Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The relationship between cannabis and cardiovascular disease: clearing the haze

Abstract

Cannabis has been consumed for centuries, but global regulatory changes over the past three decades have increased the availability and consumption of cannabis. Cannabinoids are touted to have therapeutic potential for many diseases and could be a replacement for opioids for analgesia and sedation. However, cannabinoids can cause substantial adverse cardiovascular events that would mitigate any potential benefit. The endocannabinoid system regulates mood, satiety and memory, and modulates the cardiovascular system. The link between cannabinoids and cardiovascular disease, which used to be limited to evidence from preclinical studies, case reports and case series, is now evident in epidemiological studies. Cannabinoids adversely affect the cardiovascular system, causing myocardial infarction, cerebrovascular accidents, arrhythmia and heart failure. The effects of novel cannabinoids are unknown, and synthetic cannabinoids have the potential to cause even more substantial harm than traditional cannabinoids. Therefore, with the increasing availability and use of cannabis, the acute and chronic effects of this drug are becoming apparent.

Key points

  • Cannabis use has increased as a result of decriminalization and legalization, but the cardiovascular effects need research to inform public health policies.

  • Cannabis, via cannabinoid receptor 1 (CB1)-mediated oxidative stress and inflammation, is linked to adverse cardiovascular outcomes, including myocardial infarction, arrhythmias and cardiomyopathy.

  • CB1 antagonists and CB2 agonists are promising novel treatments for cardiovascular risk factors and cardiovascular disease, but clinical translation is complicated by adverse effects and limited data.

  • Synthetic cannabinoids (such as ‘K2’ and ‘Spice’) are an emerging public health concern owing to their potent toxicity and cardiovascular implications.

  • The co-use of cannabis and tobacco has synergistic adverse effects on cardiovascular health and addiction potential.

  • Induced pluripotent stem cell modelling and genetic tools should be used to discover novel cannabinoid signalling pathways and potential new therapeutic targets for cardiometabolic disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanism of action of cannabinoids on cardiovascular health.
Fig. 2: The legal status of cannabis around the world.
Fig. 3: Cannabis modulates blood pressure via the nervous system, with immune, cardiac and renal inputs.
Fig. 4: Cannabinoid receptor 1 and heart failure.

Similar content being viewed by others

References

  1. Page, R. L. et al. Medical marijuana, recreational cannabis, and cardiovascular health: a scientific statement from the American Heart Association. Circulation 142, e131–e152 (2020).

    Article  PubMed  Google Scholar 

  2. Chandy, M. et al. Adverse impact of cannabis on human health. Annu. Rev. Med. 75, 353–367 (2024).

    Article  CAS  PubMed  Google Scholar 

  3. Bridgeman, M. B. & Abazia, D. T. Medicinal cannabis: history, pharmacology, and implications for the acute care setting. P T 42, 180–188 (2017).

    PubMed  PubMed Central  Google Scholar 

  4. Ryan, J. E., McCabe, S. E. & Boyd, C. J. Medicinal cannabis: policy, patients, and providers. Policy Polit. Nurs. Pract. 22, 126–133 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hoffman, A. F. & Lupica, C. R. Synaptic targets of Δ9-tetrahydrocannabinol in the central nervous system. Cold Spring Harb. Perspect. Med. 3, a012237 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Krishna Kumar, K. et al. Structure of a signaling cannabinoid receptor 1-G protein complex. Cell 176, 448–458.e12 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Sugamura, K. et al. Activated endocannabinoid system in coronary artery disease and antiinflammatory effects of cannabinoid 1 receptor blockade on macrophages. Circulation 119, 28–36 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Netherland, C. D., Pickle, T. G., Bales, A. & Thewke, D. P. Cannabinoid receptor type 2 (CB2) deficiency alters atherosclerotic lesion formation in hyperlipidemic Ldlr-null mice. Atherosclerosis 213, 102–108 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hoyer, F. F. et al. Atheroprotection via cannabinoid receptor-2 is mediated by circulating and vascular cells in vivo. J. Mol. Cell Cardiol. 51, 1007–1014 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Pacher, P., Steffens, S., Haskó, G., Schindler, T. H. & Kunos, G. Cardiovascular effects of marijuana and synthetic cannabinoids: the good, the bad, and the ugly. Nat. Rev. Cardiol. 15, 151–166 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Whiting, P. F. et al. Cannabinoids for medical use: a systematic review and meta-analysis. JAMA 313, 2456–2473 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Bilbao, A. & Spanagel, R. Medical cannabinoids: a pharmacology-based systematic review and meta-analysis for all relevant medical indications. BMC Med. 20, 259 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bicket, M. C., Stone, E. M. & McGinty, E. E. Use of cannabis and other pain treatments among adults with chronic pain in US states with medical cannabis programs. JAMA Netw. Open. 6, e2249797 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zehra, A. et al. Cannabis addiction and the brain: a review. J. Neuroimmune Pharmacol. 13, 438–452 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Secades-Villa, R., Garcia-Rodriguez, O., Jin, C. J., Wang, S. & Blanco, C. Probability and predictors of the cannabis gateway effect: a national study. Int. J. Drug. Policy 26, 135–142 (2015).

    Article  PubMed  Google Scholar 

  16. Volkow, N. D., Baler, R. D., Compton, W. M. & Weiss, S. R. Adverse health effects of marijuana use. N. Engl. J. Med. 370, 2219–2227 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wei, T. T. et al. Cannabinoid receptor 1 antagonist genistein attenuates marijuana-induced vascular inflammation. Cell 185, 1676–1693.e23 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. DeFilippis, E. M. et al. Cocaine and marijuana use among young adults with myocardial infarction. J. Am. Coll. Cardiol. 71, 2540–2551 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Patton, D. V. A history of United States cannabis law. J. Law Health 34, 1–29 (2020).

    PubMed  Google Scholar 

  20. Hall, W. et al. Public health implications of legalising the production and sale of cannabis for medicinal and recreational use. Lancet 394, 1580–1590 (2019).

    Article  PubMed  Google Scholar 

  21. Mead, A. Legal and regulatory issues governing cannabis and cannabis-derived products in the United States. Front. Plant. Sci. 10, 697 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lampe, J. R. Legal consequences of rescheduling marijuana. Congressional Research Service crsreports.congress.gov/product/pdf/LSB/LSB11105 (2024).

  23. Shirah, B. H., Ahmed, M. M. & Saleh, R. A. in Medicinal Usage of Cannabis and Cannabinoids (eds Preedy, V. R., Patel, V. B. & Martin, C. R.) Ch. 5, 51–61 (Academic Press, 2023).

  24. Bahji, A. & Stephenson, C. International perspectives on the implications of cannabis legalization: a systematic review & thematic analysis. Int. J. Env. Res. Public. Health 16, 3095 (2019).

    Article  Google Scholar 

  25. Rotermann, M. What has changed since cannabis was legalized? Health Rep. 31, 11–20 (2020).

    PubMed  Google Scholar 

  26. Martins, S. S. et al. Racial and ethnic differences in cannabis use following legalization in US states with medical cannabis laws. JAMA Netw. Open. 4, e2127002 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chemtob, D. Forbes Daily: The Budding $28B Hemp Market’s Feud with Marijuana. Forbes www.forbes.com/sites/daniellechemtob/2024/04/19/forbes-daily-the-budding-28b-hemp-markets-feud-with-marijuana/ (2024).

  28. Fischer, B., Jutras-Aswad, D. & Hall, W. Outcomes associated with nonmedical cannabis legalization policy in Canada: taking stock at the 5-year mark. CMAJ 195, E1351–E1353 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chong, W. W., Acar, Z. I., West, M. L. & Wong, F. A scoping review on the medical and recreational use of cannabis during the COVID-19 pandemic. Cannabis Cannabinoid Res. 7, 591–602 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mackie, K. Cannabinoid receptors as therapeutic targets. Annu. Rev. Pharmacol. Toxicol. 46, 101–122 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Movahed, P. et al. Vascular effects of anandamide and N-acylvanillylamines in the human forearm and skin microcirculation. Br. J. Pharmacol. 146, 171–179 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pacher, P., Batkai, S. & Kunos, G. Cardiovascular pharmacology of cannabinoids. Handb. Exp. Pharmacol. 599-625 (2005).

  33. Pacher, P., Batkai, S. & Kunos, G. Blood pressure regulation by endocannabinoids and their receptors. Neuropharmacology 48, 1130–1138 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Batkai, S. et al. Endocannabinoids acting at CB1 receptors mediate the cardiac contractile dysfunction in vivo in cirrhotic rats. Am. J. Physiol. Heart Circ. Physiol 293, H1689–H1695 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Valenta, I. et al. Feasibility evaluation of myocardial cannabinoid type 1 receptor imaging in obesity: a translational approach. JACC Cardiovasc. Imaging 11, 320–332 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rajesh, M. et al. Cannabinoid 1 receptor promotes cardiac dysfunction, oxidative stress, inflammation, and fibrosis in diabetic cardiomyopathy. Diabetes 61, 716–727 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mukhopadhyay, P. et al. Pharmacological inhibition of CB1 cannabinoid receptor protects against doxorubicin-induced cardiotoxicity. J. Am. Coll. Cardiol. 50, 528–536 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mukhopadhyay, P. et al. CB1 cannabinoid receptors promote oxidative stress and cell death in murine models of doxorubicin-induced cardiomyopathy and in human cardiomyocytes. Cardiovasc. Res. 85, 773–784 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Rajesh, M. et al. Cannabinoid receptor 2 activation alleviates diabetes-induced cardiac dysfunction, inflammation, oxidative stress, and fibrosis. Geroscience 44, 1727–1741 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Matyas, C. et al. Interplay of liver–heart inflammatory axis and cannabinoid 2 receptor signaling in an experimental model of hepatic cardiomyopathy. Hepatology 71, 1391–1407 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Molica, F. et al. Cannabinoid receptor CB2 protects against balloon-induced neointima formation. Am. J. Physiol. Heart Circ. Physiol 302, H1064–H1074 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Koivisto, A. P., Belvisi, M. G., Gaudet, R. & Szallasi, A. Advances in TRP channel drug discovery: from target validation to clinical studies. Nat. Rev. Drug. Discov. 21, 41–59 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Pertwee, R. G. Receptors and channels targeted by synthetic cannabinoid receptor agonists and antagonists. Curr. Med. Chem. 17, 1360–1381 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Després, J. P., Golay, A. & Sjöström, L. Rimonabant in Obesity-Lipids Study Group Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N. Engl. J. Med. 353, 2121–2134 (2005).

    Article  PubMed  Google Scholar 

  45. Onakpoya, I. J., Heneghan, C. J. & Aronson, J. K. Worldwide withdrawal of medicinal products because of adverse drug reactions: a systematic review and analysis. Crit. Rev. Toxicol. 46, 477–489 (2016).

    Article  PubMed  Google Scholar 

  46. Cinar, R., Iyer, M. R. & Kunos, G. The therapeutic potential of second and third generation CB1R antagonists. Pharmacol. Ther. 208, 107477 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Crater, G. D., Lalonde, K., Ravenelle, F., Harvey, M. & Despres, J. P. Effects of CB1R inverse agonist, INV-202, in patients with features of metabolic syndrome. A randomized, placebo-controlled, double-blind phase 1b study. Diabetes Obes. Metab. 26, 642–649 (2024).

    Article  CAS  PubMed  Google Scholar 

  48. Hashiesh, H. M., Sharma, C., Goyal, S. N., Jha, N. K. & Ojha, S. Pharmacological properties, therapeutic potential and molecular mechanisms of JWH133, a CB2 receptor-selective agonist. Front. Pharmacol. 12, 702675 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kosar, M. et al. Patent review of cannabinoid receptor type 2 (CB2R) modulators (2016–present). Expert. Opin. Ther. Pat. 34, 665–700 (2024).

    Article  CAS  PubMed  Google Scholar 

  50. Smoum, R. et al. Editorial: therapeutic potential of the cannabinoid CB2 receptor. Front. Pharmacol. 13, 1039564 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Morales, P., Hernandez-Folgado, L., Goya, P. & Jagerovic, N. Cannabinoid receptor 2 (CB2) agonists and antagonists: a patent update. Expert. Opin. Ther. Pat. 26, 843–856 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Oparil, S. et al. Hypertension. Nat. Rev. Dis. Primers 4, 18014 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Alshaarawy, O. & Elbaz, H. A. Cannabis use and blood pressure levels: United States National Health and Nutrition Examination Survey, 2005–2012. J. Hypertens. 34, 1507–1512 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Golosova, D., Levchenko, V., Kravtsova, O., Palygin, O. & Staruschenko, A. Acute and long-term effects of cannabinoids on hypertension and kidney injury. Sci. Rep. 12, 6080 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sultan, S. R., Millar, S. A., O’Sullivan, S. E. & England, T. J. A systematic review and meta-analysis of the in vivo haemodynamic effects of Δ8-tetrahydrocannabinol. Pharmaceuticals 11, 13 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Intengan, H. D. & Schiffrin, E. L. Structure and mechanical properties of resistance arteries in hypertension: role of adhesion molecules and extracellular matrix determinants. Hypertension 36, 312–318 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Corroon, J., Grant, I., Bradley, R. & Allison, M. A. Trends in cannabis use, blood pressure, and hypertension in middle-aged adults: findings from NHANES, 2009–2018. Am. J. Hypertens. 36, 651–659 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vallee, A. Association between cannabis use and blood pressure levels according to comorbidities and socioeconomic status. Sci. Rep. 13, 2069 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Batkai, S. et al. Endocannabinoids acting at cannabinoid-1 receptors regulate cardiovascular function in hypertension. Circulation 110, 1996–2002 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Godlewski, G. et al. Inhibitor of fatty acid amide hydrolase normalizes cardiovascular function in hypertension without adverse metabolic effects. Chem. Biol. 17, 1256–1266 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wagner, J. A. et al. Activation of peripheral CB1 cannabinoid receptors in haemorrhagic shock. Nature 390, 518–521 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Varga, K., Wagner, J. A., Bridgen, D. T. & Kunos, G. Platelet- and macrophage-derived endogenous cannabinoids are involved in endotoxin-induced hypotension. FASEB J. 12, 1035–1044 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Batkai, S. et al. Endocannabinoids acting at vascular CB1 receptors mediate the vasodilated state in advanced liver cirrhosis. Nat. Med. 7, 827–832 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Ros, J. et al. Endogenous cannabinoids: a new system involved in the homeostasis of arterial pressure in experimental cirrhosis in the rat. Gastroenterology 122, 85–93 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Shan, R. et al. Activation of cannabinoid type 2 receptor in microglia reduces neuroinflammation through inhibiting aerobic glycolysis to relieve hypertension. Biomolecules 14, 333 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Guo, Y. et al. Cannabidiol protects against acute aortic dissection by inhibiting macrophage infiltration and PMAIP1-induced vascular smooth muscle cell apoptosis. J. Mol. Cell Cardiol. 189, 38–51 (2024).

    Article  CAS  PubMed  Google Scholar 

  67. Curioni, C. & Andre, C. Rimonabant for overweight or obesity. Cochrane Database Syst. Rev. 2006, CD006162 (2006).

    PubMed  PubMed Central  Google Scholar 

  68. Vidot, D. C. et al. Metabolic syndrome among marijuana users in the United States: an analysis of National Health and Nutrition Examination Survey data. Am. J. Med. 129, 173–179 (2016).

    Article  PubMed  Google Scholar 

  69. Mousavi, S. E., Tondro Anamag, F. & Sanaie, S. Association between cannabis use and risk of diabetes mellitus type 2: a systematic review and meta-analysis. Phytother. Res. 37, 5092–5108 (2023).

    Article  CAS  PubMed  Google Scholar 

  70. Ravi, D., Ghasemiesfe, M., Korenstein, D., Cascino, T. & Keyhani, S. Associations between marijuana use and cardiovascular risk factors and outcomes: a systematic review. Ann. Intern. Med. 168, 187–194 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Despres, J. P. et al. Effect of rimonabant on the high-triglyceride/low-HDL-cholesterol dyslipidemia, intraabdominal adiposity, and liver fat: the ADAGIO-Lipids trial. Arterioscler. Thromb. Vasc. Biol. 29, 416–423 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Muniyappa, R. et al. Metabolic effects of chronic cannabis smoking. Diabetes Care 36, 2415–2422 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Casier, I., Vanduynhoven, P., Haine, S., Vrints, C. & Jorens, P. G. Is recent cannabis use associated with acute coronary syndromes? An illustrative case series. Acta Cardiol. 69, 131–136 (2014).

    Article  PubMed  Google Scholar 

  74. Jeffers, A. M., Glantz, S., Byers, A. L. & Keyhani, S. Association of cannabis use with cardiovascular outcomes among US adults. J. Am. Heart Assoc. 13, e030178 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Frost, L., Mostofsky, E., Rosenbloom, J. I., Mukamal, K. J. & Mittleman, M. A. Marijuana use and long-term mortality among survivors of acute myocardial infarction. Am. Heart J. 165, 170–175 (2013).

    Article  PubMed  Google Scholar 

  76. Libby, P. Inflammation in atherosclerosis. Nature 420, 868–8743 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Rajesh, M. et al. Cannabinoid-1 receptor activation induces reactive oxygen species-dependent and -independent mitogen-activated protein kinase activation and cell death in human coronary artery endothelial cells. Br. J. Pharmacol. 160, 688–700 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. El-Remessy, A. B. et al. Cannabinoid 1 receptor activation contributes to vascular inflammation and cell death in a mouse model of diabetic retinopathy and a human retinal cell line. Diabetologia 54, 1567–1578 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Paik, D. T., Chandy, M. & Wu, J. C. Patient and disease-specific induced pluripotent stem cells for discovery of personalized cardiovascular drugs and therapeutics. Pharmacol. Rev. 72, 320–342 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yang, Z., Kulkarni, K., Zhu, W. & Hu, M. Bioavailability and pharmacokinetics of genistein: mechanistic studies on its ADME. Anticancer. Agents Med. Chem. 12, 1264–1280 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dol-Gleizes, F. et al. Rimonabant, a selective cannabinoid CB1 receptor antagonist, inhibits atherosclerosis in LDL receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol. 29, 12–18 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Steffens, S. et al. Low dose oral cannabinoid therapy reduces progression of atherosclerosis in mice. Nature 434, 782–786 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Perez-Reyes, M., Owens, S. M. & Di Guiseppi, S. The clinical pharmacology and dynamics of marihuana cigarette smoking. J. Clin. Pharmacol. 21, 201S–207S (1981).

    Article  CAS  PubMed  Google Scholar 

  84. Huestis, M. A. Human cannabinoid pharmacokinetics. Chem. Biodivers. 4, 1770–1804 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Holt, A. et al. Cannabis for chronic pain: cardiovascular safety in a nationwide Danish study. Eur. Heart J. 45, 475–484 (2024).

    Article  CAS  PubMed  Google Scholar 

  86. Patel, R. S., Gonzalez, M. D., Ajibawo, T. & Baweja, R. Cannabis use disorder and increased risk of arrhythmia-related hospitalization in young adults. Am. J. Addict. 30, 578–584 (2021).

    Article  PubMed  Google Scholar 

  87. Chouairi, F. et al. Cannabis use disorder among atrial fibrillation admissions, 2008-2018. Pacing Clin. Electrophysiol. 44, 1934–1938 (2021).

    Article  PubMed  Google Scholar 

  88. Gillett, L. et al. Arrhythmic effects of cannabis in ischemic heart disease. Cannabis Cannabinoid Res. 8, 867–876 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Richards, J. R. Mechanisms for the risk of acute coronary syndrome and arrhythmia associated with phytogenic and synthetic cannabinoid use. J. Cardiovasc. Pharmacol. Ther. 25, 508–522 (2020).

    Article  PubMed  Google Scholar 

  90. Kariyanna, P. T. et al. Marijuana induced myocarditis: a new entity of toxic myocarditis. Am. J. Med. Case Rep. 6, 169–172 (2018).

    Article  Google Scholar 

  91. Khanji, M. Y. et al. Association between recreational cannabis use and cardiac structure and function. JACC Cardiovasc. Imaging 13, 886–888 (2020).

    Article  PubMed  Google Scholar 

  92. Bene-Alhasan, Y. et al. Daily marijuana use is associated with incident heart failure: “All of Us” research program [abstract]. Circulation 148 (Suppl. 1), 13812 (2023).

    Google Scholar 

  93. Chen, B. et al. Endothelial cannabinoid CB1 receptor deficiency reduces arterial inflammation and lipid uptake in response to atheroprone shear stress. Preprint at bioRxiv, https://doi.org/10.1101/2024.05.15.594375 (2024).

  94. Mukhopadhyay, P. et al. Fatty acid amide hydrolase is a key regulator of endocannabinoid-induced myocardial tissue injury. Free. Radic. Biol. Med. 50, 179–195 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Slavic, S. et al. Cannabinoid receptor 1 inhibition improves cardiac function and remodelling after myocardial infarction and in experimental metabolic syndrome. J. Mol. Med. 91, 811–823 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Defer, N. et al. The cannabinoid receptor type 2 promotes cardiac myocyte and fibroblast survival and protects against ischemia/reperfusion-induced cardiomyopathy. FASEB J. 23, 2120–2130 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. McPartland, J. M., Duncan, M., Di Marzo, V. & Pertwee, R. G. Are cannabidiol and Δ9-tetrahydrocannabivarin negative modulators of the endocannabinoid system? A systematic review. Br. J. Pharmacol. 172, 737–753 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Alfulaij, N. et al. Cannabinoids, the heart of the matter. J. Am. Heart Assoc. 7, e009099 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lee, W. S. et al. Cannabidiol limits T cell-mediated chronic autoimmune myocarditis: implications to autoimmune disorders and organ transplantation. Mol. Med. 22, 136–146 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hao, E. et al. Cannabidiol protects against doxorubicin-induced cardiomyopathy by modulating mitochondrial function and biogenesis. Mol. Med. 21, 38–45 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Rajesh, M. et al. Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and inflammatory and cell death signaling pathways in diabetic cardiomyopathy. J. Am. Coll. Cardiol. 56, 2115–2125 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hampson, A. J., Grimaldi, M., Axelrod, J. & Wink, D. Cannabidiol and (–)Δ9-tetrahydrocannabinol are neuroprotective antioxidants. Proc. Natl Acad. Sci. USA 95, 8268–8273 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Pacher, P., Kogan, N. M. & Mechoulam, R. Beyond THC and endocannabinoids. Annu. Rev. Pharmacol. Toxicol. 60, 637–659 (2020).

    Article  CAS  PubMed  Google Scholar 

  104. Gonca, E. & Darici, F. The effect of cannabidiol on ischemia/reperfusion-induced ventricular arrhythmias: the role of adenosine A1 receptors. J. Cardiovasc. Pharmacol. Ther. 20, 76–83 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Stanley, C. P., Hind, W. H., Tufarelli, C. & O’Sullivan, S. E. Cannabidiol causes endothelium-dependent vasorelaxation of human mesenteric arteries via CB1 activation. Cardiovasc. Res. 107, 568–578 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kumric, M., Bozic, J., Dujic, G., Vrdoljak, J. & Dujic, Z. Chronic effects of effective oral cannabidiol delivery on 24-h ambulatory blood pressure and vascular outcomes in treated and untreated hypertension (HYPER-H21-4): study protocol for a randomized, placebo-controlled, and crossover study. J. Pers. Med. 12, 1037 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  107. National Conference of State Legislatures. State Medical Cannabis Laws NCSL www.ncsl.org/health/state-medical-cannabis-laws (2024).

  108. Balachandran, P., Elsohly, M. & Hill, K. P. Cannabidiol interactions with medications, illicit substances, and alcohol: a comprehensive review. J. Gen. Intern. Med. 36, 2074–2084 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Moore, A., Straube, S., Fisher, E. & Eccleston, C. Cannabidiol (CBD) products for pain: ineffective, expensive, and with potential harms. J. Pain 25, 833–842 (2024).

    Article  CAS  PubMed  Google Scholar 

  110. Bhat, T. A., Kalathil, S. G., Goniewicz, M. L., Hutson, A. & Thanavala, Y. Not all vaping is the same: differential pulmonary effects of vaping cannabidiol versus nicotine. Thorax 78, 922–932 (2023).

    Article  PubMed  Google Scholar 

  111. Rossheim, M. E., LoParco, C. R., Henry, D., Trangenstein, P. J. & Walters, S. T. Delta-8, delta-10, HHC, THC-O, THCP, and THCV: what should we call these products? J. Stud. Alcohol. Drugs 84, 357–360 (2023).

    Article  PubMed  Google Scholar 

  112. O’Mahony, B., O’Malley, A., Kerrigan, O. & McDonald, C. HHC-induced psychosis: a case series of psychotic illness triggered by a widely available semisynthetic cannabinoid. Ir. J. Psychol. Med. https://doi.org/10.1017/ipm.2024.3 (2024).

    Article  PubMed  Google Scholar 

  113. Harlow, A. F., Miech, R. A. & Leventhal, A. M. Adolescent Δ8-THC and marijuana use in the US. JAMA 331, 861–865 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Govindarajan, R. K. et al. Biosynthesis of phytocannabinoids and structural insights: a review. Metabolites 13, 442 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Raup-Konsavage, W. M. et al. Efficient synthesis for altering side chain length on cannabinoid molecules and their effects in chemotherapy and chemotherapeutic induced neuropathic pain. Biomolecules 12, 1869 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nachnani, R., Raup-Konsavage, W. M. & Vrana, K. E. The pharmacological case for cannabigerol. J. Pharmacol. Exp. Ther. 376, 204–212 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Peters, E. N. et al. Pharmacokinetics of cannabichromene in a medical cannabis product also containing cannabidiol and Δ9-tetrahydrocannabinol: a pilot study. Eur. J. Clin. Pharmacol. 78, 259–265 (2022).

    Article  CAS  PubMed  Google Scholar 

  118. Abioye, A. et al. Δ9-Tetrahydrocannabivarin (THCV): a commentary on potential therapeutic benefit for the management of obesity and diabetes. J. Cannabis Res. 2, 6 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Jadoon, K. A. et al. Efficacy and safety of cannabidiol and tetrahydrocannabivarin on glycemic and lipid parameters in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, parallel group pilot study. Diabetes Care 39, 1777–1786 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Dziemitko, S., Harasim-Symbor, E. & Chabowski, A. How do phytocannabinoids affect cardiovascular health? An update on the most common cardiovascular diseases. Ther. Adv. Chronic Dis. 14, 20406223221143239 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  121. DeFilippis, E. M. et al. Marijuana use in patients with cardiovascular disease: JACC review topic of the week. J. Am. Coll. Cardiol. 75, 320–332 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bedi, G., Cooper, Z. D. & Haney, M. Subjective, cognitive and cardiovascular dose-effect profile of nabilone and dronabinol in marijuana smokers. Addict. Biol. 18, 872–881 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. Zongo, A. et al. Medical cannabis authorization and the risk of cardiovascular events: a longitudinal cohort study. BMC Cardiovasc. Disord. 21, 426 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Devinsky, O. et al. Effect of cannabidiol on drop seizures in the Lennox–Gastaut syndrome. N. Engl. J. Med. 378, 1888–1897 (2018).

    Article  CAS  PubMed  Google Scholar 

  125. Devinsky, O. et al. Trial of cannabidiol for drug-resistant seizures in the Dravet syndrome. N. Engl. J. Med. 376, 2011–2020 (2017).

    Article  CAS  PubMed  Google Scholar 

  126. Ahmed, A. et al. Effects of digoxin at low serum concentrations on mortality and hospitalization in heart failure: a propensity-matched study of the DIG trial. Int. J. Cardiol. 123, 138–146 (2008).

    Article  PubMed  Google Scholar 

  127. Lee, K. et al. Cannabidiol exposure during gestation leads to adverse cardiac outcomes early in postnatal life in male rat offspring. Cannabis Cannabinoid Res. 9, 781–796 (2024).

    Article  CAS  PubMed  Google Scholar 

  128. D’hooghe, M. et al. Sativex(R) (nabiximols) cannabinoid oromucosal spray in patients with resistant multiple sclerosis spasticity: the Belgian experience. BMC Neurol. 21, 227 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Nurmikko, T. J. et al. Sativex successfully treats neuropathic pain characterised by allodynia: a randomised, double-blind, placebo-controlled clinical trial. Pain 133, 210–220 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Adams, A. J. et al. “Zombie” outbreak caused by the synthetic cannabinoid AMB-FUBINACA in New York. N. Engl. J. Med. 376, 235–242 (2017).

    Article  CAS  PubMed  Google Scholar 

  131. Fantegrossi, W. E., Moran, J. H., Radominska-Pandya, A. & Prather, P. L. Distinct pharmacology and metabolism of K2 synthetic cannabinoids compared to Δ9-THC: mechanism underlying greater toxicity? Life Sci. 97, 45–54 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Hermanns-Clausen, M. et al. Acute side effects after consumption of the new synthetic cannabinoids AB-CHMINACA and MDMB-CHMICA. Clin. Toxicol. 56, 404–411 (2018).

    Article  CAS  Google Scholar 

  133. Mir, A., Obafemi, A., Young, A. & Kane, C. Myocardial infarction associated with use of the synthetic cannabinoid K2. Pediatrics 128, e1622–e1627 (2011).

    Article  PubMed  Google Scholar 

  134. Jayakumar, N. et al. Co-use and mixing tobacco with cannabis among Ontario adults. Nicotine Tob. Res. 23, 171–178 (2021).

    Article  CAS  PubMed  Google Scholar 

  135. Wu, T. C., Tashkin, D. P., Djahed, B. & Rose, J. E. Pulmonary hazards of smoking marijuana as compared with tobacco. N. Engl. J. Med. 318, 347–351 (1988).

    Article  CAS  PubMed  Google Scholar 

  136. Hancox, R. J. et al. Effects of cannabis on lung function: a population-based cohort study. Eur. Respir. J. 35, 42–47 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Tan, W. C. et al. The effects of marijuana smoking on lung function in older people. Eur. Respir. J. 54, 1900826 (2019).

    Article  PubMed  Google Scholar 

  138. Crosland, B. A. et al. Risk of adverse neonatal outcomes after combined prenatal cannabis and nicotine exposure. JAMA Netw. Open. 7, e2410151 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Hammond, C. J. et al. Co-occurring tobacco and cannabis use in adolescents: dissociable relationships with mediofrontal electrocortical activity during reward feedback processing. Neuroimage Clin. 30, 102592 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Vogel, E. A., Rubinstein, M. L., Prochaska, J. J. & Ramo, D. E. Associations between marijuana use and tobacco cessation outcomes in young adults. J. Subst. Abuse Treat. 94, 69–73 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Panlilio, L. V., Solinas, M., Matthews, S. A. & Goldberg, S. R. Previous exposure to THC alters the reinforcing efficacy and anxiety-related effects of cocaine in rats. Neuropsychopharmacology 32, 646–657 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Bierut, L. J. et al. Familial transmission of substance dependence: alcohol, marijuana, cocaine, and habitual smoking: a report from the Collaborative Study on the Genetics of Alcoholism. Arch. Gen. Psychiatry 55, 982–988 (1998).

    Article  CAS  PubMed  Google Scholar 

  143. Hartz, S. M. et al. Increased genetic vulnerability to smoking at CHRNA5 in early-onset smokers. Arch. Gen. Psychiatry 69, 854–860 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Lubke, G. H., Stephens, S. H., Lessem, J. M., Hewitt, J. K. & Ehringer, M. A. The CHRNA5/A3/B4 gene cluster and tobacco, alcohol, cannabis, inhalants and other substance use initiation: replication and new findings using mixture analyses. Behav. Genet. 42, 636–646 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Ibsen, M. S., Connor, M. & Glass, M. Cannabinoid CB1 and CB2 receptor signaling and bias. Cannabis Cannabinoid Res. 2, 48–60 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Cheung, C. P. et al. Cannabis inhalation acutely reduces muscle sympathetic nerve activity in humans. Circulation 146, 1972–1974 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by the Heart and Stroke Barnett-Ivey Chair (to M.C.), the Tobacco-Related Disease Research Program (TRDRP, T34FT8070) and the American Heart Association (AHA, 23DIVSUP1076489) (to N.J.-T.), the Stanford Cardiovascular Institute, TRDRP (27IR-0012), Gootter-Jensen Foundation and the AHA (20YVNR3500014) (to J.C.W.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed substantially to all aspects of the manuscript.

Corresponding authors

Correspondence to Mark Chandy or Joseph C. Wu.

Ethics declarations

Competing interests

M.C. is a consultant for Greenstone Biosciences. J.C.W. is a co-founder and on the Scientific Advisory Board of Greenstone Biosciences. N.J.-T. declares no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Emilie Jouanjus, George Kunos and Pal Pacher for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandy, M., Jimenez-Tellez, N. & Wu, J.C. The relationship between cannabis and cardiovascular disease: clearing the haze. Nat Rev Cardiol 22, 467–481 (2025). https://doi.org/10.1038/s41569-025-01121-6

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41569-025-01121-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing