Am. Coll. Cardiol. 58, 117–122 (2011).

    Article  PubMed  Google Scholar 

  184. Cullen, M. W. et al. Transvenous, antegrade Melody valve-in-valve implantation for bioprosthetic mitral and tricuspid valve dysfunction: a case series in children and adults. JACC Cardiovasc. Interv. 6, 598–605 (2013).

    Article  PubMed  Google Scholar 

  185. Aboulhosn, J. et al. Transcatheter valve-in-ring implantation for the treatment of residual or recurrent tricuspid valve dysfunction after prior surgical repair. JACC Cardiovasc. Interv. 10, 53–63 (2017).

    Article  PubMed  Google Scholar 

  186. Kodali, S. et al. Transfemoral tricuspid valve replacement and one-year outcomes: the TRISCEND study. Eur. Heart J. 44, 4862–4873 (2023).

    Article  PubMed  Google Scholar 

  187. Tanase, D. et al. Tricuspid regurgitation does not impact right ventricular remodeling after percutaneous pulmonary valve implantation. JACC Cardiovasc. Interv. 10, 701–708 (2017).

    Article  PubMed  Google Scholar 

  188. Maisano, F., Hahn, R., Sorajja, P., Praz, F. & Lurz, P. Transcatheter treatment of the tricuspid valve: current status and perspectives. Eur. Heart J. 45, 876–894 (2024).

    Article  CAS  PubMed  Google Scholar 

  189. Silini, A. & Iriart, X. Percutaneous edge-to-edge repair in congenital heart disease: preliminary results of a promising new technique. Int. J. Cardiol. Congenit. Heart Dis. 8, 100370 (2022).

    PubMed  PubMed Central  Google Scholar 

  190. Iriart, X., Guérin, P., Jalal, Z. & Thambo, J. B. Edge to edge repair using a MitraClip for severe tricuspid valve regurgitation after a Mustard operation. Catheter. Cardiovasc. Interv. 98, E108–E114 (2021).

    Article  PubMed  Google Scholar 

  191. Lock, J. E., Castaneda Zuniga, W. R., Fuhrman, B. P. & Bass, J. L. Balloon dilation angioplasty of hypoplastic and stenotic pulmonary arteries. Circulation 67, 962–967 (1983).

    Article  CAS  PubMed  Google Scholar 

  192. Zablah, J. E. & Morgan, G. J. Pulmonary artery stenting. Interv. Cardiol. Clin. 8, 33–46 (2019).

    PubMed  Google Scholar 

  193. Lewis, M. J. et al. Procedural success and adverse events in pulmonary artery stenting: insights from the NCDR. J. Am. Coll. Cardiol. 67, 1327–1335 (2016).

    Article  PubMed  Google Scholar 

  194. Holzer, R. J. et al. Balloon angioplasty and stenting of branch pulmonary arteries: adverse events and procedural characteristics: results of a multi-institutional registry. Circ. Cardiovasc. Interv. 4, 287–296 (2011).

    Article  PubMed  Google Scholar 

  195. McMahon, C. J. et al. Redilation of endovascular stents in congenital heart disease: factors implicated in the development of restenosis and neointimal proliferation. J. Am. Coll. Cardiol. 38, 521–526 (2001).

    Article  CAS  PubMed  Google Scholar 

  196. Bush, D. M., Hoffman, T. M., Del Rosario, J., Eiriksson, H. & Rome, J. J. Frequency of restenosis after balloon pulmonary arterioplasty and its causes. Am. J. Cardiol. 86, 1205–1209 (2000).

    Article  CAS  PubMed  Google Scholar 

  197. Dennis, M. et al. Clinical outcomes in adolescents and adults after the Fontan procedure. J. Am. Coll. Cardiol. 71, 1009–1017 (2018).

    Article  PubMed  Google Scholar 

  198. Pundi, K. N. et al. 40-year follow-up after the Fontan operation: long-term outcomes of 1,052 patients. J. Am. Coll. Cardiol. 66, 1700–1710 (2015).

    Article  PubMed  Google Scholar 

  199. Kogiso, T. & Tokushige, K. Fontan-associated liver disease and hepatocellular carcinoma in adults. Sci. Rep. 10, 21742 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Jalal, Z. et al. Transcatheter interventions in patients with a Fontan circulation: current practice and future developments. Front. Pediatr. 10, 965989 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Smith, C. L. et al. Transcatheter thoracic duct decompression for multicompartment lymphatic failure after Fontan palliation. Circ. Cardiovasc. Interv. 15, E011733 (2022).

    Article  PubMed  Google Scholar 

  202. Ratnayaka, K. et al. First-in-human closed-chest transcatheter superior cavopulmonary anastomosis. J. Am. Coll. Cardiol. 70, 745–752 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Maleux, G. et al. Percutaneous embolization of lymphatic fistulae as treatment for protein-losing enteropathy and plastic bronchitis in patients with failing Fontan circulation. Catheter. Cardiovasc. Interv. 94, 996–1002 (2019).

    Article  PubMed  Google Scholar 

  204. Anderson, J. H., Cabalka, A. K., Frantz, R. P., Cajigas, H. R. & Taggart, N. W. Transcatheter nonductal reverse Potts shunt creation in pulmonary arterial hypertension. Circ. Cardiovasc. Interv. 15, E011315 (2022).

    Article  PubMed  Google Scholar 

  205. Reichenberger, F., Pepke-Zaba, J., Mcneil, K. & Parameshwar, J. Atrial septostomy in the treatment of severe pulmonary arterial hypertension. Thorax 58, 797–800 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Mendel, B. et al. Reversed Potts shunt outcome in suprasystemic pulmonary arterial hypertension: a systematic review and meta-analysis. Curr. Cardiol. Rev. 18, e090522204486 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Chiu, J. S. et al. Balloon atrial septostomy in pulmonary arterial hypertension: effect on survival and associated outcomes. J. Heart Lung Transplant. 34, 376–380 (2015).

    Article  PubMed  Google Scholar 

  208. Williamson, C. G. et al. Cross-volume effect between pediatric and adult congenital cardiac operations in the United States. Ann. Thorac. Surg. 114, 2296–2302 (2022).

    Article  PubMed  Google Scholar 

  209. Vemulapalli, S. et al. Procedural volume and outcomes for transcatheter aortic-valve replacement. N. Engl. J. Med. 380, 2541–2550 (2019).

    Article  PubMed  Google Scholar 

  210. Fanaroff, A. C. et al. Outcomes of PCI in relation to procedural characteristics and operator volumes in the United States. J. Am. Coll. Cardiol. 69, 2913 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Chessa, M. et al. ESC Working Group Position Paper: transcatheter adult congenital heart disease interventions: organization of care – recommendations from a Joint Working Group of the European Society of Cardiology (ESC), European Association of Pediatric and Congenital Cardiology (AEPC), and the European Association of Percutaneous Cardiac Intervention (EAPCI). Eur. Heart J. 40, 1043–1048 (2019).

    Article  PubMed  Google Scholar 

  212. Opotowsky, A. R. et al. Pediatric and congenital cardiovascular disease research challenges and opportunities: JACC review topic of the week. J. Am. Coll. Cardiol. 80, 2239–2250 (2022).

    Article  PubMed  Google Scholar 

  213. Hammadah, M. et al. Hypoattenuated leaflet thickening after transcatheter pulmonary valve replacement with the SAPIEN 3 valve. JACC Cardiovasc. Imaging 14, 2047–2048 (2021).

    Article  PubMed  Google Scholar 

  214. US National Library of Medicine. ClinicalTrials.gov clinicaltrials.gov/study/NCT04291898 (2023).

  215. Sievert, K. et al. Transcatheter closure of atrial septal defect and patent foramen ovale with Carag bioresorbable septal occluder: first-in-man experience with 24-month follow-up. EuroIntervention 17, 1536–1537 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  216. US National Library of Medicine. ClinicalTrials.gov clinicaltrials.gov/study/NCT05371366 (2022).

  217. US National Library of Medicine. ClinicalTrials.gov clinicaltrials.gov/study/NCT04591392 (2023).

  218. US National Library of Medicine. ClinicalTrials.gov clinicaltrials.gov/study/NCT05865119 (2023).

  219. US National Library of Medicine. ClinicalTrials.gov clinicaltrials.gov/study/NCT04084132 (2019).

Download references

Acknowledgements

P.C.-G. is the recipient of a grant from the Fundación Alfonso Martín Escudero (Madrid, Spain). E.H. is supported by the Peter Munk Chair in Structural Heart Disease Intervention. J.R.-C. holds the Research Chair ‘Fondation Famille Jacques Larivière’ for the Development of Structural Heart Interventions (Laval University, Québec City, Canada).

Author information

Authors and Affiliations

Authors

Contributions

P.C.-G. researched data for the article. P.C.-G. and J.R.-C. discussed the content of the article. P.C.-G. and E.F.-U. wrote the manuscript. All the authors reviewed/edited the article before submission.

Corresponding author

Correspondence to Josep Rodés-Cabau.

Ethics declarations

Competing interests

J.A. is a consultant and proctor for Edwards Lifesciences, Medtronic and Siemens, and has received research funding from Venus Medtech. L.B. is a consultant for Medtronic. X.F. is a proctor for Abbott Medical. J.R.-C. has received institutional research grants and speaker/consultant fees from Edwards Lifesciences and Medtronic. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Peter Ewert, Harald Kaemmerer and Aleksander Kempny for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cepas-Guillén, P., Flores-Umanzor, E., Horlick, E. et al. Interventions for adult congenital heart disease. Nat Rev Cardiol 22, 510–526 (2025). https://doi.org/10.1038/s41569-025-01118-1

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41569-025-01118-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing