Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Roadmap
  • Published:

Roadmap for alleviating the manifestations of ageing in the cardiovascular system

Abstract

Ageing of the cardiovascular system is associated with frailty and various life-threatening diseases. As global populations grow older, age-related conditions increasingly determine healthspan and lifespan. The circulatory system not only supplies nutrients and oxygen to all tissues of the human body and removes by-products but also builds the largest interorgan communication network, thereby serving as a gatekeeper for healthy ageing. Therefore, elucidating organ-specific and cell-specific ageing mechanisms that compromise circulatory system functions could have the potential to prevent or ameliorate age-related cardiovascular diseases. In support of this concept, emerging evidence suggests that targeting the circulatory system might restore organ function. In this Roadmap, we delve into the organ-specific and cell-specific mechanisms that underlie ageing-related changes in the cardiovascular system. We raise unanswered questions regarding the optimal design of clinical trials, in which markers of biological ageing in humans could be assessed. We provide guidance for the development of gerotherapeutics, which will rely on the technological progress of the diagnostic toolbox to measure residual risk in elderly individuals. A major challenge in the quest to discover interventions that delay age-related conditions in humans is to identify molecular switches that can delay the onset of ageing changes. To overcome this roadblock, future clinical trials need to provide evidence that gerotherapeutics directly affect one or several hallmarks of ageing in such a manner as to delay, prevent, alleviate or treat age-associated dysfunction and diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathophysiology of circulatory system ageing and its organ-specific and systemic effects.
Fig. 2: Biological age determines healthspan.
Fig. 3: Circulating β-amyloid 1–40 peptide predicts cardiovascular and cerebrovascular risk in ageing-related circulatory diseases.

Similar content being viewed by others

References

  1. Jiang, M. et al. Accelerated biological aging elevates the risk of cardiometabolic multimorbidity and mortality. Nat. Cardiovasc. Res. 3, 332–342 (2024).

    Article  PubMed  Google Scholar 

  2. Justice, J. et al. Frameworks for proof-of-concept clinical trials of interventions that target fundamental aging processes. J. Gerontol. A Biol. Sci. Med. Sci. 71, 1415–1423 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Abdellatif, M., Rainer, P. P., Sedej, S. & Kroemer, G. Hallmarks of cardiovascular ageing. Nat. Rev. Cardiol. 20, 754–777 (2023).

    Article  PubMed  Google Scholar 

  4. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article  PubMed  CAS  Google Scholar 

  5. Nie, C. et al. Distinct biological ages of organs and systems identified from a multi-omics study. Cell Rep. 38, 110459 (2022).

    Article  PubMed  CAS  Google Scholar 

  6. Tian, Y. E. et al. Heterogeneous aging across multiple organ systems and prediction of chronic disease and mortality. Nat. Med. 29, 1221–1231 (2023).

    Article  PubMed  CAS  Google Scholar 

  7. Schaum, N. et al. Ageing hallmarks exhibit organ-specific temporal signatures. Nature 583, 596–602 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Vidal, R. et al. Transcriptional heterogeneity of fibroblasts is a hallmark of the aging heart. JCI Insight 4, e131092 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ashour, D. et al. An interferon gamma response signature links myocardial aging and immunosenescence. Cardiovasc. Res. 119, 2458–2468 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tabula Muris, C. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature 583, 590–595 (2020).

    Article  Google Scholar 

  11. Katsimpardi, L. et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 344, 630–634 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Propson, N. E., Roy, E. R., Litvinchuk, A., Köhl, J. & Zheng, H. Endothelial C3a receptor mediates vascular inflammation and blood-brain barrier permeability during aging. J. Clin. Invest. 131, e140966 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Lacolley, P., Regnault, V., Segers, P. & Laurent, S. Vascular smooth muscle cells and arterial stiffening: relevance in development, aging, and disease. Physiol. Rev. 97, 1555–1617 (2017).

    Article  PubMed  CAS  Google Scholar 

  14. Ma, Z., Mao, C., Jia, Y., Fu, Y. & Kong, W. Extracellular matrix dynamics in vascular remodeling. Am. J. Physiol. Cell Physiol. 319, C481–C499 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Jacob, M. P. Extracellular matrix remodeling and matrix metalloproteinases in the vascular wall during aging and in pathological conditions. Biomed. Pharmacother. 57, 195–202 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. Camici, G. G., Savarese, G., Akhmedov, A. & Luscher, T. F. Molecular mechanism of endothelial and vascular aging: implications for cardiovascular disease. Eur. Heart J. 36, 3392–3403 (2015).

    Article  PubMed  CAS  Google Scholar 

  17. Camici, G. G. & Liberale, L. Aging: the next cardiovascular disease? Eur. Heart J. 38, 1621–1623 (2017).

    Article  PubMed  CAS  Google Scholar 

  18. Dobner, S., Toth, F. & de Rooij, L. A high-resolution view of the heterogeneous aging endothelium. Angiogenesis 27, 129–145 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lacolley, P., Regnault, V. & Avolio, A. P. Smooth muscle cell and arterial aging: basic and clinical aspects. Cardiovasc. Res. 114, 513–528 (2018).

    Article  PubMed  CAS  Google Scholar 

  20. Selman, M. & Pardo, A. Fibroageing: an ageing pathological feature driven by dysregulated extracellular matrix-cell mechanobiology. Ageing Res. Rev. 70, 101393 (2021).

    Article  PubMed  CAS  Google Scholar 

  21. Van Avondt, K. et al. Neutrophils in aging and aging-related pathologies. Immunol. Rev. 314, 357–375 (2023).

    Article  PubMed  Google Scholar 

  22. De Maeyer, R. P. H. & Chambers, E. S. The impact of ageing on monocytes and macrophages. Immunol. Lett. 230, 1–10 (2021).

    Article  PubMed  Google Scholar 

  23. Trott, D. W. et al. T cells mediate cell non-autonomous arterial ageing in mice. J. Physiol. 599, 3973–3991 (2021).

    Article  PubMed  CAS  Google Scholar 

  24. Augustin, H. G. & Koh, G. Y. A systems view of the vascular endothelium in health and disease. Cell 187, 4833–4858 (2024).

    Article  PubMed  CAS  Google Scholar 

  25. Zhang, L. et al. CD44 connects autophagy decline and ageing in the vascular endothelium. Nat. Commun. 14, 5524 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Bloom, S. I. et al. Endothelial cell telomere dysfunction induces senescence and results in vascular and metabolic impairments. Aging Cell 22, e13875 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kopacz, A. et al. Keap1 governs ageing-induced protein aggregation in endothelial cells. Redox Biol. 34, 101572 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Rios, F. J. et al. Mechanisms of vascular inflammation and potential therapeutic targets: a position paper from the ESH working group on small arteries. Hypertension 81, 1218–1232 (2024).

    Article  PubMed  CAS  Google Scholar 

  29. Bloom, S. I. et al. Aging results in DNA damage and telomere dysfunction that is greater in endothelial versus vascular smooth muscle cells and is exacerbated in atheroprone regions. Geroscience 44, 2741–2755 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ding, Q., Shao, C., Rose, P. & Zhu, Y. Z. Epigenetics and vascular senescence-potential new therapeutic targets? Front. Pharmacol. 11, 535395 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Luscher, T. F. & Corti, R. Flow: the signal of life. Circ. Res. 95, 749–751 (2004).

    Article  PubMed  Google Scholar 

  32. Godo, S. & Shimokawa, H. Endothelial functions. Arterioscler. Thromb. Vasc. Biol. 37, e108–e114 (2017).

    Article  PubMed  CAS  Google Scholar 

  33. Donato, A. J. et al. Direct evidence of endothelial oxidative stress with aging in humans: relation to impaired endothelium-dependent dilation and upregulation of nuclear factor-kappaB. Circ. Res. 100, 1659–1666 (2007).

    Article  PubMed  CAS  Google Scholar 

  34. Wagner, J. U. G. et al. Aging impairs the neurovascular interface in the heart. Science 381, 897–906 (2023).

    Article  PubMed  CAS  Google Scholar 

  35. Mendez-Barbero, N., Gutierrez-Munoz, C. & Blanco-Colio, L. M. Cellular crosstalk between endothelial and smooth muscle cells in vascular wall remodeling. Int. J. Mol. Sci. 22, 7284 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Wagner, J. U. G. & Dimmeler, S. Cellular cross-talks in the diseased and aging heart. J. Mol. Cell. Cardiol. 138, 136–146 (2020).

    Article  PubMed  CAS  Google Scholar 

  37. Regnault, V., Lacolley, P. & Laurent, S. Arterial stiffness: from basic primers to integrative physiology. Annu. Rev. Physiol. 86, 99–121 (2024).

    Article  PubMed  CAS  Google Scholar 

  38. Davis, M. J., Earley, S., Li, Y. S. & Chien, S. Vascular mechanotransduction. Physiol. Rev. 103, 1247–1421 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Swiatlowska, P. et al. Pressure and stiffness sensing together regulate vascular smooth muscle cell phenotype switching. Sci. Adv. 8, eabm3471 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Petit, C. et al. Regulation of SMC traction forces in human aortic thoracic aneurysms. Biomech. Model. Mechanobiol. 20, 717–731 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Berthiaume, A. A. et al. Pericyte remodeling is deficient in the aged brain and contributes to impaired capillary flow and structure. Nat. Commun. 13, 5912 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Bloom, S. I., Islam, M. T., Lesniewski, L. A. & Donato, A. J. Mechanisms and consequences of endothelial cell senescence. Nat. Rev. Cardiol. 20, 38–51 (2023).

    Article  PubMed  Google Scholar 

  43. Ragnauth, C. D. et al. Prelamin A acts to accelerate smooth muscle cell senescence and is a novel biomarker of human vascular aging. Circulation 121, 2200–2210 (2010).

    Article  PubMed  CAS  Google Scholar 

  44. Regnault, V., Challande, P., Pinet, F., Li, Z. & Lacolley, P. Cell senescence: basic mechanisms and the need for computational networks in vascular ageing. Cardiovasc. Res. 117, 1841–1858 (2021).

    Article  PubMed  CAS  Google Scholar 

  45. Iwao, T. et al. Senescence in brain pericytes attenuates blood-brain barrier function in vitro: a comparison of serially passaged and isolated pericytes from aged rat brains. Biochem. Biophys. Res. Commun. 645, 154–163 (2023).

    Article  PubMed  CAS  Google Scholar 

  46. Jun, J. I. & Lau, L. F. The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat. Cell Biol. 12, 676–685 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Storer, M. et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155, 1119–1130 (2013).

    Article  PubMed  CAS  Google Scholar 

  48. Chen, M. S., Lee, R. T. & Garbern, J. C. Senescence mechanisms and targets in the heart. Cardiovasc. Res. 118, 1173–1187 (2022).

    Article  PubMed  CAS  Google Scholar 

  49. Rubelt, F. et al. Onset of immune senescence defined by unbiased pyrosequencing of human immunoglobulin mRNA repertoires. PLoS ONE 7, e49774 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Huang, W., Hickson, L. J., Eirin, A., Kirkland, J. L. & Lerman, L. O. Cellular senescence: the good, the bad and the unknown. Nat. Rev. Nephrol. 18, 611–627 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Suda, M., Katsuumi, G., Tchkonia, T., Kirkland, J. L. & Minamino, T. Potential clinical implications of senotherapies for cardiovascular disease. Circ. J. 88, 277–284 (2024).

    Article  PubMed  CAS  Google Scholar 

  52. Roos, C. M. et al. Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell 15, 973–977 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Wiley, C. D. & Campisi, J. The metabolic roots of senescence: mechanisms and opportunities for intervention. Nat. Metab. 3, 1290–1301 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Tchkonia, T., Zhu, Y., van Deursen, J., Campisi, J. & Kirkland, J. L. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J. Clin. Invest. 123, 966–972 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Ferrucci, L. & Fabbri, E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505–522 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Schriner, S. E. et al. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308, 1909–1911 (2005).

    Article  PubMed  CAS  Google Scholar 

  58. Correia-Melo, C. et al. Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J. 35, 724–742 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Victorelli, S. et al. Apoptotic stress causes mtDNA release during senescence and drives the SASP. Nature 622, 627–636 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Iske, J. et al. Senolytics prevent mt-DNA-induced inflammation and promote the survival of aged organs following transplantation. Nat. Commun. 11, 4289 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Ungvari, Z. et al. Dysregulation of mitochondrial biogenesis in vascular endothelial and smooth muscle cells of aged rats. Am. J. Physiol. Heart Circ. Physiol. 294, H2121–H2128 (2008).

    Article  PubMed  CAS  Google Scholar 

  62. Paneni, F., Diaz Canestro, C., Libby, P., Luscher, T. F. & Camici, G. G. The aging cardiovascular system: understanding it at the cellular and clinical levels. J. Am. Coll. Cardiol. 69, 1952–1967 (2017).

    Article  PubMed  Google Scholar 

  63. Tzahor, E. & Dimmeler, S. A coalition to heal-the impact of the cardiac microenvironment. Science 377, eabm4443 (2022).

    Article  PubMed  CAS  Google Scholar 

  64. Zhao, L. et al. Evidence for association of mitochondrial metabolism alteration with lipid accumulation in aging rats. Exp. Gerontol. 56, 3–12 (2014).

    Article  PubMed  CAS  Google Scholar 

  65. Anderson, R. et al. Length-independent telomere damage drives post-mitotic cardiomyocyte senescence. EMBO J. 38, e100492 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zhang, X. et al. Characterization of cellular senescence in aging skeletal muscle. Nat. Aging 2, 601–615 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Jurk, D. et al. Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Aging Cell 11, 996–1004 (2012).

    Article  PubMed  CAS  Google Scholar 

  68. Farr, J. N. et al. Identification of senescent cells in the bone microenvironment. J. Bone Min. Res. 31, 1920–1929 (2016).

    Article  CAS  Google Scholar 

  69. Abdellatif, M., Sedej, S., Carmona-Gutierrez, D., Madeo, F. & Kroemer, G. Autophagy in cardiovascular aging. Circ. Res. 123, 803–824 (2018).

    Article  PubMed  CAS  Google Scholar 

  70. Chiao, Y. A. et al. Late-life restoration of mitochondrial function reverses cardiac dysfunction in old mice. eLife 9, e55513 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Singam, N. S. V., Fine, C. & Fleg, J. L. Cardiac changes associated with vascular aging. Clin. Cardiol. 43, 92–98 (2020).

    Article  PubMed  Google Scholar 

  72. Trial, J. & Cieslik, K. A. Changes in cardiac resident fibroblast physiology and phenotype in aging. Am. J. Physiol. Heart Circ. Physiol. 315, H745–H755 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Brooks, W. W. & Conrad, C. H. Myocardial fibrosis in transforming growth factor beta(1)heterozygous mice. J. Mol. Cell. Cardiol. 32, 187–195 (2000).

    Article  PubMed  CAS  Google Scholar 

  74. Wang, M. et al. Involvement of NADPH oxidase in age-associated cardiac remodeling. J. Mol. Cell. Cardiol. 48, 765–772 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Sawaki, D. et al. Visceral adipose tissue drives cardiac aging through modulation of fibroblast senescence by osteopontin production. Circulation 138, 809–822 (2018).

    Article  PubMed  CAS  Google Scholar 

  76. Vue, Z. et al. Three-dimensional mitochondria reconstructions of murine cardiac muscle changes in size across aging. Am. J. Physiol. Heart Circ. Physiol. 325, H965–H982 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Meyer, K., Hodwin, B., Ramanujam, D., Engelhardt, S. & Sarikas, A. Essential role for premature senescence of myofibroblasts in myocardial fibrosis. J. Am. Coll. Cardiol. 67, 2018–2028 (2016).

    Article  PubMed  CAS  Google Scholar 

  78. Ramos, G. C. et al. Myocardial aging as a T-cell-mediated phenomenon. Proc. Natl Acad. Sci. USA 114, E2420–E2429 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Esfahani, N. S. et al. Aging influences the cardiac macrophage phenotype and function during steady state and during inflammation. Aging Cell 20, e13438 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Li, J. et al. The role of cardiac resident macrophage in cardiac aging. Aging Cell 22, e14008 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Bajpai, G. et al. Tissue resident CCR2 and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury. Circ. Res. 124, 263–278 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Martinod, K. et al. Peptidylarginine deiminase 4 promotes age-related organ fibrosis. J. Exp. Med. 214, 439–458 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Martini, E. et al. T cell costimulation blockade blunts age-related heart failure. Circ. Res. 127, 1115–1117 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Aikawa, E. et al. Human semilunar cardiac valve remodeling by activated cells from fetus to adult: implications for postnatal adaptation, pathology, and tissue engineering. Circulation 113, 1344–1352 (2006).

    Article  PubMed  Google Scholar 

  85. Balaoing, L. R., Post, A. D., Liu, H., Minn, K. T. & Grande-Allen, K. J. Age-related changes in aortic valve hemostatic protein regulation. Arterioscler. Thromb. Vasc. Biol. 34, 72–80 (2014).

    Article  PubMed  CAS  Google Scholar 

  86. Spillmann, F., Miteva, K., Pieske, B., Tschope, C. & Van Linthout, S. High-density lipoproteins reduce endothelial-to-mesenchymal transition. Arterioscler. Thromb. Vasc. Biol. 35, 1774–1777 (2015).

    Article  PubMed  CAS  Google Scholar 

  87. Back, M. Valvular endothelium: a genetically susceptible predilection site for calcific aortic valve stenosis. JACC Basic Transl. Sci. 8, 1473–1474 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Wu, S. et al. Age related extracellular matrix and interstitial cell phenotype in pulmonary valves. Sci. Rep. 10, 21338 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Osterholm, M. T., Kelley, N. S., Sommer, A. & Belongia, E. A. Efficacy and effectiveness of influenza vaccines: a systematic review and meta-analysis. Lancet Infect. Dis. 12, 36–44 (2012).

    Article  PubMed  Google Scholar 

  90. Alpert, A. et al. A clinically meaningful metric of immune age derived from high-dimensional longitudinal monitoring. Nat. Med. 25, 487–495 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Vicente, R., Mausset-Bonnefont, A. L., Jorgensen, C., Louis-Plence, P. & Brondello, J. M. Cellular senescence impact on immune cell fate and function. Aging Cell 15, 400–406 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Riley, J. S. & Tait, S. W. Mitochondrial DNA in inflammation and immunity. EMBO Rep. 21, e49799 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Yousefzadeh, M. J. et al. An aged immune system drives senescence and ageing of solid organs. Nature 594, 100–105 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Lagnado, A. et al. Neutrophils induce paracrine telomere dysfunction and senescence in ROS-dependent manner. EMBO J. 40, e106048 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Perdaens, O. & van Pesch, V. Molecular mechanisms of immunosenescene and inflammaging: relevance to the immunopathogenesis and treatment of multiple sclerosis. Front. Neurol. 12, 811518 (2021).

    Article  PubMed  Google Scholar 

  96. Zheng, Y., Liu, Q., Goronzy, J. J. & Weyand, C. M. Immune aging - a mechanism in autoimmune disease. Semin. Immunol. 69, 101814 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Flach, J. et al. Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature 512, 198–202 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Mittelbrunn, M. & Kroemer, G. Hallmarks of T cell aging. Nat. Immunol. 22, 687–698 (2021).

    Article  PubMed  CAS  Google Scholar 

  99. Ma, S., Wang, C., Mao, X. & Hao, Y. B cell dysfunction associated with aging and autoimmune diseases. Front. Immunol. 10, 318 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Nikolich-Zugich, J. Aging of the T cell compartment in mice and humans: from no naive expectations to foggy memories. J. Immunol. 193, 2622–2629 (2014).

    Article  PubMed  CAS  Google Scholar 

  101. Mogilenko, D. A., Shchukina, I. & Artyomov, M. N. Immune ageing at single-cell resolution. Nat. Rev. Immunol. 22, 484–498 (2022).

    Article  PubMed  CAS  Google Scholar 

  102. Song, M., Graubard, B. I., Rabkin, C. S. & Engels, E. A. Neutrophil-to-lymphocyte ratio and mortality in the United States general population. Sci. Rep. 11, 464 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Pellegrino, R. et al. Neutrophil, lymphocyte count, and neutrophil to lymphocyte ratio predict multimorbidity and mortality-results from the Baltimore Longitudinal Study on Aging follow-up study. Geroscience 46, 3047–3059 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Ross, J. B. et al. Depleting myeloid-biased haematopoietic stem cells rejuvenates aged immunity. Nature 628, 162–170 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Hu, H. et al. Defective efferocytosis by aged macrophages promotes STING signaling mediated inflammatory liver injury. Cell Death Discov. 9, 236 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Back, M., Yurdagul, A. Jr., Tabas, I., Oorni, K. & Kovanen, P. T. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities. Nat. Rev. Cardiol. 16, 389–406 (2019).

    PubMed  PubMed Central  Google Scholar 

  107. Zhang, D. et al. Neutrophil ageing is regulated by the microbiome. Nature 525, 528–532 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Saare, M. et al. Monocytes present age-related changes in phospholipid concentration and decreased energy metabolism. Aging Cell 19, e13127 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. van Beek, A. A., Van den Bossche, J., Mastroberardino, P. G., de Winther, M. P. J. & Leenen, P. J. M. Metabolic alterations in aging macrophages: ingredients for inflammaging? Trends Immunol. 40, 113–127 (2019).

    Article  PubMed  Google Scholar 

  110. Albright, J. M. et al. Advanced age alters monocyte and macrophage responses. Antioxid. Redox Signal. 25, 805–815 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Lim, H. Y. et al. Hyaluronan receptor LYVE-1-expressing macrophages maintain arterial tone through hyaluronan-mediated regulation of smooth muscle cell collagen. Immunity 49, 1191 (2018).

    Article  PubMed  CAS  Google Scholar 

  112. Cole, J. E. et al. Immune cell census in murine atherosclerosis: cytometry by time of flight illuminates vascular myeloid cell diversity. Cardiovasc. Res. 114, 1360–1371 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Schelemei, P., Wagner, E., Picard, F. S. R. & Winkels, H. Macrophage mediators and mechanisms in cardiovascular disease. FASEB J. 38, e23424 (2024).

    Article  PubMed  CAS  Google Scholar 

  114. Weinberger, T. et al. Ontogeny of arterial macrophages defines their functions in homeostasis and inflammation. Nat. Commun. 11, 4549 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Agrawal, A. & Gupta, S. Impact of aging on dendritic cell functions in humans. Ageing Res. Rev. 10, 336–345 (2011).

    Article  PubMed  CAS  Google Scholar 

  116. Smit, V. et al. Single-cell profiling reveals age-associated immunity in atherosclerosis. Cardiovasc. Res. 119, 2508–2521 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Jain, A., Sturmlechner, I., Weyand, C. M. & Goronzy, J. J. Heterogeneity of memory T cells in aging. Front. Immunol. 14, 1250916 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Elyahu, Y. et al. Aging promotes reorganization of the CD4 T cell landscape toward extreme regulatory and effector phenotypes. Sci. Adv. 5, eaaw8330 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Shen-Orr, S. S. et al. Defective signaling in the JAK-STAT pathway tracks with chronic inflammation and cardiovascular risk in aging humans. Cell Syst. 3, 374–384.e374 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Rubtsov, A. V. et al. Toll-like receptor 7 (TLR7)-driven accumulation of a novel CD11c+ B-cell population is important for the development of autoimmunity. Blood 118, 1305–1315 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Phalke, S. et al. Molecular mechanisms controlling age-associated B cells in autoimmunity. Immunol. Rev. 307, 79–100 (2022).

    Article  PubMed  CAS  Google Scholar 

  122. Mallat, Z. & Binder, C. J. The why and how of adaptive immune responses in ischemic cardiovascular disease. Nat. Cardiovasc. Res. 1, 431–444 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Srikakulapu, P. et al. Perivascular adipose tissue harbors atheroprotective IgM-producing B cells. Front. Physiol. 8, 719 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Porsch, F., Mallat, Z. & Binder, C. J. Humoral immunity in atherosclerosis and myocardial infarction: from B cells to antibodies. Cardiovasc. Res. 117, 2544–2562 (2021).

    PubMed  CAS  Google Scholar 

  125. Grabner, R. et al. Lymphotoxin beta receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged ApoE−/− mice. J. Exp. Med. 206, 233–248 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Hu, D. et al. Artery tertiary lymphoid organs control aorta immunity and protect against atherosclerosis via vascular smooth muscle cell lymphotoxin beta receptors. Immunity 42, 1100–1115 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Srikakulapu, P. et al. Artery tertiary lymphoid organs control multilayered territorialized atherosclerosis B-cell responses in aged ApoE−/− mice. Arterioscler. Thromb. Vasc. Biol. 36, 1174–1185 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Allan, H. E., Vadgama, A., Armstrong, P. C. & Warner, T. D. What can we learn from senescent platelets, their transcriptomes and proteomes? Platelets 34, 2200838 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Klei, T. R. L. et al. The Gardos effect drives erythrocyte senescence and leads to Lu/BCAM and CD44 adhesion molecule activation. Blood Adv. 4, 6218–6229 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Theurl, I. et al. On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver. Nat. Med. 22, 945–951 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Biino, G. et al. Age- and sex-related variations in platelet count in Italy: a proposal of reference ranges based on 40987 subjects’ data. PLoS ONE 8, e54289 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Gnanenthiran, S. R. et al. Identification of a distinct platelet phenotype in the elderly: ADP hypersensitivity coexists with platelet PAR (Protease-Activated Receptor)-1 and PAR-4-mediated thrombin resistance. Arterioscler. Thromb. Vasc. Biol. 42, 960–972 (2022).

    Article  PubMed  CAS  Google Scholar 

  133. Cowman, J. et al. Age-related changes in platelet function are more profound in women than in men. Sci. Rep. 5, 12235 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Gilstad, J. R., Gurbel, P. A. & Andersen, R. E. Relationship between age and platelet activation in patients with stable and unstable angina. Arch. Gerontol. Geriatr. 48, 155–159 (2009).

    Article  PubMed  CAS  Google Scholar 

  135. O’Donnell, C. J. et al. Genetic and environmental contributions to platelet aggregation: the Framingham Heart Study. Circulation 103, 3051–3056 (2001).

    Article  PubMed  Google Scholar 

  136. Shih, L. et al. Platelet-monocyte aggregates and C-reactive protein are associated with VTE in older surgical patients. Sci. Rep. 6, 27478 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Maupin, K. A. et al. Aging negatively impacts the ability of megakaryocytes to stimulate osteoblast proliferation and bone mass. Bone 127, 452–459 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  138. McNeil, J. J. et al. Effect of aspirin on cardiovascular events and bleeding in the healthy elderly. N. Engl. J. Med. 379, 1509–1518 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Liberale, L. & Camici, G. G. The role of vascular aging in atherosclerotic plaque development and vulnerability. Curr. Pharm. Des. 25, 3098–3111 (2019).

    Article  PubMed  CAS  Google Scholar 

  140. Chirinos, J. A., Segers, P., Hughes, T. & Townsend, R. Large-artery stiffness in health and disease: JACC state-of-the-art review. J. Am. Coll. Cardiol. 74, 1237–1263 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Cruickshank, K. et al. Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: an integrated index of vascular function? Circulation 106, 2085–2090 (2002).

    Article  PubMed  Google Scholar 

  142. Shoji, T. et al. Diabetes mellitus, aortic stiffness, and cardiovascular mortality in end-stage renal disease. J. Am. Soc. Nephrol. 12, 2117–2124 (2001).

    Article  PubMed  Google Scholar 

  143. Mattace-Raso, F. U. et al. Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation 113, 657–663 (2006).

    Article  PubMed  Google Scholar 

  144. Willum-Hansen, T. et al. Prognostic value of aortic pulse wave velocity as index of arterial stiffness in the general population. Circulation 113, 664–670 (2006).

    Article  PubMed  Google Scholar 

  145. Ibanez, B. et al. Progression of early subclinical atherosclerosis (PESA) study: JACC focus seminar 7/8. J. Am. Coll. Cardiology 78, 156–179 (2021).

    Article  Google Scholar 

  146. McClelland, R. L., Chung, H., Detrano, R., Post, W. & Kronmal, R. A. Distribution of coronary artery calcium by race, gender, and age: results from the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation 113, 30–37 (2006).

    Article  PubMed  Google Scholar 

  147. Xu, L. et al. Frailty and risk of systemic atherosclerosis: a bidirectional Mendelian randomization study. PLoS ONE 19, e0304300 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Benjamin, E. J. et al. Clinical correlates and heritability of flow-mediated dilation in the community: the Framingham Heart Study. Circulation 109, 613–619 (2004).

    Article  PubMed  Google Scholar 

  149. Shechter, M., Shechter, A., Koren-Morag, N., Feinberg, M. S. & Hiersch, L. Usefulness of brachial artery flow-mediated dilation to predict long-term cardiovascular events in subjects without heart disease. Am. J. Cardiol. 113, 162–167 (2014).

    Article  PubMed  Google Scholar 

  150. Monti, L. D. et al. Endothelial nitric oxide synthase polymorphisms are associated with type 2 diabetes and the insulin resistance syndrome. Diabetes 52, 1270–1275 (2003).

    Article  PubMed  CAS  Google Scholar 

  151. Bondareva, O. et al. Single-cell profiling of vascular endothelial cells reveals progressive organ-specific vulnerabilities during obesity. Nat. Metab. 4, 1591–1610 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Suzuki, K. et al. Genetic drivers of heterogeneity in type 2 diabetes pathophysiology. Nature 627, 347–357 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Davidsohn, N. et al. A single combination gene therapy treats multiple age-related diseases. Proc. Natl Acad. Sci. USA 116, 23505–23511 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Wiseman, S., Marlborough, F., Doubal, F., Webb, D. J. & Wardlaw, J. Blood markers of coagulation, fibrinolysis, endothelial dysfunction and inflammation in lacunar stroke versus non-lacunar stroke and non-stroke: systematic review and meta-analysis. Cerebrovasc. Dis. 37, 64–75 (2014).

    Article  PubMed  CAS  Google Scholar 

  155. McDowell, S. A. C. et al. Neutrophil oxidative stress mediates obesity-associated vascular dysfunction and metastatic transmigration. Nat. Cancer 2, 545–562 (2021).

    Article  PubMed  CAS  Google Scholar 

  156. Kiss, T. et al. Circulating anti-geronic factors from heterochonic parabionts promote vascular rejuvenation in aged mice: transcriptional footprint of mitochondrial protection, attenuation of oxidative stress, and rescue of endothelial function by young blood. Geroscience 42, 727–748 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Nyul-Toth, A. et al. Demonstration of age-related blood-brain barrier disruption and cerebromicrovascular rarefaction in mice by longitudinal intravital two-photon microscopy and optical coherence tomography. Am. J. Physiol. Heart Circ. Physiol. 320, H1370–H1392 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Kiss, T. et al. Nicotinamide mononucleotide (NMN) treatment attenuates oxidative stress and rescues angiogenic capacity in aged cerebromicrovascular endothelial cells: a potential mechanism for the prevention of vascular cognitive impairment. Geroscience 41, 619–630 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Toth, P., Tarantini, S., Csiszar, A. & Ungvari, Z. Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging. Am. J. Physiol. Heart Circ. Physiol. 312, H1–H20 (2017).

    Article  PubMed  Google Scholar 

  160. Ungvari, Z., Tarantini, S., Kirkpatrick, A. C., Csiszar, A. & Prodan, C. I. Cerebral microhemorrhages: mechanisms, consequences, and prevention. Am. J. Physiol. Heart Circ. Physiol. 312, H1128–H1143 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Lembo, M. et al. Hypertension-mediated organ damage involving multiple sites is an independent risk factor for cardiovascular events. Eur. Heart J. Open 3, oead102 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Mullins, R. F. et al. The membrane attack complex in aging human choriocapillaris: relationship to macular degeneration and choroidal thinning. Am. J. Pathol. 184, 3142–3153 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Guymer, R. H. & Campbell, T. G. Age-related macular degeneration. Lancet 401, 1459–1472 (2023).

    Article  PubMed  CAS  Google Scholar 

  164. Robbins, J. L. et al. Relationship between leg muscle capillary density and peak hyperemic blood flow with endurance capacity in peripheral artery disease. J. Appl. Physiol. 111, 81–86 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  165. LeBlanc, A. J. & Hoying, J. B. Adaptation of the coronary microcirculation in aging. Microcirculation 23, 157–167 (2016).

    Article  PubMed  Google Scholar 

  166. Molnár, A. Á. et al. The aging venous system: from varicosities to vascular cognitive impairment. Geroscience 43, 2761–2784 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Olsen, H. & Länne, T. Reduced venous compliance in lower limbs of aging humans and its importance for capacitance function. Am. J. Physiol. 275, H878–H886 (1998).

    PubMed  CAS  Google Scholar 

  168. Hoeper, M. M. et al. A global view of pulmonary hypertension. Lancet Respir. Med. 4, 306–322 (2016).

    Article  PubMed  Google Scholar 

  169. Yutzey, K. E. Cardiomyocyte proliferation: teaching an old dogma new tricks. Circ. Res. 120, 627–629 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Ratcovich, H. L. et al. Outcome in elderly patients with cardiogenic shock complicating acute myocardial infarction. Shock 57, 327–335 (2022).

    Article  PubMed  Google Scholar 

  171. Blaser, M. C., Kraler, S., Luscher, T. F. & Aikawa, E. Multi-omics approaches to define calcific aortic valve disease pathogenesis. Circ. Res. 128, 1371–1397 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Back, M. & Michel, J. B. From organic and inorganic phosphates to valvular and vascular calcifications. Cardiovasc. Res. 117, 2016–2029 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Gertz, M. A. Cardiac amyloidosis. Heart Fail. Clin. 18, 479–488 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Chen, Y. et al. Phenotypes of South Asian patients with atrial fibrillation and holistic integrated care management: cluster analysis of data from KERALA-AF Registry. Lancet Reg. Health Southeast Asia 31, 100507 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Osnabrugge, R. L. et al. Aortic stenosis in the elderly: disease prevalence and number of candidates for transcatheter aortic valve replacement: a meta-analysis and modeling study. J. Am. Coll. Cardiol. 62, 1002–1012 (2013).

    Article  PubMed  Google Scholar 

  176. Manolio, T. A. et al. Cardiac arrhythmias on 24-h ambulatory electrocardiography in older women and men: the Cardiovascular Health Study. J. Am. Coll. Cardiol. 23, 916–925 (1994).

    Article  PubMed  CAS  Google Scholar 

  177. Chugh, S. S. et al. Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study. Circulation 129, 837–847 (2014).

    Article  PubMed  Google Scholar 

  178. Khurshid, S. et al. ECG-based deep learning and clinical risk factors to predict atrial fibrillation. Circulation 145, 122–133 (2022).

    Article  PubMed  CAS  Google Scholar 

  179. Christopoulos, G. et al. Artificial intelligence-electrocardiography to predict incident atrial fibrillation: a population-based study. Circ. Arrhythm. Electrophysiol. 13, e009355 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Conrad, N. et al. Temporal trends and patterns in heart failure incidence: a population-based study of 4 million individuals. Lancet 391, 572–580 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Strait, J. B. & Lakatta, E. G. Aging-associated cardiovascular changes and their relationship to heart failure. Heart Fail. Clin. 8, 143–164 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Janczewski, A. M., Spurgeon, H. A. & Lakatta, E. G. Action potential prolongation in cardiac myocytes of old rats is an adaptation to sustain youthful intracellular Ca2+ regulation. J. Mol. Cell Cardiol. 34, 641–648 (2002).

    Article  PubMed  CAS  Google Scholar 

  183. Lakatta, E. G. Cardiovascular regulatory mechanisms in advanced age. Physiol. Rev. 73, 413–467 (1993).

    Article  PubMed  CAS  Google Scholar 

  184. Camici, P. G., Tschope, C., Di Carli, M. F., Rimoldi, O. & Van Linthout, S. Coronary microvascular dysfunction in hypertrophy and heart failure. Cardiovasc. Res. 116, 806–816 (2020).

    Article  PubMed  CAS  Google Scholar 

  185. Scholz, D., Cai, W. J. & Schaper, W. Arteriogenesis, a new concept of vascular adaptation in occlusive disease. Angiogenesis 4, 247–257 (2001).

    Article  PubMed  CAS  Google Scholar 

  186. Cheng, S. et al. Age-related left ventricular remodeling and associated risk for cardiovascular outcomes: the Multi-Ethnic Study of Atherosclerosis. Circ. Cardiovasc. Imaging 2, 191–198 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Dong, M. et al. Aging attenuates cardiac contractility and affects therapeutic consequences for myocardial infarction. Aging Dis. 11, 365–376 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Mogensen, U. M. et al. Clinical characteristics and major comorbidities in heart failure patients more than 85 years of age compared with younger age groups. Eur. J. Heart Fail. 13, 1216–1223 (2011).

    Article  PubMed  Google Scholar 

  189. Abdellatif, M. & Kroemer, G. Heart failure with preserved ejection fraction: an age-related condition. J. Mol. Cell. Cardiol. 167, 83–84 (2022).

    Article  PubMed  CAS  Google Scholar 

  190. Playford, D. et al. Diastolic dysfunction and mortality in 436 360 men and women: the National Echo Database Australia (NEDA). Eur. Heart J. Cardiovasc. Imaging 22, 505–515 (2021).

    Article  PubMed  Google Scholar 

  191. Bartleson, J. M. et al. SARS-CoV-2, COVID-19 and the ageing immune system. Nat. Aging 1, 769–782 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Guzik, T. J. et al. COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovasc. Res. 116, 1666–1687 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Jaiswal, S. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl. J. Med. 377, 111–121 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Pascual-Figal, D. A. et al. Clonal hematopoiesis and risk of progression of heart failure with reduced left ventricular ejection fraction. J. Am. Coll. Cardiol. 77, 1747–1759 (2021).

    Article  PubMed  Google Scholar 

  195. Tercan, H. et al. Association between clonal hematopoiesis driver mutations, immune cell function, and the vasculometabolic complications of obesity. J. Am. Heart Assoc. 13, e031665 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Mas-Peiro, S. et al. Clonal haematopoiesis in patients with degenerative aortic valve stenosis undergoing transcatheter aortic valve implantation. Eur. Heart J. 41, 933–939 (2020).

    Article  PubMed  CAS  Google Scholar 

  197. Shumliakivska, M. et al. DNMT3A clonal hematopoiesis-driver mutations induce cardiac fibrosis by paracrine activation of fibroblasts. Nat. Commun. 15, 606 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Fuster, J. J. et al. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355, 842–847 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Tall, A. R. & Fuster, J. J. Clonal hematopoiesis in cardiovascular disease and therapeutic implications. Nat. Cardiovasc. Res. 1, 116–124 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Jaiswal, S. & Libby, P. Clonal haematopoiesis: connecting ageing and inflammation in cardiovascular disease. Nat. Rev. Cardiol. 17, 137–144 (2020).

    Article  PubMed  Google Scholar 

  201. Diez-Diez, M. et al. Unidirectional association of clonal hematopoiesis with atherosclerosis development. Nat. Med. 30, 2857–2866 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Haitjema, S. et al. Loss of Y chromosome in blood is associated with major cardiovascular events during follow-up in men after carotid endarterectomy. Circ. Cardiovasc. Genet. 10, e001544 (2017).

    Article  PubMed  CAS  Google Scholar 

  203. Forsberg, L. A. et al. Mosaic loss of chromosome Y in peripheral blood is associated with shorter survival and higher risk of cancer. Nat. Genet. 46, 624–628 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Mas-Peiro, S. et al. Mosaic loss of Y chromosome in monocytes is associated with lower survival after transcatheter aortic valve replacement. Eur. Heart J. 44, 1943–1952 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Liberale, L. et al. Inflammation, aging, and cardiovascular disease: JACC review topic of the week. J. Am. Coll. Cardiol. 79, 837–847 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Zink, F. et al. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood 130, 742–752 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Svensson, E. C. et al. TET2-driven clonal hematopoiesis and response to canakinumab: an exploratory analysis of the CANTOS randomized clinical trial. JAMA Cardiol. 7, 521–528 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Zuriaga, M. A. et al. Colchicine prevents accelerated atherosclerosis in TET2-mutant clonal haematopoiesis. Eur. Heart J. 45, 4601–4615 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Hashimoto, K. et al. Single-cell transcriptomics reveals expansion of cytotoxic CD4 T cells in supercentenarians. Proc. Natl Acad. Sci. USA 116, 24242–24251 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Netea, M. G. et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 20, 375–388 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Christ, A. et al. Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172, 162–175.e114 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Koeken, V. A. et al. BCG vaccination in humans inhibits systemic inflammation in a sex-dependent manner. J. Clin. Invest. 130, 5591–5602 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Tiwari, V. et al. Innate immune training restores pro-reparative myeloid functions to promote remyelination in the aged central nervous system. Immunity 57, 2173–2190.e2178 (2024).

    Article  PubMed  CAS  Google Scholar 

  214. Bulut, O., Kilic, G., Dominguez-Andres, J. & Netea, M. G. Overcoming immune dysfunction in the elderly: trained immunity as a novel approach. Int. Immunol. 32, 741–753 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Bonan, N. B. et al. Uremic toxicity-induced eryptosis and monocyte modulation: the erythrophagocytosis as a novel pathway to renal anemia. Blood Purif. 41, 317–323 (2016).

    Article  PubMed  CAS  Google Scholar 

  216. Caprari, P. et al. Aging and red blood cell membrane: a study of centenarians. Exp. Gerontol. 34, 47–57 (1999).

    Article  PubMed  CAS  Google Scholar 

  217. Penninx, B. W., Pahor, M., Woodman, R. C. & Guralnik, J. M. Anemia in old age is associated with increased mortality and hospitalization. J. Gerontol. A Biol. Sci. Med. Sci 61, 474–479 (2006).

    Article  PubMed  Google Scholar 

  218. Zakai, N. A. et al. A prospective study of anemia status, hemoglobin concentration, and mortality in an elderly cohort: the Cardiovascular Health Study. Arch. Intern. Med. 165, 2214–2220 (2005).

    Article  PubMed  Google Scholar 

  219. den Elzen, W. P. et al. Effect of anemia and comorbidity on functional status and mortality in old age: results from the Leiden 85-plus Study. CMAJ 181, 151–157 (2009).

    Article  Google Scholar 

  220. Weiss, A. et al. Association of anemia with dementia and cognitive decline among community-dwelling elderly. Gerontology 68, 1375–1383 (2022).

    Article  PubMed  Google Scholar 

  221. Yohannes, A. M. & Ershler, W. B. Anemia in COPD: a systematic review of the prevalence, quality of life, and mortality. Respir. Care 56, 644–652 (2011).

    Article  PubMed  Google Scholar 

  222. Korkmaz, U. et al. Anemia as a risk factor for low bone mineral density in postmenopausal Turkish women. Eur. J. Intern. Med. 23, 154–158 (2012).

    Article  PubMed  Google Scholar 

  223. Sarnak, M. J. et al. Anemia as a risk factor for cardiovascular disease in the Atherosclerosis Risk in Communities (ARIC) study. J. Am. Coll. Cardiol. 40, 27–33 (2002).

    Article  PubMed  Google Scholar 

  224. Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  225. Le Couteur, D. G., Anderson, R. M. & de Cabo, R. Can we make drug discovery targeting fundamental mechanisms of aging a reality? Expert Opin. Drug Discov. 17, 97–100 (2022).

    Article  PubMed  Google Scholar 

  226. Zhao, Y., Seluanov, A. & Gorbunova, V. Revelations about aging and disease from unconventional vertebrate model organisms. Annu. Rev. Genet. 55, 135–159 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. Seluanov, A., Gladyshev, V. N., Vijg, J. & Gorbunova, V. Mechanisms of cancer resistance in long-lived mammals. Nat. Rev. Cancer 18, 433–441 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Hamczyk, M. R., Nevado, R. M., Barettino, A., Fuster, V. & Andres, V. Biological versus chronological aging: JACC focus seminar. J. Am. Coll. Cardiol. 75, 919–930 (2020).

    Article  PubMed  CAS  Google Scholar 

  229. Furman, D. et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822–1832 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  230. Pietri, P. & Stefanadis, C. Cardiovascular aging and longevity: JACC state-of-the-art review. J. Am. Coll. Cardiol. 77, 189–204 (2021).

    Article  PubMed  Google Scholar 

  231. Fujimoto, N. et al. Cardiovascular effects of 1 year of progressive and vigorous exercise training in previously sedentary individuals older than 65 years of age. Circulation 122, 1797–1805 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Howden, E. J. et al. Reversing the cardiac effects of sedentary aging in middle age-a randomized controlled trial: implications for heart failure prevention. Circulation 137, 1549–1560 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  233. Donato, A. J., Uberoi, A., Bailey, D. M., Wray, D. W. & Richardson, R. S. Exercise-induced brachial artery vasodilation: effects of antioxidants and exercise training in elderly men. Am. J. Physiol. Heart Circ. Physiol. 298, H671–H678 (2010).

    Article  PubMed  CAS  Google Scholar 

  234. Pillon, N. J. et al. Transcriptomic profiling of skeletal muscle adaptations to exercise and inactivity. Nat. Commun. 11, 470 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Wray, D. W. et al. Antioxidants and aging: NMR-based evidence of improved skeletal muscle perfusion and energetics. Am. J. Physiol. Heart Circ. Physiol. 297, H1870–H1875 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  236. Delgado-Lista, J. et al. Long-term secondary prevention of cardiovascular disease with a Mediterranean diet and a low-fat diet (CORDIOPREV): a randomised controlled trial. Lancet 399, 1876–1885 (2022).

    Article  PubMed  CAS  Google Scholar 

  237. Estruch, R. et al. Primary prevention of cardiovascular disease with a mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 378, e34 (2018).

    Article  PubMed  CAS  Google Scholar 

  238. de Lorgeril, M. et al. Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study. Circulation 99, 779–785 (1999).

    Article  PubMed  Google Scholar 

  239. Kitzman, D. W. et al. Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction: a randomized clinical trial. JAMA 315, 36–46 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  240. Justice, J. N. et al. Caloric restriction intervention alters specific circulating biomarkers of the senescence-associated secretome in middle-aged and older adults with obesity and prediabetes in an 18-week randomized controlled trial. J. Gerontol. A Biol. Sci. Med. Sci. 79, glad214 (2024).

    Article  PubMed  Google Scholar 

  241. Ozcan, M., Abdellatif, M., Javaheri, A. & Sedej, S. Risks and benefits of intermittent fasting for the aging cardiovascular system. Can. J. Cardiol. 40, 1445–1457 (2024).

    PubMed  Google Scholar 

  242. Sun, M. L. et al. Intermittent fasting and health outcomes: an umbrella review of systematic reviews and meta-analyses of randomised controlled trials. EClinicalMedicine 70, 102519 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Halling, J. F. & Pilegaard, H. Autophagy-dependent beneficial effects of exercise. Cold Spring Harb. Perspect. Med. 7, a029777 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Longo, V. D., Di Tano, M., Mattson, M. P. & Guidi, N. Intermittent and periodic fasting, longevity and disease. Nat. Aging 1, 47–59 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Levine, M. E. et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 19, 407–417 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  246. Wei, M. et al. Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease. Sci. Transl. Med. 9, eaai8700 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Bueno, N. B., de Melo, I. S., de Oliveira, S. L. & da Rocha Ataide, T. Very-low-carbohydrate ketogenic diet v. low-fat diet for long-term weight loss: a meta-analysis of randomised controlled trials. Br. J. Nutr. 110, 1178–1187 (2013).

    Article  PubMed  CAS  Google Scholar 

  248. Paoli, A., Rubini, A., Volek, J. S. & Grimaldi, K. A. Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. Eur. J. Clin. Nutr. 67, 789–796 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  249. Kosinski, C. & Jornayvaz, F. R. Effects of ketogenic diets on cardiovascular risk factors: evidence from animal and human studies. Nutrients 9, 517 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Newman, J. C. et al. Ketogenic diet reduces midlife mortality and improves memory in aging mice. Cell Metab. 26, 547–557.e548 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  251. Roberts, M. N. et al. A ketogenic diet extends longevity and healthspan in adult mice. Cell Metab. 26, 539–546.e535 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  252. Choy, K. Y. C. & Louie, J. C. Y. The effects of the ketogenic diet for the management of type 2 diabetes mellitus: a systematic review and meta-analysis of recent studies. Diabetes Metab. Syndr. 17, 102905 (2023).

    Article  PubMed  CAS  Google Scholar 

  253. Caprio, M. et al. Very-low-calorie ketogenic diet (VLCKD) in the management of metabolic diseases: systematic review and consensus statement from the Italian Society of Endocrinology (SIE). J. Endocrinol. Invest. 42, 1365–1386 (2019).

    Article  PubMed  CAS  Google Scholar 

  254. Whipple, M. O. et al. Variability in individual response to aerobic exercise interventions among older adults. J. Aging Phys. Act. 26, 655–670 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Brennan, A. M. et al. Individual response variation in the effects of weight loss and exercise on insulin sensitivity and cardiometabolic risk in older adults. Front. Endocrinol. 11, 632 (2020).

    Article  Google Scholar 

  256. Janssens, G. E. et al. Healthy aging and muscle function are positively associated with NAD+ abundance in humans. Nat. Aging 2, 254–263 (2022).

    Article  PubMed  CAS  Google Scholar 

  257. McReynolds, M. R. et al. NAD+ flux is maintained in aged mice despite lower tissue concentrations. Cell Syst. 12, 1160–1172.e1164 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  258. Csiszar, A. et al. Role of endothelial NAD+ deficiency in age-related vascular dysfunction. Am. J. Physiol. Heart Circ. Physiol. 316, H1253–H1266 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  259. Lao, X. Q. et al. Sleep quality, sleep duration, and the risk of coronary heart disease: a prospective cohort study with 60,586 adults. J. Clin. Sleep Med. 14, 109–117 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Song, C. et al. Sleep quality and risk of coronary heart disease - a prospective cohort study from the English longitudinal study of ageing. Aging 12, 25005–25019 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Dominguez, F. et al. Association of sleep duration and quality with subclinical atherosclerosis. J. Am. Coll. Cardiol. 73, 134–144 (2019).

    Article  PubMed  Google Scholar 

  262. Diao, T. et al. Changes in sleep patterns, genetic susceptibility, and incident cardiovascular disease in China. JAMA Netw. Open 7, e247974 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Brunt, V. E. & Minson, C. T. Heat therapy: mechanistic underpinnings and applications to cardiovascular health. J. Appl. Physiol. 130, 1684–1704 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  264. Van Linthout, S. et al. Anti-inflammatory effects of atorvastatin improve left ventricular function in experimental diabetic cardiomyopathy. Diabetologia 50, 1977–1986 (2007).

    Article  PubMed  Google Scholar 

  265. Liuzzo, G. & Pedicino, D. Simvastatin rescues vascular health by targeting epigenetic-regulated endothelial-to-mesenchymal transition: a revival of pleiotropic effects? Eur. Heart J. 44, 2657–2658 (2023).

    Article  PubMed  Google Scholar 

  266. Assmus, B. et al. HMG-CoA reductase inhibitors reduce senescence and increase proliferation of endothelial progenitor cells via regulation of cell cycle regulatory genes. Circ. Res. 92, 1049–1055 (2003).

    Article  PubMed  CAS  Google Scholar 

  267. Spyridopoulos, I. et al. Statins enhance migratory capacity by upregulation of the telomere repeat-binding factor TRF2 in endothelial progenitor cells. Circulation 110, 3136–3142 (2004).

    Article  PubMed  CAS  Google Scholar 

  268. Komukai, K. et al. Effect of atorvastatin therapy on fibrous cap thickness in coronary atherosclerotic plaque as assessed by optical coherence tomography: the EASY-FIT study. J. Am. Coll. Cardiol. 64, 2207–2217 (2014).

    Article  PubMed  CAS  Google Scholar 

  269. Ridker, P. M. et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl. J. Med. 359, 2195–2207 (2008).

    Article  PubMed  CAS  Google Scholar 

  270. Shepherd, J. et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet 360, 1623–1630 (2002).

    Article  PubMed  CAS  Google Scholar 

  271. Ridker, P. M., Lonn, E., Paynter, N. P., Glynn, R. & Yusuf, S. Primary prevention with statin therapy in the elderly: new meta-analyses from the contemporary JUPITER and HOPE-3 randomized trials. Circulation 135, 1979–1981 (2017).

    Article  PubMed  Google Scholar 

  272. Orkaby, A. R. et al. Association of statin use with all-cause and cardiovascular mortality in US veterans 75 years and older. JAMA 324, 68–78 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  273. Nicholls, S. J. et al. Effect of evolocumab on coronary plaque phenotype and burden in statin-treated patients following myocardial infarction. JACC Cardiovasc. Imaging 15, 1308–1321 (2022).

    Article  PubMed  Google Scholar 

  274. Perez de Isla, L. et al. Characteristics of coronary atherosclerosis related to plaque burden regression during treatment with alirocumab: the ARCHITECT study. Circ. Cardiovasc. Imaging 17, e016206 (2024).

    Article  PubMed  Google Scholar 

  275. Le Couteur, D. G. & Barzilai, N. New horizons in life extension, healthspan extension and exceptional longevity. Age Ageing 51, afac156 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  276. Boccardi, V. et al. A new pleiotropic effect of statins in elderly: modulation of telomerase activity. FASEB J. 27, 3879–3885 (2013).

    Article  PubMed  CAS  Google Scholar 

  277. Ju, S. H. et al. Distinct effects of rosuvastatin and rosuvastatin/ezetimibe on senescence markers of CD8+ T cells in patients with type 2 diabetes mellitus: a randomized controlled trial. Front. Endocrinol. 15, 1336357 (2024).

    Article  Google Scholar 

  278. Liberale, L., Montecucco, F., Schwarz, L., Luscher, T. F. & Camici, G. G. Inflammation and cardiovascular diseases: lessons from seminal clinical trials. Cardiovasc. Res. 117, 411–422 (2021).

    Article  PubMed  CAS  Google Scholar 

  279. Jolly, S. S. et al. Colchicine in acute myocardial infarction. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2405922 (2024).

    Article  PubMed  Google Scholar 

  280. Fiolet, A. T. L. et al. Colchicine for secondary prevention of ischaemic stroke and atherosclerotic events: a meta-analysis of randomised trials. EClinicalMedicine 76, 102835 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  281. Yu, Z. et al. Genetic modification of inflammation- and clonal hematopoiesis-associated cardiovascular risk. J. Clin. Invest. 133, e168597 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  282. Eisenberg, T. et al. Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat. Med. 22, 1428–1438 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  283. LaRocca, T. J., Gioscia-Ryan, R. A., Hearon, C. M. Jr & Seals, D. R. The autophagy enhancer spermidine reverses arterial aging. Mech. Ageing Dev. 134, 314–320 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  284. Montegut, L. et al. High plasma concentrations of acyl-coenzyme A binding protein (ACBP) predispose to cardiovascular disease: evidence for a phylogenetically conserved proaging function of ACBP. Aging Cell 22, e13751 (2023).

    Article  PubMed  CAS  Google Scholar 

  285. Motino, O. et al. ACBP/DBI protein neutralization confers autophagy-dependent organ protection through inhibition of cell loss, inflammation, and fibrosis. Proc. Natl Acad. Sci. USA 119, e2207344119 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  286. Grunewald, M. et al. Counteracting age-related VEGF signaling insufficiency promotes healthy aging and extends life span. Science 373, eabc8479 (2021).

    Article  PubMed  CAS  Google Scholar 

  287. Collen, A. et al. VEGFA mRNA for regenerative treatment of heart failure. Nat. Rev. Drug Discov. 21, 79–80 (2022).

    Article  PubMed  CAS  Google Scholar 

  288. Whitson, J. A. et al. SS-31 and NMN: two paths to improve metabolism and function in aged hearts. Aging Cell 19, e13213 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  289. Tarantini, S. et al. Treatment with the mitochondrial-targeted antioxidant peptide SS-31 rescues neurovascular coupling responses and cerebrovascular endothelial function and improves cognition in aged mice. Aging Cell 17, e12731 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  290. Rossman, M. J. et al. Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults. Hypertension 71, 1056–1063 (2018).

    Article  PubMed  CAS  Google Scholar 

  291. Abdellatif, M., Sedej, S. & Kroemer, G. NAD+ metabolism in cardiac health, aging, and disease. Circulation 144, 1795–1817 (2021).

    Article  PubMed  CAS  Google Scholar 

  292. Diguet, N. et al. Nicotinamide riboside preserves cardiac function in a mouse model of dilated cardiomyopathy. Circulation 137, 2256–2273 (2018).

    Article  PubMed  CAS  Google Scholar 

  293. Oller, J. et al. Rewiring vascular metabolism prevents sudden death due to aortic ruptures-brief report. Arterioscler. Thromb. Vasc. Biol. 42, 462–469 (2022).

    Article  PubMed  CAS  Google Scholar 

  294. Ale-Agha, N. et al. Mitochondrial telomerase reverse transcriptase protects from myocardial ischemia/reperfusion injury by improving complex I composition and function. Circulation 144, 1876–1890 (2021).

    Article  PubMed  CAS  Google Scholar 

  295. Bawamia, B. et al. Activation of telomerase by TA-65 enhances immunity and reduces inflammation post myocardial infarction. Geroscience 45, 2689–2705 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  296. Suda, M. et al. Senolytic vaccination improves normal and pathological age-related phenotypes and increases lifespan in progeroid mice. Nat. Aging 1, 1117–1126 (2021).

    Article  PubMed  Google Scholar 

  297. Zhu, Y. et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14, 644–658 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  298. Lewis-McDougall, F. C. et al. Aged-senescent cells contribute to impaired heart regeneration. Aging Cell 18, e12931 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  299. Yu, S. et al. Quercetin reverses cardiac systolic dysfunction in mice fed with a high-fat diet: role of angiogenesis. Oxid. Med. Cell. Longev. 2021, 8875729 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  300. Chaib, S., Tchkonia, T. & Kirkland, J. L. Cellular senescence and senolytics: the path to the clinic. Nat. Med. 28, 1556–1568 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  301. Walaszczyk, A. et al. Pharmacological clearance of senescent cells improves survival and recovery in aged mice following acute myocardial infarction. Aging Cell 18, e12945 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  302. Grosse, L. et al. Defined p16(High) senescent cell types are indispensable for mouse healthspan. Cell Metab. 32, 87–99 e86 (2020).

    Article  PubMed  CAS  Google Scholar 

  303. Paramos-de-Carvalho, D., Jacinto, A. & Saude, L. The right time for senescence. eLife 10, e72449 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  304. Childs, B. G. et al. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354, 472–477 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  305. Garrido, A. M. et al. Efficacy and limitations of senolysis in atherosclerosis. Cardiovasc. Res. 118, 1713–1727 (2022).

    Article  PubMed  CAS  Google Scholar 

  306. Karnewar, S., Karnewar, V., Shankman, L. S. & Owens, G. K. Treatment of advanced atherosclerotic mice with ABT-263 reduced indices of plaque stability and increased mortality. JCI Insight 9, e173863 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  307. Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392–395 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  308. Martin-Montalvo, A. et al. Metformin improves healthspan and lifespan in mice. Nat. Commun. 4, 2192 (2013).

    Article  PubMed  Google Scholar 

  309. Flynn, J. M. et al. Late-life rapamycin treatment reverses age-related heart dysfunction. Aging Cell 12, 851–862 (2013).

    Article  PubMed  CAS  Google Scholar 

  310. Quarles, E. et al. Rapamycin persistently improves cardiac function in aged, male and female mice, even following cessation of treatment. Aging Cell 19, e13086 (2020).

    Article  PubMed  CAS  Google Scholar 

  311. Urfer, S. R. et al. A randomized controlled trial to establish effects of short-term rapamycin treatment in 24 middle-aged companion dogs. Geroscience 39, 117–127 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  312. Ramos, F. J. et al. Rapamycin reverses elevated mTORC1 signaling in lamin A/C-deficient mice, rescues cardiac and skeletal muscle function, and extends survival. Sci. Transl. Med. 4, 144ra103 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  313. Lesniewski, L. A. et al. Dietary rapamycin supplementation reverses age-related vascular dysfunction and oxidative stress, while modulating nutrient-sensing, cell cycle, and senescence pathways. Aging Cell 16, 17–26 (2017).

    Article  PubMed  CAS  Google Scholar 

  314. Zhang, Z. D. et al. Genetics of extreme human longevity to guide drug discovery for healthy ageing. Nat. Metab. 2, 663–672 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  315. Justice, J. N. et al. Development of clinical trials to extend healthy lifespan. Cardiovasc. Endocrinol. Metab. 7, 80–83 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  316. Kulkarni, A. S. et al. Metformin regulates metabolic and nonmetabolic pathways in skeletal muscle and subcutaneous adipose tissues of older adults. Aging Cell 17, e12723 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  317. Tai, S. et al. Metformin suppresses vascular smooth muscle cell senescence by promoting autophagic flux. J. Adv. Res. 41, 205–218 (2022).

    Article  PubMed  CAS  Google Scholar 

  318. Chen, Q., Thompson, J., Hu, Y. & Lesnefsky, E. J. Chronic metformin treatment decreases cardiac injury during ischemia-reperfusion by attenuating endoplasmic reticulum stress with improved mitochondrial function. Aging 13, 7828–7845 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  319. Yang, Y. et al. Metformin decelerates aging clock in male monkeys. Cell 187, 6358–6378.e29 (2024).

    Article  PubMed  CAS  Google Scholar 

  320. Madeo, F., Carmona-Gutierrez, D., Hofer, S. J. & Kroemer, G. Caloric restriction mimetics against age-associated disease: targets, mechanisms, and therapeutic potential. Cell Metab. 29, 592–610 (2019).

    Article  PubMed  CAS  Google Scholar 

  321. Pang, L. et al. Caloric restriction-mimetics for the reduction of heart failure risk in aging heart: with consideration of gender-related differences. Mil. Med. Res. 9, 33 (2022).

    PubMed  PubMed Central  Google Scholar 

  322. Borzsei, D. et al. Resveratrol as a promising polyphenol in age-associated cardiac alterations. Oxid. Med. Cell. Longev. 2022, 7911222 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  323. Torregrosa-Munumer, R., Vara, E., Fernandez-Tresguerres, J, A. & Gredilla, R. Resveratrol supplementation at old age reverts changes associated with aging in inflammatory, oxidative and apoptotic markers in rat heart. Eur. J. Nutr. 60, 2683–2693 (2021).

    Article  PubMed  CAS  Google Scholar 

  324. Sin, T. K. et al. Resveratrol protects against doxorubicin-induced cardiotoxicity in aged hearts through the SIRT1-USP7 axis. J. Physiol. 593, 1887–1899 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  325. Zhang, L. et al. Resveratrol ameliorates cardiac remodeling in a murine model of heart failure with preserved ejection fraction. Front. Pharmacol. 12, 646240 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  326. Santos-Parker, J. R. et al. Curcumin supplementation improves vascular endothelial function in healthy middle-aged and older adults by increasing nitric oxide bioavailability and reducing oxidative stress. Aging 9, 187–208 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  327. Yang, L., Shi, J., Wang, X. & Zhang, R. Curcumin alleviates D-galactose-induced cardiomyocyte senescence by promoting autophagy via the SIRT1/AMPK/mTOR pathway. Evid. Based Complement. Altern. Med. 2022, 2990843 (2022).

    Google Scholar 

  328. La Grotta, R. et al. Anti-inflammatory effect of SGLT-2 inhibitors via uric acid and insulin. Cell. Mol. Life Sci. 79, 273 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  329. Preda, A. et al. SGLT2 inhibitors: from glucose-lowering to cardiovascular benefits. Cardiovasc. Res. 120, 443–460 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  330. Anker, S. D. et al. Empagliflozin in heart failure with a preserved ejection fraction. N. Engl. J. Med. 385, 1451–1461 (2021).

    Article  PubMed  CAS  Google Scholar 

  331. Solomon, S. D. et al. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N. Engl. J. Med. 387, 1089–1098 (2022).

    Article  PubMed  Google Scholar 

  332. Chen, S. et al. Sodium glucose cotransporter-2 inhibitor empagliflozin reduces infarct size independently of sodium glucose cotransporter-2. Circulation 147, 276–279 (2023).

    Article  PubMed  CAS  Google Scholar 

  333. Katsuumi, G. et al. SGLT2 inhibition eliminates senescent cells and alleviates pathological aging. Nat. Aging 4, 926–938 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  334. Soares, R. N. et al. SGLT2 inhibition attenuates arterial dysfunction and decreases vascular F-actin content and expression of proteins associated with oxidative stress in aged mice. Geroscience 44, 1657–1675 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  335. Yoshida, M. et al. Extracellular vesicle-contained eNAMPT delays aging and extends lifespan in mice. Cell Metab. 30, 329–342.e325 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  336. Grigorian Shamagian, L. et al. Rejuvenating effects of young extracellular vesicles in aged rats and in cellular models of human senescence. Sci. Rep. 13, 12240 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  337. Iske, J. et al. Transplanting old organs promotes senescence in young recipients. Am. J. Transpl. 24, 391–405 (2023).

    Article  Google Scholar 

  338. Rebo, J. et al. A single heterochronic blood exchange reveals rapid inhibition of multiple tissues by old blood. Nat. Commun. 7, 13363 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  339. Gulej, R. et al. Rejuvenation of cerebromicrovascular function in aged mice through heterochronic parabiosis: insights into neurovascular coupling and the impact of young blood factors. Geroscience 46, 327–347 (2024).

    Article  PubMed  Google Scholar 

  340. Kiss, T. et al. Old blood from heterochronic parabionts accelerates vascular aging in young mice: transcriptomic signature of pathologic smooth muscle remodeling. Geroscience 44, 953–981 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  341. Mahoney, S. A. et al. Role of the circulating milieu in age-related arterial dysfunction: a novel ex vivo approach. Am. J. Physiol. Heart Circ. Physiol. 326, H1279–H1290 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  342. Zhang, B. et al. Multi-omic rejuvenation and life span extension on exposure to youthful circulation. Nat. Aging 3, 948–964 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  343. Chiavellini, P. et al. Young plasma rejuvenates blood dna methylation profile, extends mean lifespan and improves physical appearance in old rats. J. Gerontol. A Biol. Sci. Med. Sci. 79, glae071 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  344. Rando, T. A. & Wyss-Coray, T. Asynchronous, contagious and digital aging. Nat. Aging 1, 29–35 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  345. Mehdipour, M. et al. Attenuation of age-elevated blood factors by repositioning plasmapheresis: a novel perspective and approach. Transfus. Apher. Sci. 60, 103162 (2021).

    Article  PubMed  Google Scholar 

  346. Rich, M. W. et al. Knowledge gaps in cardiovascular care of the older adult population: a scientific statement from the American Heart Association, American College of Cardiology, and American Geriatrics Society. Circulation 133, 2103–2122 (2016).

    Article  PubMed  Google Scholar 

  347. Rolland, Y. et al. Challenges in developing geroscience trials. Nat. Commun. 14, 5038 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  348. Regitz-Zagrosek, V. & Gebhard, C. Gender medicine: effects of sex and gender on cardiovascular disease manifestation and outcomes. Nat. Rev. Cardiol. 20, 236–247 (2023).

    Article  PubMed  Google Scholar 

  349. Collerton, J. et al. Health and disease in 85 year olds: baseline findings from the Newcastle 85+ cohort study. BMJ 339, b4904 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  350. O’Kelly, A. C. et al. Pregnancy and reproductive risk factors for cardiovascular disease in women. Circ. Res. 130, 652–672 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  351. Timmis, A. et al. European society of cardiology: cardiovascular disease statistics 2021. Eur. Heart J. 43, 716–799 (2022).

    Article  PubMed  Google Scholar 

  352. Bruno, R. M. et al. Early and supernormal vascular aging: clinical characteristics and association with incident cardiovascular events. Hypertension 76, 1616–1624 (2020).

    Article  PubMed  CAS  Google Scholar 

  353. Greendale, G. A., Lee, N. P. & Arriola, E. R. The menopause. Lancet 353, 571–580 (1999).

    Article  PubMed  CAS  Google Scholar 

  354. Pataky, M. W., Young, W. F. & Nair, K. S. Hormonal and metabolic changes of aging and the influence of lifestyle modifications. Mayo Clin. Proc. 96, 788–814 (2021).

    Article  PubMed  CAS  Google Scholar 

  355. Yerly, A. et al. Sex-specific and hormone-related differences in vascular remodelling in atherosclerosis. Eur. J. Clin. Invest. 53, e13885 (2023).

    Article  PubMed  CAS  Google Scholar 

  356. Mendelsohn, M. E. & Karas, R. H. The protective effects of estrogen on the cardiovascular system. N. Engl. J. Med. 340, 1801–1811 (1999).

    Article  PubMed  CAS  Google Scholar 

  357. Samargandy, S. et al. Arterial stiffness accelerates within 1 year of the final menstrual period: the SWAN heart study. Arterioscler. Thromb. Vasc. Biol. 40, 1001–1008 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  358. Miller, V. M. & Duckles, S. P. Vascular actions of estrogens: functional implications. Pharmacol. Rev. 60, 210–241 (2008).

    Article  PubMed  CAS  Google Scholar 

  359. Lacolley, P., Regnault, V. & Laurent, S. Mechanisms of arterial stiffening: from mechanotransduction to epigenetics. Arterioscler. Thromb. Vasc. Biol. 40, 1055–1062 (2020).

    Article  PubMed  CAS  Google Scholar 

  360. Ogola, B. O. et al. Sex differences in vascular aging and impact of GPER deletion. Am. J. Physiol. Heart Circ. Physiol. 323, H336–h349 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  361. Hulley, S. et al. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/progestin Replacement Study (HERS) Research Group. JAMA 280, 605–613 (1998).

    Article  PubMed  CAS  Google Scholar 

  362. Rossouw, J. E. et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA 288, 321–333 (2002).

    Article  PubMed  CAS  Google Scholar 

  363. Vickers, M. R. et al. Main morbidities recorded in the women’s international study of long duration oestrogen after menopause (WISDOM): a randomised controlled trial of hormone replacement therapy in postmenopausal women. BMJ 335, 239 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  364. Kilanowski-Doroh, I. M. et al. Ovariectomy-induced arterial stiffening differs from vascular aging and is reversed by GPER activation. Hypertension 81, e51–e62 (2024).

    PubMed  CAS  Google Scholar 

  365. Creatsa, M. et al. Circulating androgen levels are associated with subclinical atherosclerosis and arterial stiffness in healthy recently menopausal women. Metabolism 61, 193–201 (2012).

    Article  PubMed  CAS  Google Scholar 

  366. Georgiopoulos, G. A. et al. Prolactin and preclinical atherosclerosis in menopausal women with cardiovascular risk factors. Hypertension 54, 98–105 (2009).

    Article  PubMed  CAS  Google Scholar 

  367. Georgiopoulos, G. et al. Prolactin as a predictor of endothelial dysfunction and arterial stiffness progression in menopause. J. Hum. Hypertens. 31, 520–524 (2017).

    Article  PubMed  CAS  Google Scholar 

  368. Campelo, A. E., Cutini, P. H. & Massheimer, V. L. Testosterone modulates platelet aggregation and endothelial cell growth through nitric oxide pathway. J. Endocrinol. 213, 77–87 (2012).

    Article  PubMed  CAS  Google Scholar 

  369. English, K. M., Jones, R. D., Jones, T. H., Morice, A. H. & Channer, K. S. Testosterone acts as a coronary vasodilator by a calcium antagonistic action. J. Endocrinol. Invest. 25, 455–458 (2002).

    Article  PubMed  CAS  Google Scholar 

  370. Lopes, R. A., Neves, K. B., Carneiro, F. S. & Tostes, R. C. Testosterone and vascular function in aging. Front. Physiol. 3, 89 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  371. Fukui, M. et al. Relationship between low serum endogenous androgen concentrations and arterial stiffness in men with type 2 diabetes mellitus. Metabolism 56, 1167–1173 (2007).

    Article  PubMed  CAS  Google Scholar 

  372. Vlachopoulos, C. et al. Testosterone deficiency: a determinant of aortic stiffness in men. Atherosclerosis 233, 278–283 (2014).

    Article  PubMed  CAS  Google Scholar 

  373. Hougaku, H. et al. Relationship between androgenic hormones and arterial stiffness, based on longitudinal hormone measurements. Am. J. Physiol. Endocrinol. Metab. 290, E234–E242 (2006).

    Article  PubMed  CAS  Google Scholar 

  374. Chen, Z., Xiong, Z. F. & Liu, X. Research progress on the interaction between circadian clock and early vascular aging. Exp. Gerontol. 146, 111241 (2021).

    Article  PubMed  Google Scholar 

  375. Karatsoreos, I. N., Wang, A., Sasanian, J. & Silver, R. A role for androgens in regulating circadian behavior and the suprachiasmatic nucleus. Endocrinology 148, 5487–5495 (2007).

    Article  PubMed  CAS  Google Scholar 

  376. Smith, J. C. et al. The effects of induced hypogonadism on arterial stiffness, body composition, and metabolic parameters in males with prostate cancer. J. Clin. Endocrinol. Metab. 86, 4261–4267 (2001).

    Article  PubMed  CAS  Google Scholar 

  377. Yaron, M. et al. Effect of testosterone replacement therapy on arterial stiffness in older hypogonadal men. Eur. J. Endocrinol. 160, 839–846 (2009).

    Article  PubMed  CAS  Google Scholar 

  378. Webb, C. M. et al. Effects of oral testosterone treatment on myocardial perfusion and vascular function in men with low plasma testosterone and coronary heart disease. Am. J. Cardiol. 101, 618–624 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  379. Georgiopoulos, G. A. et al. Free androgen index as a predictor of blood pressure progression and accelerated vascular aging in menopause. Atherosclerosis 247, 177–183 (2016).

    Article  PubMed  CAS  Google Scholar 

  380. Lambrinoudaki, I. et al. Free androgen index as a determinant of arterial stiffness in menopause: a mediation analysis. Menopause 24, 635–644 (2017).

    Article  PubMed  Google Scholar 

  381. Armeni, E. et al. Arterial stiffness is increased in asymptomatic nondiabetic postmenopausal women with a polycystic ovary syndrome phenotype. J. Hypertens. 31, 1998–2004 (2013).

    Article  PubMed  CAS  Google Scholar 

  382. Shang, D., Wang, L., Klionsky, D. J., Cheng, H. & Zhou, R. Sex differences in autophagy-mediated diseases: toward precision medicine. Autophagy 17, 1065–1076 (2021).

    Article  PubMed  CAS  Google Scholar 

  383. Ventura-Clapier, R. et al. Mitochondria: a central target for sex differences in pathologies. Clin. Sci. 131, 803–822 (2017).

    Article  CAS  Google Scholar 

  384. Tower, J., Pomatto, L. C. D. & Davies, K. J. A. Sex differences in the response to oxidative and proteolytic stress. Redox Biol. 31, 101488 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  385. Cardano, M., Buscemi, G. & Zannini, L. Sex disparities in DNA damage response pathways: novel determinants in cancer formation and therapy. iScience 25, 103875 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  386. Knewtson, K. E., Ohl, N. R. & Robinson, J. L. Estrogen signaling dictates musculoskeletal stem cell behavior: sex differences in tissue repair. Tissue Eng. Part B Rev. 28, 789–812 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  387. Ray, R. et al. Sex steroids and stem cell function. Mol. Med. 14, 493–501 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  388. Sano, S. et al. Hematopoietic loss of Y chromosome leads to cardiac fibrosis and heart failure mortality. Science 377, 292–297 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  389. Spyridopoulos, I. et al. CMV seropositivity and T-cell senescence predict increased cardiovascular mortality in octogenarians: results from the Newcastle 85+ study. Aging Cell 15, 389–392 (2016).

    Article  PubMed  CAS  Google Scholar 

  390. Olivetti, G., Melissari, M., Capasso, J. M. & Anversa, P. Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy. Circ. Res. 68, 1560–1568 (1991).

    Article  PubMed  CAS  Google Scholar 

  391. Warner, H. R. NIA’s intervention testing program at 10 years of age. Age 37, 22 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  392. Hatzenbuehler, M. L. & Pachankis, J. E. Stigma and minority stress as social determinants of health among lesbian, gay, bisexual, and transgender youth: research evidence and clinical implications. Pediatr. Clin. North Am. 63, 985–997 (2016).

    Article  PubMed  Google Scholar 

  393. Flentje, A. et al. Minority stress, structural stigma, and physical health among sexual and gender minority individuals: examining the relative strength of the relationships. Ann. Behav. Med. 56, 573–591 (2022).

    Article  PubMed  Google Scholar 

  394. Baker, K. E. et al. Hormone therapy, mental health, and quality of life among transgender people: a systematic review. J. Endocr. Soc. 5, bvab011 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  395. White Hughto, J. M. & Reisner, S. L. A systematic review of the effects of hormone therapy on psychological functioning and quality of life in transgender individuals. Transgend. Health 1, 21–31 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  396. Connelly, P. J. et al. Gender-affirming hormone therapy, vascular health and cardiovascular disease in transgender adults. Hypertension 74, 1266–1274 (2019).

    Article  PubMed  CAS  Google Scholar 

  397. Murphy, C. N., Delles, C., Davies, E. & Connelly, P. J. Cardiovascular disease in transgender individuals. Atherosclerosis 384, 117282 (2023).

    Article  PubMed  CAS  Google Scholar 

  398. Olowoyo, P., Maffia, P., Guzik, T. J. & Owolabi, M. Understanding and controlling the increasing burden of cardiovascular diseases in Africa. Cardiovasc. Res. 120, e9–e13 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  399. Olowoyo, P. et al. Strategies for reducing non-communicable diseases in Africa. Pharmacol. Res. 170, 105736 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  400. Oh, S. J., Lee, J. K. & Shin, O. S. Aging and the immune system: the impact of immunosenescence on viral infection, immunity and vaccine immunogenicity. Immune Netw. 19, e37 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  401. Kruger, R., Gafane-Matemane, L. F. & Kagura, J. Racial differences of early vascular aging in children and adolescents. Pediatr. Nephrol. 36, 1087–1108 (2021).

    Article  PubMed  Google Scholar 

  402. Chen, C. H. et al. Novel and prevalent non-East Asian ALDH2 variants: implications for global susceptibility to aldehydes’ toxicity. EBioMedicine 55, 102753 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  403. Chen, C. H., Kraemer, B. R. & Mochly-Rosen, D. ALDH2 variance in disease and populations. Dis. Model. Mech. 15, dmm049601 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  404. Amponsah-Offeh, M., Tual-Chalot, S. & Stellos, K. Repurposing of an antiasthmatic drug may reduce NETosis and myocardial ischaemia/reperfusion injury. Eur. Heart J. 45, 1681–1683 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  405. Gabriel, C. L. & Ferguson, J. F. Gut microbiota and microbial metabolism in early risk of cardiometabolic disease. Circ. Res. 132, 1674–1691 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  406. Jie, Z. et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 8, 845 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  407. Mohammadkhah, A. I., Simpson, E. B., Patterson, S. G. & Ferguson, J. F. Development of the gut microbiome in children, and lifetime implications for obesity and cardiometabolic disease. Children 5, 160 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  408. Mancabelli, L. et al. Taxonomic and metabolic development of the human gut microbiome across life stages: a worldwide metagenomic investigation. mSystems 9, e0129423 (2024).

    Article  PubMed  Google Scholar 

  409. Ragonnaud, E. & Biragyn, A. Gut microbiota as the key controllers of “healthy” aging of elderly people. Immun. Ageing 18, 2 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  410. Wang, X. M. et al. Gut microbiota influence frailty syndrome in older adults: mechanisms and therapeutic strategies. Biogerontology 25, 107–129 (2024).

    Article  PubMed  Google Scholar 

  411. Mirfakhraee, H. et al. Comparison of gut microbiota profiles between patients suffering from elderly frailty syndrome and non-frail elderly individuals. Mol. Biol. Rep. 51, 321 (2024).

    Article  PubMed  CAS  Google Scholar 

  412. Strasser, B. & Ticinesi, A. Intestinal microbiome in normal ageing, frailty and cognition decline. Curr. Opin. Clin. Nutr. Metab. Care 26, 8–16 (2023).

    PubMed  CAS  Google Scholar 

  413. Biagi, E. et al. Gut microbiota and extreme longevity. Curr. Biol. 26, 1480–1485 (2016).

    Article  PubMed  CAS  Google Scholar 

  414. Ticinesi, A. et al. Gut microbiota composition is associated with polypharmacy in elderly hospitalized patients. Sci. Rep. 7, 11102 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  415. Jeffery, I. B., Lynch, D. B. & O’Toole, P. W. Composition and temporal stability of the gut microbiota in older persons. ISME J. 10, 170–182 (2016).

    Article  PubMed  CAS  Google Scholar 

  416. Boehme, M. et al. Microbiota from young mice counteracts selective age-associated behavioral deficits. Nat. Aging 1, 666–676 (2021).

    Article  PubMed  Google Scholar 

  417. Brunt, V. E. et al. Suppression of the gut microbiome ameliorates age-related arterial dysfunction and oxidative stress in mice. J. Physiol. 597, 2361–2378 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  418. Ticinesi, A. et al. The interaction between Mediterranean diet and intestinal microbiome: relevance for preventive strategies against frailty in older individuals. Aging Clin. Exp. Res. 36, 58 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  419. Tran, T. T. T. et al. Prebiotic supplementation in frail older people affects specific gut microbiota taxa but not global diversity. Microbiome 7, 39 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  420. Mohanta, S. K. et al. Neuroimmune cardiovascular interfaces control atherosclerosis. Nature 605, 152–159 (2022).

    Article  PubMed  CAS  Google Scholar 

  421. Mohanta, S. K. et al. Cardiovascular brain circuits. Circ. Res. 132, 1546–1565 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  422. Stamatelopoulos, K. et al. Amyloid-beta (1-40) peptide and subclinical cardiovascular disease. J. Am. Coll. Cardiol. 72, 1060–1061 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  423. Lambrinoudaki, I. et al. Circulating amyloid beta 1-40 is associated with increased rate of progression of atherosclerosis in menopause: a prospective cohort study. Thromb. Haemost. 121, 650–658 (2021).

    Article  PubMed  Google Scholar 

  424. Bampatsias, D. et al. Beta-secretase-1 antisense RNA is associated with vascular ageing and atherosclerotic cardiovascular disease. Thromb. Haemost. 122, 1932–1942 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  425. Troncone, L. et al. Abeta amyloid pathology affects the hearts of patients with Alzheimer’s disease: mind the heart. J. Am. Coll. Cardiol. 68, 2395–2407 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  426. Stakos, D. A. et al. The Alzheimer’s disease amyloid-beta hypothesis in cardiovascular aging and disease: JACC focus seminar. J. Am. Coll. Cardiol. 75, 952–967 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  427. Dutta, P. et al. Myocardial infarction accelerates atherosclerosis. Nature 487, 325–329 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  428. Kabir, I. et al. The age of bone marrow dictates the clonality of smooth muscle-derived cells in atherosclerotic plaques. Nat. Aging 3, 64–81 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  429. Damluji, A. A. et al. Frailty and cardiovascular outcomes in the National Health and Aging Trends Study. Eur. Heart J. 42, 3856–3865 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  430. Rabin, J. S. et al. Interactive associations of vascular risk and beta-amyloid burden with cognitive decline in clinically normal elderly individuals: findings from the Harvard Aging Brain study. JAMA Neurol. 75, 1124–1131 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  431. Siedlinski, M. et al. Genetic analyses identify brain structures related to cognitive impairment associated with elevated blood pressure. Eur. Heart J. 44, 2114–2125 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  432. Ko, B. J. et al. Low relative muscle mass and left ventricular diastolic dysfunction in middle-aged adults. Int. J. Cardiol. 255, 118–123 (2018).

    Article  PubMed  Google Scholar 

  433. Farhat, G. N. et al. Volumetric and areal bone mineral density measures are associated with cardiovascular disease in older men and women: the Health, Aging, and Body Composition Study. Calcif. Tissue Int. 79, 102–111 (2006).

    Article  PubMed  CAS  Google Scholar 

  434. Cubedo, J. et al. Inflammation and hemostasis in older octogenarians: implication in 5-year survival. Transl. Res. 185, 34–46 e39 (2017).

    Article  PubMed  CAS  Google Scholar 

  435. Cubedo, J. et al. High levels of antifibrinolytic proteins are found in plasma of older octogenarians with cardiovascular disease and cognitive decline. J. Am. Coll. Cardiol. 65, 2667–2669 (2015).

    Article  PubMed  CAS  Google Scholar 

  436. Howlett, S. E., Rutenberg, A. D. & Rockwood, K. The degree of frailty as a translational measure of health in aging. Nat. Aging 1, 651–665 (2021).

    Article  PubMed  Google Scholar 

  437. Kim, S., Myers, L., Wyckoff, J., Cherry, K. E. & Jazwinski, S. M. The frailty index outperforms DNA methylation age and its derivatives as an indicator of biological age. Geroscience 39, 83–92 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  438. O’Mahony, D. & Rochon, P. A. Prescribing cascades: we see only what we look for, we look for only what we know. Age Ageing 51, afac138 (2022).

    Article  PubMed  Google Scholar 

  439. Cai, R. et al. Circadian disturbances and frailty risk in older adults. Nat. Commun. 14, 7219 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  440. Itani, O., Jike, M., Watanabe, N. & Kaneita, Y. Short sleep duration and health outcomes: a systematic review, meta-analysis, and meta-regression. Sleep Med. 32, 246–256 (2017).

    Article  PubMed  Google Scholar 

  441. Reutrakul, S. et al. Chronotype is independently associated with glycemic control in type 2 diabetes. Diabetes Care 36, 2523–2529 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  442. Tranah, G. J. et al. Circadian activity rhythms and risk of incident dementia and mild cognitive impairment in older women. Ann. Neurol. 70, 722–732 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  443. Neumann, J. T. et al. A multistate model of health transitions in older people: a secondary analysis of ASPREE clinical trial data. Lancet Healthy Longev. 3, e89–e97 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  444. Lohman, M. C., Fallahi, A., Mishio Bawa, E., Wei, J. & Merchant, A. T. Social mediators of the association between depression and falls among older adults. J. Aging Health 35, 593–603 (2023).

    Article  PubMed  Google Scholar 

  445. Parker, S. G. et al. What is comprehensive geriatric assessment (CGA)? An umbrella review. Age Ageing 47, 149–155 (2018).

    Article  PubMed  CAS  Google Scholar 

  446. Veronese, N. et al. Comprehensive geriatric assessment in older people: an umbrella review of health outcomes. Age Ageing 51, afac104 (2022).

    Article  PubMed  Google Scholar 

  447. Lee, E. et al. Exploring the effects of dasatinib, quercetin, and fisetin on DNA methylation clocks: a longitudinal study on senolytic interventions. Aging 16, 3088–3106 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  448. Hickson, L. J. et al. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of dasatinib plus quercetin in individuals with diabetic kidney disease. EBioMedicine 47, 446–456 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  449. Oh, H. S. et al. Organ aging signatures in the plasma proteome track health and disease. Nature 624, 164–172 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  450. Ahadi, S. et al. Personal aging markers and ageotypes revealed by deep longitudinal profiling. Nat. Med. 26, 83–90 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  451. Ukraintseva, S. et al. Decline in biological resilience as key manifestation of aging: potential mechanisms and role in health and longevity. Mech. Ageing Dev. 194, 111418 (2021).

    Article  PubMed  CAS  Google Scholar 

  452. Chen, B. H. et al. DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging 8, 1844–1865 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  453. Sanchez-Cabo, F. et al. Subclinical atherosclerosis and accelerated epigenetic age mediated by inflammation: a multi-omics study. Eur. Heart J. 44, 2698–2709 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  454. McEniery, C. M. et al. Normal vascular aging: differential effects on wave reflection and aortic pulse wave velocity: the Anglo-Cardiff Collaborative Trial (ACCT). J. Am. Coll. Cardiol. 46, 1753–1760 (2005).

    Article  PubMed  Google Scholar 

  455. Mitchell, G. F. et al. Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: the Framingham Heart Study. Hypertension 43, 1239–1245 (2004).

    Article  PubMed  CAS  Google Scholar 

  456. Hametner, B. et al. Aortic pulse wave velocity predicts cardiovascular events and mortality in patients undergoing coronary angiography: a comparison of invasive measurements and noninvasive estimates. Hypertension 77, 571–581 (2021).

    Article  PubMed  CAS  Google Scholar 

  457. Siasos, G. et al. Prognostic significance of arterial stiffness and osteoprotegerin in patients with stable coronary artery disease. Eur. J. Clin. Invest. 48, e12890 (2018).

    Article  Google Scholar 

  458. Chirinos, J. A. et al. Arterial stiffness, central pressures, and incident hospitalized heart failure in the chronic renal insufficiency cohort study. Circ. Heart Fail. 7, 709–716 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  459. Visseren, F. L. J. et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 42, 3227–3337 (2021).

    Article  PubMed  Google Scholar 

  460. Greenland, P. et al. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 122, 2748–2764 (2010).

    Article  PubMed  Google Scholar 

  461. Lu, Y. et al. Global distributions of age- and sex-related arterial stiffness: systematic review and meta-analysis of 167 studies with 509,743 participants. EBioMedicine 92, 104619 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  462. Reference Values for Arterial Stiffness Collaboration.Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values. Eur. Heart J. 31, 2338–2350 (2010).

    Article  Google Scholar 

  463. Williams, B. et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 39, 3021–3104 (2018).

    Article  PubMed  Google Scholar 

  464. Vlachopoulos, C., Aznaouridis, K. & Stefanadis, C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J. Am. Coll. Cardiol. 55, 1318–1327 (2010).

    Article  PubMed  Google Scholar 

  465. Mäki-Petäjä, K. M. et al. Rheumatoid arthritis is associated with increased aortic pulse-wave velocity, which is reduced by anti-tumor necrosis factor-alpha therapy. Circulation 114, 1185–1192 (2006).

    Article  PubMed  Google Scholar 

  466. Virdis, A. et al. Effect of aliskiren treatment on endothelium-dependent vasodilation and aortic stiffness in essential hypertensive patients. Eur. Heart J. 33, 1530–1538 (2012).

    Article  PubMed  CAS  Google Scholar 

  467. Edwards, N. C., Steeds, R. P., Stewart, P. M., Ferro, C. J. & Townend, J. N. Effect of spironolactone on left ventricular mass and aortic stiffness in early-stage chronic kidney disease: a randomized controlled trial. J. Am. Coll. Cardiol. 54, 505–512 (2009).

    Article  PubMed  CAS  Google Scholar 

  468. Zhavoronkov, A., Li, R., Ma, C. & Mamoshina, P. Deep biomarkers of aging and longevity: from research to applications. Aging 11, 10771–10780 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  469. Teramoto, K. et al. Prognostic significance of growth differentiation factor-15 across age in chronic heart failure. ESC Heart Fail. 11, 1666–1676 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  470. Richter, M. M. et al. Effect of a 6-week carbohydrate-reduced high-protein diet on levels of FGF21 and GDF15 in people with type 2 diabetes. J. Endocr. Soc. 8, bvae008 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  471. Mucchiano, G., Cornwell, G. G. III & Westermark, P. Senile aortic amyloid. Evidence for two distinct forms of localized deposits. Am. J. Pathol. 140, 871–877 (1992).

    PubMed  PubMed Central  CAS  Google Scholar 

  472. Roher, A. E. et al. Amyloid beta peptides in human plasma and tissues and their significance for Alzheimer’s disease. Alzheimers Dement. 5, 18–29 (2009).

    Article  PubMed  CAS  Google Scholar 

  473. De Meyer, G. R. et al. Platelet phagocytosis and processing of beta-amyloid precursor protein as a mechanism of macrophage activation in atherosclerosis. Circ. Res. 90, 1197–1204 (2002).

    Article  PubMed  Google Scholar 

  474. Stamatelopoulos, K. et al. Amyloid-beta (1-40) and mortality in patients with non-ST-segment elevation acute coronary syndrome: a cohort study. Ann. Intern. Med. 168, 855–865 (2018).

    Article  PubMed  Google Scholar 

  475. Stamatelopoulos, K. et al. Amyloid-beta (1-40) and the risk of death from cardiovascular causes in patients with coronary heart disease. J. Am. Coll. Cardiol. 65, 904–916 (2015).

    Article  PubMed  CAS  Google Scholar 

  476. Zhu, F. et al. Plasma amyloid-beta in relation to cardiac function and risk of heart failure in general population. JACC Heart Fail. 11, 93–102 (2023).

    Article  PubMed  Google Scholar 

  477. Aivalioti, E. et al. Amyloid-beta metabolism in age-related neurocardiovascular diseases. Eur. Heart J. 46, 250–272 (2024).

    Article  PubMed Central  Google Scholar 

  478. Holtze, S. et al. Alternative animal models of aging research. Front. Mol. Biosci. 8, 660959 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  479. Ruple, A., MacLean, E., Snyder-Mackler, N., Creevy, K. E. & Promislow, D. Dog models of aging. Annu. Rev. Anim. Biosci. 10, 419–439 (2022).

    Article  PubMed  Google Scholar 

  480. Mitchell, S. J., Scheibye-Knudsen, M., Longo, D. L. & de Cabo, R. Animal models of aging research: implications for human aging and age-related diseases. Annu. Rev. Anim. Biosci. 3, 283–303 (2015).

    Article  PubMed  CAS  Google Scholar 

  481. Shimizu, Y., Suzuki, J., Terao, K. & Ishida, T. In vitro aging of macaque adherent cells: similar pattern of cellular aging between human and macaque. Mech. Ageing Dev. 124, 237–244 (2003).

    Article  PubMed  CAS  Google Scholar 

  482. Clarkson, T. B. & Mehaffey, M. H. Coronary heart disease of females: lessons learned from nonhuman primates. Am. J. Primatol. 71, 785–793 (2009).

    Article  PubMed  Google Scholar 

  483. Najafian, B. et al. Glomerulopathy in spontaneously obese rhesus monkeys with type 2 diabetes: a stereological study. Diabetes Metab. Res. Rev. 27, 341–347 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  484. Poulain, M. et al. Identification of a geographic area characterized by extreme longevity in the Sardinia island: the AKEA study. Exp. Gerontol. 39, 1423–1429 (2004).

    Article  PubMed  Google Scholar 

  485. Sayed, N. et al. An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging. Nat. Aging 1, 598–615 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  486. Justice, J. N. et al. A framework for selection of blood-based biomarkers for geroscience-guided clinical trials: report from the TAME Biomarkers Workgroup. Geroscience 40, 419–436 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

L.L., S.T.-C., S.S., S. Ministrini, G.G., K.S.S., M.A. and K.S. researched data for article. L.L., S.T.-C., S.S., S. Ministrini, G.G. K.S.S., G.G.C., M.A. and K.S wrote the manuscript. All authors contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Simon Tual-Chalot or Konstantinos Stellos.

Ethics declarations

Competing interests

L.L. is co-inventor on international patent WO/2020/226993 filed in April 2020, relating to the use of antibodies that specifically bind to IL-1α to reduce the sequelae of ischaemia–reperfusion injury to the central nervous system, and has received financial support from the Swiss Heart Foundation and the Novartis Foundation for Medical–Biological Research outside the topic of this Review. M. Giacca is a scientific founder, consultant, member of the board and equity holder in Forcefield Therapeutics, Heqet Therapeutics and Purespring Therapeutics. M.K. is listed as inventor in patents related to the manipulation of adaptive immunity for the prevention or treatment of cardiovascular disease. P.M. reports consulting fees from Pangea Botanica and Orion Biotechnology. G.D.N. declares research grants from Novartis, consultancy fees from Amarin, Amgen, Meda Pharma and MSD, and speaker bureau fee from MSD. O.S. receives funding from Novo Nordisk and serves as consultant to Roche and Novo Nordisk. L.B. acts as scientific adviser of the Berlin Institute of Health, Sanofi, Ionnis, Pfizer and Novo Nordisk; receives educational grants from Sanofi and Bayer; and founded the Spin-off Ivastatin Therapeutics SL (all unrelated to this work). V.G. is scientific advisory board member for GenFlow, MatrixBio, DoNotAge and BellSant. T.F.L. reports educational and research funding from Abbot, Amgen, AstraZeneca, Boehringer Ingelheim, Daichi-Sankyo, Eli Lilly, Novartis, Novo Nordisk, Sanofi and Vifor. M.G.N. is the scientific founder of Biotrip, Lemba and TTxD. J.C.W. is the scientific founder of Greenstone Biosciences. J.L.K. has a financial interest related to this area including patents and pending patents covering senolytic drugs and their uses, which are held by the Mayo Clinic; this Review article has been reviewed by the Mayo Clinic Conflict of Interest Review Board and was conducted in compliance with Mayo Clinic conflict of interest policies. G.G.C. is coinventor on international patent WO/2020/226993 filed in April 2020, which relates to the use of antibodies that specifically bind to IL-1α to reduce sequelae of ischaemia–reperfusion injury to the central nervous system. G.K. has held research contracts with Daiichi-Sankyo, Eleor, Kaleido, Lytix Pharma, PharmaMar, Osasuna Therapeutics, Samsara Therapeutics, Sanofi, Sutro, Tollys and Vascage; is on the Board of Directors of the Bristol Myers Squibb Foundation France; is a scientific co-founder of everImmune, Osasuna Therapeutics, Samsara Therapeutics and Therafast Bio; is on the scientific advisory boards of Hevolution, Institut Servier, Longevity Vision Funds and Rejuveron Life Sciences; and is the inventor of patents covering therapeutic targeting of ageing, cancer, cystic fibrosis and metabolic disorders; G.K.’s wife, L. Zitvogel, has held research contracts with GSK, Incyte, Lytix, Kaleido, Innovate Pharma, Daiichi-Sankyo, Pilege, Merus, Transgene, 9m, Tusk and Roche, was on the Board of Directors of Transgene, is a co-founder of everImmune, and holds patents covering the treatment of cancer and the therapeutic manipulation of the microbiota; G.K.’s brother, R. Kroemer, was an employee of Sanofi and now consults for Boehringer Ingelheim. M.A. is involved in patents dealing with the cardiometabolic benefits of spermidine, nicotinamide and acyl coenzyme A binding protein. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks M. Cristina Polidori and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Amyloid

Abnormal protein aggregates that accumulate in various tissues and organs, potentially causing dysfunction.

Disseminated intravascular coagulation

Systemic disorder characterized by the aberrant activation of the coagulation cascade, leading to widespread formation of fibrin clots in the microcirculation. This widespread clotting results in the consumption of clotting factors and platelets, leading to a paradoxical increased risk of bleeding.

Endothelial cell-dependent vasodilatation

Process by which blood vessels dilate in response to nitric oxide, which is released by the endothelium in response to specific stimuli such as increased blood flow or acetylcholine.

Lacunar stroke

Ischaemic stroke caused by the occlusion of a small penetrating artery deep within the brain. These small arteries supply deep structures such as the basal ganglia, thalamus and internal capsule. The term lacunar refers to the small, cavity-like lesions that result from the stroke.

Lipoprotein (a)

Complex lipoprotein particle composed of LDL and the glycoprotein apolipoprotein (a), which is covalently attached to the apolipoprotein B-100 component of the LDL particle.

Macular degeneration

Progressive eye disease that affects the macula (the central part of the retina responsible for sharp, detailed vision), leading to a gradual loss of central vision while peripheral vision remains intact.

Mosaic loss of the Y chromosome

Clonal loss of the Y chromosome in a proportion of somatic cells, resulting in a mosaic pattern in which some cells retain the Y chromosome whereas others do not. This phenomenon is commonly observed in ageing populations and is associated with increased genomic instability.

Myeloid skewing

Phenomenon in which haematopoietic stem cells preferentially differentiate into myeloid lineages (such as granulocytes, monocytes and platelets) over lymphoid lineages (such as B cells, T cells and natural killer cells).

Myogenic tone

Intrinsic capacity of smooth muscle cells in blood vessels to maintain a baseline level of contraction and resistance in response to changes in intravascular pressure.

Neutrophil extracellular traps

Web-like structures composed of chromatin and granular proteins that are released by activated neutrophils to trap and kill pathogens in a process called NETosis.

Pulmonary fibrosis

Progressive lung disease characterized by the thickening and scarring (fibrosis) of lung tissue, which leads to a gradual loss of lung function. This scarring impairs the capacity of the lungs to transfer oxygen into the bloodstream, potentially resulting in respiratory failure.

Pulse wave velocity

The speed at which pressure waves move through the arteries, typically used to assess arterial stiffness. It is calculated by measuring the time it takes for the blood pressure pulse generated by the heartbeat to travel between two points along an artery, usually between the carotid and femoral arteries.

Senomorphic

Describes interventions, compounds or mechanisms that do not induce senolysis of senescent cells, but instead suppress the harmful effects of their secretome, thereby limiting the spread of senescence through bystander effects.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liberale, L., Tual-Chalot, S., Sedej, S. et al. Roadmap for alleviating the manifestations of ageing in the cardiovascular system. Nat Rev Cardiol 22, 577–605 (2025). https://doi.org/10.1038/s41569-025-01130-5

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41569-025-01130-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing