Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular gatekeepers of endogenous adult mammalian cardiomyocyte proliferation

Abstract

Irreversible cardiac fibrosis, cardiomyocyte death and chronic cardiac dysfunction after myocardial infarction pose a substantial global health-care challenge, with no curative treatments available. To regenerate the injured heart, cardiomyocytes must proliferate to replace lost myocardial tissue — a capability that adult mammals have largely forfeited to adapt to the demanding conditions of life. Using various preclinical models, our understanding of cardiomyocyte proliferation has progressed remarkably, leading to the successful reactivation of cell cycle induction in adult animals, with functional recovery after cardiac injury. Central to this success is the targeting of key pathways and structures that drive cardiomyocyte maturation after birth — nucleation and ploidy, sarcomere structure, developmental signalling, chromatin and epigenetic regulation, the microenvironment and metabolic maturation — forming a complex regulatory framework that allows efficient cellular contraction but restricts cardiomyocyte proliferation. In this Review, we explore the molecular pathways underlying these core mechanisms and how their manipulation can reactivate the cell cycle in cardiomyocytes, potentially contributing to cardiac repair.

Key points

  • The capacity for mammalian cardiomyocyte proliferation is rapidly lost shortly after birth to make way for an antiproliferative maturation programme that is necessary for survival and to sustain adult life.

  • Manipulation of this maturation process holds the potential to trigger cardiomyocyte proliferation in adult animals, providing a foundation for regenerative strategies that could improve healing after injury.

  • Six major influences on cardiomyocyte maturation are nucleation and ploidy, sarcomere structure, developmental signalling, epigenetic regulation, the microenvironment and metabolic maturation; targeted manipulation can yield diverse effects on the proliferative capacity of adult cardiomyocytes.

  • Metabolic interventions that promote increased glucose utilization with a concomitant reduction in oxidative phosphorylation seem to be both safe and effective in unlocking adult cardiomyocyte proliferation.

  • Epigenetic strategies can be similarly effective, but encompass a wide array of regulatory responses, for which our understanding remains limited.

  • The cardiac microenvironment and the non-parenchymal cell population in the heart are crucial to guiding the adult cardiomyocyte proliferative response, whereby transient inflammatory and senescence signalling events shape an environment that is conducive to proliferation events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pillars of cardiomyocyte maturation.
Fig. 2: The regenerative niche.
Fig. 3: Proliferation signalling pathways.
Fig. 4: Regenerative hierarchy in preclinical models.

Similar content being viewed by others

References

  1. Guo, Y. & Pu, W. T. Cardiomyocyte maturation: new phase in development. Circ. Res. 126, 1086–1106 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ikenishi, A. et al. Cell cycle regulation in mouse heart during embryonic and postnatal stages. Dev. Growth Differ. 54, 731–738 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Engel, F. B., Schebesta, M. & Keating, M. T. Anillin localization defect in cardiomyocyte binucleation. J. Mol. Cell Cardiol. 41, 601–612 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Zebrowski, D. C. et al. Developmental alterations in centrosome integrity contribute to the post-mitotic state of mammalian cardiomyocytes. eLife 4, e05563 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Vivien, C. J., Hudson, J. E. & Porrello, E. R. Evolution, comparative biology and ontogeny of vertebrate heart regeneration. NPJ Regen. Med. 1, 16012 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Porrello, E. R. et al. Transient regenerative potential of the neonatal mouse heart. Science 331, 1078–1080 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alkass, K. et al. No evidence for cardiomyocyte number expansion in preadolescent mice. Cell 163, 1026–1036 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Bergmann, O. et al. Dynamics of cell generation and turnover in the human heart. Cell 161, 1566–1575 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Gilsbach, R. et al. Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nat. Commun. 5, 5288 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Gilsbach, R. et al. Distinct epigenetic programs regulate cardiac myocyte development and disease in the human heart in vivo. Nat. Commun. 9, 391 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lacraz, G. P. A. et al. Tomo-seq identifies SOX9 as a key regulator of cardiac fibrosis during ischemic injury. Circulation 136, 1396–1409 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Pandey, P. et al. Cardiomyocytes sense matrix rigidity through a combination of muscle and non-muscle myosin contractions. Dev. Cell 44, 326–336.e3 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. van Duijvenboden, K. et al. Conserved NPPB+ border zone switches from MEF2- to AP-1-driven gene program. Circulation 140, 864–879 (2019).

    Article  PubMed  Google Scholar 

  14. Wu, C.-C. et al. Spatially resolved genome-wide transcriptional profiling identifies BMP signaling as essential regulator of zebrafish cardiomyocyte regeneration. Dev. Cell 36, 36–49 (2016).

    Article  PubMed  Google Scholar 

  15. Zhang, Y. et al. Single-cell imaging and transcriptomic analyses of endogenous cardiomyocyte dedifferentiation and cycling. Cell Discov. 5, 30 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bradley, L. A., Young, A., Li, H., Billcheck, H. O. & Wolf, M. J. Loss of endogenously cycling adult cardiomyocytes worsens myocardial function. Circ. Res. 128, 155–168 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Maass, K., Chase, S. E., Lin, X. & Delmar, M. Cx43 CT domain influences infarct size and susceptibility to ventricular tachyarrhythmias in acute myocardial infarction. Cardiovasc. Res. 84, 361–367 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, W. E. et al. Dedifferentiation, proliferation, and redifferentiation of adult mammalian cardiomyocytes after ischemic injury. Circulation 136, 834–848 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Khan, M. S. et al. Global epidemiology of heart failure. Nat. Rev. Cardiol. 21, 717–734 (2024).

    Article  PubMed  Google Scholar 

  20. Zhang, H. et al. AP-1 activation mediates post-natal cardiomyocyte maturation. Cardiovasc. Res. 119, 536–550 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Reuter, S. P. et al. Cardiac troponin I-interacting kinase affects cardiomyocyte S-phase activity but not cardiomyocyte proliferation. Circulation 147, 142–153 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Yin, K. et al. Polyploidisation pleiotropically buffers ageing in hepatocytes. J. Hepatol. 81, 289–302 (2024).

    Article  CAS  PubMed  Google Scholar 

  23. Østergaard, K. H. et al. Left ventricular morphology of the giraffe heart examined by stereological methods. Anat. Rec. 296, 611–621 (2013).

    Article  Google Scholar 

  24. Velayutham, N. et al. Cardiomyocyte cell cycling, maturation, and growth by multinucleation in postnatal swine. J. Mol. Cell Cardiol. 146, 95–108 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Patterson, M. et al. Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration. Nat. Genet. 49, 1346–1353 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen, F. et al. Broad distribution of hepatocyte proliferation in liver homeostasis and regeneration. Cell Stem Cell 26, 27–33.e4 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Poolman, R. A. & Brooks, G. Expressions and activities of cell cycle regulatory molecules during the transition from myocyte hyperplasia to hypertrophy. J. Mol. Cell Cardiol. 30, 2121–2135 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Li, F., Wang, X., Bunger, P. C. & Gerdes, A. M. Formation of binucleated cardiac myocytes in rat heart: I. Role of actin-myosin contractile ring. J. Mol. Cell Cardiol. 29, 1541–1551 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Li, F., Wang, X. & Gerdes, A. M. Formation of binucleated cardiac myocytes in rat heart: II. Cytoskeletal organisation. J. Mol. Cell Cardiol. 29, 1553–1565 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Aix, E., Gutiérrez-Gutiérrez, Ó., Sánchez-Ferrer, C., Aguado, T. & Flores, I. Postnatal telomere dysfunction induces cardiomyocyte cell-cycle arrest through p21 activation. J. Cell Biol. 213, 571–583 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu, Z., Yue, S., Chen, X., Kubin, T. & Braun, T. Regulation of cardiomyocyte polyploidy and multinucleation by cyclinG1. Circ. Res. 106, 1498–1506 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. González-Rosa, J. M. et al. Myocardial polyploidization creates a barrier to heart regeneration in zebrafish. Dev. Cell 44, 433–446.e7 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Aix, E. et al. Telomeres fuse during cardiomyocyte maturation. Circulation 147, 1634–1636 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Derks, W. & Bergmann, O. Polyploidy in cardiomyocytes: roadblock to heart regeneration? Circ. Res. 126, 552–565 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Hirose, K. et al. Evidence for hormonal control of heart regenerative capacity during endothermy acquisition. Science 364, 184–188 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rigaud, V. O. C. et al. RNA-binding protein LIN28a regulates new myocyte formation in the heart through long noncoding RNA-H19. Circulation 147, 324–337 (2023).

    Article  CAS  PubMed  Google Scholar 

  37. Pettinato, A. M. et al. Sarcomere function activates a p53-dependent DNA damage response that promotes polyploidization and limits in vivo cell engraftment. Cell Rep. 35, 109088 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Windmueller, R. et al. Direct comparison of mononucleated and binucleated cardiomyocytes reveals molecular mechanisms underlying distinct proliferative competencies. Cell Rep. 30, 3105–3116.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yekelchyk, M., Guenther, S., Preussner, J. & Braun, T. Mono- and multi-nucleated ventricular cardiomyocytes constitute a transcriptionally homogenous cell population. Basic. Res. Cardiol. 114, 36 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hesse, M. et al. Proximity to injury, but neither number of nuclei nor ploidy define pathological adaptation and plasticity in cardiomyocytes. J. Mol. Cell Cardiol. 152, 95–104 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Yu, Z. et al. Increasing mononuclear diploid cardiomyocytes by loss of E2F transcription factor 7/8 fails to improve cardiac regeneration after infarct. Circulation 147, 183–186 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Swift, S. K. et al. Cardiomyocyte ploidy is dynamic during postnatal development and varies across genetic backgrounds. Development 150, dev201318 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Akins, K. A. et al. Runx1 is sufficient but not required for cardiomyocyte cell-cycle activation. Am. J. Physiol. Heart Circ. Physiol. 327, H377–H389 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liao, H. S. et al. Cardiac-specific overexpression of cyclin-dependent kinase 2 increases smaller mononuclear cardiomyocytes. Circ. Res. 88, 443–450 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Karsenty, C. et al. Ephrin-B1 regulates the adult diastolic function through a late postnatal maturation of cardiomyocyte surface crests. eLife 12, e80904 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Siedner, S. et al. Developmental changes in contractility and sarcomeric proteins from the early embryonic to the adult stage in the mouse heart. J. Physiol. 548, 493–505 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Guo, Y. et al. Hierarchical and stage-specific regulation of murine cardiomyocyte maturation by serum response factor. Nat. Commun. 9, 3837 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Anversa, P., Olivetti, G. & Loud, A. V. Morphometric study of early postnatal development in the left and right ventricular myocardium of the rat. I. Hypertrophy, hyperplasia, and binucleation of myocytes. Circ. Res. 46, 495–502 (1980).

    Article  CAS  PubMed  Google Scholar 

  49. Taubenberger, A. V., Baum, B. & Matthews, H. K. The mechanics of mitotic cell rounding. Front. Cell Dev. Biol. 8, 687 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Buikema, J. W. et al. Wnt activation and reduced cell-cell contact synergistically induce massive expansion of functional human iPSC-derived cardiomyocytes. Cell Stem Cell 27, 50–63.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yahalom-Ronen, Y., Rajchman, D., Sarig, R., Geiger, B. & Tzahor, E. Reduced matrix rigidity promotes neonatal cardiomyocyte dedifferentiation, proliferation and clonal expansion. eLife 4, e07455 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ahuja, P., Perriard, E., Perriard, J.-C. & Ehler, E. Sequential myofibrillar breakdown accompanies mitotic division of mammalian cardiomyocytes. J. Cell Sci. 117, 3295–3306 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Engel, F. B. et al. p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes. Dev. 19, 1175–1187 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Abouleisa, R. R. E. et al. Transient cell cycle induction in cardiomyocytes to treat subacute ischemic heart failure. Circulation 145, 1339–1355 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Monroe, T. O. et al. YAP partially reprograms chromatin accessibility to directly induce adult cardiogenesis in vivo. Dev. Cell 48, 765–779.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Morikawa, Y. et al. YAP overcomes mechanical barriers to induce mitotic rounding and adult cardiomyocyte division. Circulation 151, 76–93 (2025).

    Article  CAS  PubMed  Google Scholar 

  57. Leach, J. P. et al. Hippo pathway deficiency reverses systolic heart failure after infarction. Nature 550, 260–264 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Liu, S. et al. Gene therapy knockdown of Hippo signaling induces cardiomyocyte renewal in pigs after myocardial infarction. Sci. Transl. Med. 13, eabd6892 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. D’Uva, G. et al. ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nat. Cell Biol. 17, 627–638 (2015).

    Article  PubMed  Google Scholar 

  60. Mills, R. J. et al. Drug screening in human PSC-cardiac organoids identifies pro-proliferative compounds acting via the mevalonate pathway. Cell Stem Cell 24, 895–907.e6 (2019).

    Article  CAS  PubMed  Google Scholar 

  61. El-Nachef, D. et al. Engrafted human induced pluripotent stem cell-derived cardiomyocytes undergo clonal expansion in vivo. Circulation 143, 1635–1638 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Liu, H. et al. Control of cytokinesis by β-adrenergic receptors indicates an approach for regulating cardiomyocyte endowment. Sci. Transl. Med. 11, eaaw6419 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sallin, P., de Preux Charles, A.-S., Duruz, V., Pfefferli, C. & Jaźwińska, A. A dual epimorphic and compensatory mode of heart regeneration in zebrafish. Dev. Biol. 399, 27–40 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Aballo, T. J. et al. Integrated proteomics identifies troponin i isoform switch as a regulator of a sarcomere-metabolism axis during cardiac regeneration. Preprint at bioRxiv https://doi.org/10.1101/2023.10.20.563389 (2023).

  65. Bailey, L. R. J. et al. MBNL1 regulates programmed postnatal switching between regenerative and differentiated cardiac states. Circulation 149, 1812–1829 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xiao, F. et al. Adducin regulates sarcomere disassembly during cardiomyocyte mitosis. Circulation 150, 791–805 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fentzke, R. C. et al. Impaired cardiomyocyte relaxation and diastolic function in transgenic mice expressing slow skeletal troponin I in the heart. J. Physiol. 517, 143–157 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fatkin, D. et al. Neonatal cardiomyopathy in mice homozygous for the Arg403Gln mutation in the alpha cardiac myosin heavy chain gene. J. Clin. Invest. 103, 147–153 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nishii, K. et al. Targeted disruption of the cardiac troponin T gene causes sarcomere disassembly and defects in heartbeat within the early mouse embryo. Dev. Biol. 322, 65–73 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Metzger, J. M. The road to physiological maturation of stem cell-derived cardiac muscle runs through the sarcomere. J. Mol. Cell Cardiol. 170, 117–120 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Guo, Y. et al. Sarcomeres regulate murine cardiomyocyte maturation through MRTF-SRF signaling. Proc. Natl Acad. Sci. USA 118, e2008861118 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Htet, M. et al. A transcriptional enhancer regulates cardiac maturation. Nat. Cardiovasc. Res. 3, 666–684 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen, X. et al. QKI is a critical pre-mRNA alternative splicing regulator of cardiac myofibrillogenesis and contractile function. Nat. Commun. 12, 89 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Montañés-Agudo, P. et al. The RNA-binding protein QKI governs a muscle-specific alternative splicing program that shapes the contractile function of cardiomyocytes. Cardiovasc. Res. 119, 1161–1174 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Garbutt, T. A. et al. Epigenetic regulation of cardiomyocyte maturation by arginine methyltransferase CARM1. Circulation 149, 1501–1515 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Akerberg, A. A. et al. RBPMS2 is a myocardial-enriched splicing regulator required for cardiac function. Circ. Res. 131, 980–1000 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mathiyalagan, P. et al. FTO-dependent N6-methyladenosine regulates cardiac function during remodeling and repair. Circulation 139, 518–532 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lipov, A. et al. Exploring the complex spectrum of dominance and recessiveness in genetic cardiomyopathies. Nat. Cardiovasc. Res. 2, 1078–1094 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Guo, Y. et al. Ryanodine receptor 2 (RYR2) dysfunction activates the unfolded protein response and perturbs cardiomyocyte maturation. Cardiovasc. Res. 119, 221–235 (2023).

    Article  CAS  PubMed  Google Scholar 

  80. Purdy, A. L., Swift, S. K., Sucov, H. M. & Patterson, M. Tnni3k influences cardiomyocyte S-phase activity and proliferation. J. Mol. Cell Cardiol. 183, 22–26 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nguyen, N. U. N. et al. A calcineurin-Hoxb13 axis regulates growth mode of mammalian cardiomyocytes. Nature 582, 271–276 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ahmed, M. S. et al. Identification of FDA-approved drugs that induce heart regeneration in mammals. Nat. Cardiovasc. Res. 3, 372–388 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Maillet, M. et al. Heart-specific deletion of CnB1 reveals multiple mechanisms whereby calcineurin regulates cardiac growth and function. J. Biol. Chem. 285, 6716–6724 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Fu, W. et al. Transient induction of actin cytoskeletal remodeling associated with dedifferentiation, proliferation, and redifferentiation stimulates cardiac regeneration. Acta Pharm. Sin. B 14, 2537–2553 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sturzu, A. C. et al. Fetal mammalian heart generates a robust compensatory response to cell loss. Circulation 132, 109–121 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Pikkarainen, S., Tokola, H., Kerkelä, R. & Ruskoaho, H. GATA transcription factors in the developing and adult heart. Cardiovasc. Res. 63, 196–207 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Akazawa, H. & Komuro, I. Cardiac transcription factor Csx/Nkx2-5: Its role in cardiac development and diseases. Pharmacol. Ther. 107, 252–268 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Hutson, M. R. et al. Arterial pole progenitors interpret opposing FGF/BMP signals to proliferate or differentiate. Development 137, 3001–3011 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tirosh-Finkel, L. et al. BMP-mediated inhibition of FGF signaling promotes cardiomyocyte differentiation of anterior heart field progenitors. Development 137, 2989–3000 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Li, P. et al. IGF signaling directs ventricular cardiomyocyte proliferation during embryonic heart development. Development 138, 1795–1805 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Thomas, N. A., Koudijs, M., van Eeden, F. J. M., Joyner, A. L. & Yelon, D. Hedgehog signaling plays a cell-autonomous role in maximizing cardiac developmental potential. Development 135, 3789–3799 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Rowton, M. et al. Hedgehog signaling activates a mammalian heterochronic gene regulatory network controlling differentiation timing across lineages. Dev. Cell 57, 2181–2203.e9 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ai, D. et al. Canonical Wnt signaling functions in second heart field to promote right ventricular growth. Proc. Natl Acad. Sci. USA 104, 9319–9324 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ye, B. et al. APC controls asymmetric Wnt/β-catenin signaling and cardiomyocyte proliferation gradient in the heart. J. Mol. Cell Cardiol. 89, 287–296 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Miyamoto, M. et al. Cardiac progenitors instruct second heart field fate through Wnts. Proc. Natl Acad. Sci. USA 120, e2217687120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Meilhac, S. M. & Buckingham, M. E. The deployment of cell lineages that form the mammalian heart. Nat. Rev. Cardiol. 15, 705–724 (2018).

    Article  PubMed  Google Scholar 

  97. Chen, H. et al. BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development 131, 2219–2231 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Grego-Bessa, J. et al. Notch signaling is essential for ventricular chamber development. Dev. Cell 12, 415–429 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. D’Amato, G. et al. Sequential Notch activation regulates ventricular chamber development. Nat. Cell Biol. 18, 7–20 (2016).

    Article  PubMed  Google Scholar 

  100. Cai, C.-L. et al. T-box genes coordinate regional rates of proliferation and regional specification during cardiogenesis. Development 132, 2475–2487 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Heallen, T. et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332, 458–461 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sim, C. B. et al. Dynamic changes in the cardiac methylome during postnatal development. FASEB J. 29, 1329–1343 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Mills, R. J. et al. Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proc. Natl Acad. Sci. USA 114, E8372–E8381 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sakamoto, T. et al. The nuclear receptor ERR cooperates with the cardiogenic factor GATA4 to orchestrate cardiomyocyte maturation. Nat. Commun. 13, 1991 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Iyer, L. M. et al. A context-specific cardiac β-catenin and GATA4 interaction influences TCF7L2 occupancy and remodels chromatin driving disease progression in the adult heart. Nucleic Acids Res. 46, 2850–2867 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yu, W. et al. GATA4 regulates Fgf16 to promote heart repair after injury. Development 143, 936–949 (2016).

    CAS  PubMed  Google Scholar 

  107. Liang, Q. et al. The transcription factors GATA4 and GATA6 regulate cardiomyocyte hypertrophy in vitro and in vivo. J. Biol. Chem. 276, 30245–30253 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Qi, L. et al. Kindlin-2 suppresses transcription factor GATA4 through interaction with SUV39H1 to attenuate hypertrophy. Cell Death Dis. 10, 890 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Oka, T. et al. Cardiac-specific deletion of Gata4 reveals its requirement for hypertrophy, compensation, and myocyte viability. Circ. Res. 98, 837–845 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Gupta, V. et al. An injury-responsive Gata4 program shapes the zebrafish cardiac ventricle. Curr. Biol. 23, 1221–1227 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mohammadi, M M. et al. Induction of cardiomyocyte proliferation and angiogenesis protects neonatal mice from pressure overload-associated maladaptation. JCI Insight 5, 128336 (2019).

    Article  Google Scholar 

  112. Xiang, F.-L., Guo, M. & Yutzey, K. E. Overexpression of Tbx20 in adult cardiomyocytes promotes proliferation and improves cardiac function after myocardial infarction. Circulation 133, 1081–1092 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chakraborty, S., Sengupta, A. & Yutzey, K. E. Tbx20 promotes cardiomyocyte proliferation and persistence of fetal characteristics in adult mouse hearts. J. Mol. Cell Cardiol. 62, 203–213 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Bongiovanni, C. et al. BMP7 promotes cardiomyocyte regeneration in zebrafish and adult mice. Cell Rep. 43, 114162 (2024).

    Article  CAS  PubMed  Google Scholar 

  115. Ebelt, H. et al. Treatment with bone morphogenetic protein 2 limits infarct size after myocardial infarction in mice. Shock 39, 353–360 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Vukicevic, S. et al. Bone morphogenetic protein 1.3 inhibition decreases scar formation and supports cardiomyocyte survival after myocardial infarction. Nat. Commun. 13, 81 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Engel, F. B., Hsieh, P. C. H., Lee, R. T. & Keating, M. T. FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc. Natl Acad. Sci. USA 103, 15546–15551 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hubert, F. et al. FGF10 promotes cardiac repair through a dual cellular mechanism increasing cardiomyocyte renewal and inhibiting fibrosis. Cardiovasc. Res. 118, 2625–2637 (2022).

    Article  CAS  PubMed  Google Scholar 

  119. Wang, Z. et al. Mechanistic basis of neonatal heart regeneration revealed by transcriptome and histone modification profiling. Proc. Natl Acad. Sci. USA 116, 18455–18465 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Bersell, K., Arab, S., Haring, B. & Kühn, B. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138, 257–270 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Reuter, S., Soonpaa, M. H., Firulli, A. B., Chang, A. N. & Field, L. J. Recombinant neuregulin 1 does not activate cardiomyocyte DNA synthesis in normal or infarcted adult mice. PLoS ONE 9, e115871 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Polizzotti, B. D. et al. Neuregulin stimulation of cardiomyocyte regeneration in mice and human myocardium reveals a therapeutic window. Sci. Transl. Med. 7, 281ra45 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  123. De Keulenaer, G. W. et al. Mechanisms of the multitasking endothelial protein NRG-1 as a compensatory factor during chronic heart failure. Circ. Heart Fail. 12, e006288 (2019).

    Article  PubMed  Google Scholar 

  124. Zurek, M. et al. Neuregulin-1 induces cardiac hypertrophy and impairs cardiac performance in post-myocardial infarction rats. Circulation 142, 1308–1311 (2020).

    Article  CAS  PubMed  Google Scholar 

  125. Maciver, D. H. A new method for quantification of left ventricular systolic function using a corrected ejection fraction. Eur. J. Echocardiogr. 12, 228–234 (2011).

    Article  PubMed  Google Scholar 

  126. Aharonov, A. et al. ERBB2 drives YAP activation and EMT-like processes during cardiac regeneration. Nat. Cell Biol. 22, 1346–1356 (2020).

    Article  CAS  PubMed  Google Scholar 

  127. DeBosch, B. et al. Akt1 is required for physiological cardiac growth. Circulation 113, 2097–2104 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Mutlak, M. et al. Extracellular signal-regulated kinase (ERK) activation preserves cardiac function in pressure overload induced hypertrophy. Int. J. Cardiol. 270, 204–213 (2018).

    Article  PubMed  Google Scholar 

  129. DeBosch, B., Sambandam, N., Weinheimer, C., Courtois, M. & Muslin, A. J. Akt2 regulates cardiac metabolism and cardiomyocyte survival. J. Biol. Chem. 281, 32841–32851 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Kehat, I. et al. Extracellular signal-regulated kinases 1 and 2 regulate the balance between eccentric and concentric cardiac growth. Circ. Res. 108, 176–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Fujio, Y., Nguyen, T., Wencker, D., Kitsis, R. N. & Walsh, K. Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation 101, 660–667 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Quaife-Ryan, G. A. et al. β-Catenin drives distinct transcriptional networks in proliferative and nonproliferative cardiomyocytes. Development 147, dev193417 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Wo, D. et al. Opposing roles of Wnt inhibitors IGFBP-4 and Dkk1 in cardiac ischemia by differential targeting of LRP5/6 and β-catenin. Circulation 134, 1991–2007 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Antos, C. L. et al. Activated glycogen synthase-3β suppresses cardiac hypertrophy in vivo. Proc. Natl Acad. Sci. USA 99, 907–912 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Chen, X. et al. The β-catenin/T-cell factor/lymphocyte enhancer factor signaling pathway is required for normal and stress-induced cardiac hypertrophy. Mol. Cell Biol. 26, 4462–4473 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hou, N. et al. Transcription factor 7-like 2 mediates canonical Wnt/β-catenin signaling and c-myc upregulation in heart failure. Circ. Heart Fail. 9, e003010 (2016).

    Article  CAS  PubMed  Google Scholar 

  137. He, A. et al. Dynamic GATA4 enhancers shape the chromatin landscape central to heart development and disease. Nat. Commun. 5, 4907 (2014).

    Article  CAS  PubMed  Google Scholar 

  138. Mia, M. M. et al. YAP/TAZ deficiency reprograms macrophage phenotype and improves infarct healing and cardiac function after myocardial infarction. PLoS Biol. 18, e3000941 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Magadum, A. et al. Live cell screening platform identifies PPARδ as a regulator of cardiomyocyte proliferation and cardiac repair. Cell Res. 27, 1002–1019 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Magadum, A. et al. Pkm2 regulates cardiomyocyte cell cycle and promotes cardiac regeneration. Circulation 141, 1249–1265 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Oikonomopoulos, A. et al. Wnt signaling exerts an antiproliferative effect on adult cardiac progenitor cells through IGFBP3. Circ. Res. 109, 1363–1374 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wu, Y. et al. LRP6 downregulation promotes cardiomyocyte proliferation and heart regeneration. Cell Res. 31, 450–462 (2021).

    Article  CAS  PubMed  Google Scholar 

  143. Singh, B. N. et al. A conserved HH-Gli1-Mycn network regulates heart regeneration from newt to human. Nat. Commun. 9, 4237 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Kawagishi, H. et al. Sonic hedgehog signaling regulates the mammalian cardiac regenerative response. J. Mol. Cell Cardiol. 123, 180–184 (2018).

    Article  CAS  PubMed  Google Scholar 

  145. Xiao, Q. et al. Impaired sonic hedgehog pathway contributes to cardiac dysfunction in type 1 diabetic mice with myocardial infarction. Cardiovasc. Res. 95, 507–516 (2012).

    Article  CAS  PubMed  Google Scholar 

  146. Kusano, K. F. et al. Sonic hedgehog myocardial gene therapy: tissue repair through transient reconstitution of embryonic signaling. Nat. Med. 11, 1197–1204 (2005).

    Article  CAS  PubMed  Google Scholar 

  147. Xin, M. et al. Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size. Sci. Signal. 4, ra70 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  148. von Gise, A. et al. YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc. Natl Acad. Sci. USA 109, 2394–2399 (2012).

    Article  Google Scholar 

  149. Xin, M. et al. Hippo pathway effector Yap promotes cardiac regeneration. Proc. Natl Acad. Sci. USA 110, 13839–13844 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Heallen, T. et al. Hippo signaling impedes adult heart regeneration. Development 140, 4683–4690 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wang, J., Liu, S., Heallen, T. & Martin, J. F. The Hippo pathway in the heart: pivotal roles in development, disease, and regeneration. Nat. Rev. Cardiol. 15, 672–684 (2018).

    Article  CAS  PubMed  Google Scholar 

  152. Liu, X. et al. Cell proliferation fate mapping reveals regional cardiomyocyte cell-cycle activity in subendocardial muscle of left ventricle. Nat. Commun. 12, 5784 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Liu, S. et al. Yap promotes noncanonical Wnt signals from cardiomyocytes for heart regeneration. Circ. Res. 129, 782–797 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zhao, M. et al. Cyclin D2 overexpression enhances the efficacy of human induced pluripotent stem cell-derived cardiomyocytes for myocardial repair in a swine model of myocardial infarction. Circulation 144, 210–228 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Gong, R. et al. Cyclin L1 controls cardiomyocyte proliferation and heart repair after injury. Signal. Transduct. Target. Ther. 8, 243 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Li, Y. et al. gp130 controls cardiomyocyte proliferation and heart regeneration. Circulation 142, 967–982 (2020).

    Article  CAS  PubMed  Google Scholar 

  157. Yang, H. et al. Omentin-1 drives cardiomyocyte cell cycle arrest and metabolic maturation by interacting with BMP7. Cell Mol. Life Sci. 80, 186 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Tian, Y. et al. A microRNA-Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci. Transl. Med. 7, 279ra38 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Torrini, C. et al. Common regulatory pathways mediate activity of microRNAs inducing cardiomyocyte proliferation. Cell Rep. 27, 2759–2771.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Nugroho, A. B. et al. Micro RNA-411 expression improves cardiac phenotype following myocardial infarction in mice. JACC Basic. Transl. Sci. 7, 859–875 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Cai, B. et al. Targeting LncDACH1 promotes cardiac repair and regeneration after myocardium infarction. Cell Death Differ. 27, 2158–2175 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Vite, A., Zhang, C., Yi, R., Emms, S. & Radice, G. L. α-Catenin-dependent cytoskeletal tension controls Yap activity in the heart. Development 145, dev149823 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Li, X., McLain, C., Samuel, M. S., Olson, M. F. & Radice, G. L. Actomyosin-mediated cellular tension promotes Yap nuclear translocation and myocardial proliferation through α5 integrin signaling. Development 150, dev201013 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Li, J. et al. Alpha-catenins control cardiomyocyte proliferation by regulating Yap activity. Circ. Res. 116, 70–79 (2015).

    Article  CAS  PubMed  Google Scholar 

  165. Guo, H. et al. Intercalated disc protein Xinβ is required for Hippo-YAP signaling in the heart. Nat. Commun. 11, 4666 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Bassat, E. et al. The extracellular matrix protein agrin promotes heart regeneration in mice. Nature 547, 179–184 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Baehr, A. et al. Agrin promotes coordinated therapeutic processes leading to improved cardiac repair in pigs. Circulation 142, 868–881 (2020).

    Article  CAS  PubMed  Google Scholar 

  168. Zlatanova, I. et al. An injury-responsive mmp14b enhancer is required for heart regeneration. Sci. Adv. 9, eadh5313 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Galli, G. G. et al. YAP drives growth by controlling transcriptional pause release from dynamic enhancers. Mol. Cell 60, 328–337 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Lin, Z. et al. Pi3kcb links Hippo-YAP and PI3K-AKT signaling pathways to promote cardiomyocyte proliferation and survival. Circ. Res. 116, 35–45 (2015).

    Article  CAS  PubMed  Google Scholar 

  171. Shao, D. et al. A functional interaction between Hippo-YAP signalling and FoxO1 mediates the oxidative stress response. Nat. Commun. 5, 3315 (2014).

    Article  PubMed  Google Scholar 

  172. Tao, G. et al. Pitx2 promotes heart repair by activating the antioxidant response after cardiac injury. Nature 534, 119–123 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Gabisonia, K. et al. MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs. Nature 569, 418–422 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Morikawa, Y., Heallen, T., Leach, J., Xiao, Y. & Martin, J. F. Dystrophin-glycoprotein complex sequesters Yap to inhibit cardiomyocyte proliferation. Nature 547, 227–231 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Liu, S. et al. Microtubules sequester acetylated YAP in the cytoplasm and inhibit heart regeneration. Circulation 151, 59–75 (2025).

    Article  CAS  PubMed  Google Scholar 

  176. Lin, Z. et al. Cardiac-specific YAP activation improves cardiac function and survival in an experimental murine MI model. Circ. Res. 115, 354–363 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Xiao, Y. et al. Hippo pathway deletion in adult resting cardiac fibroblasts initiates a cell state transition with spontaneous and self-sustaining fibrosis. Genes. Dev. 33, 1491–1505 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Murphy, S. A. et al. PGC1/PPAR drive cardiomyocyte maturation at single cell level via YAP1 and SF3B2. Nat. Commun. 12, 1648 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Yue, P. et al. Yap1 modulates cardiomyocyte hypertrophy via impaired mitochondrial biogenesis in response to chronic mechanical stress overload. Theranostics 12, 7009–7031 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Matsui, Y. et al. Lats2 is a negative regulator of myocyte size in the heart. Circ. Res. 103, 1309–1318 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Del Re, D. P. et al. Yes-associated protein isoform 1 (Yap1) promotes cardiomyocyte survival and growth to protect against myocardial ischemic injury. J. Biol. Chem. 288, 3977–3988 (2013).

    Article  PubMed  Google Scholar 

  182. Ikeda, S. et al. Hippo deficiency leads to cardiac dysfunction accompanied by cardiomyocyte dedifferentiation during pressure overload. Circ. Res. 124, 292–305 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Kleele, T. et al. Distinct fission signatures predict mitochondrial degradation or biogenesis. Nature 593, 435–439 (2021).

    Article  CAS  PubMed  Google Scholar 

  184. Byun, J. et al. Yes-associated protein (YAP) mediates adaptive cardiac hypertrophy in response to pressure overload. J. Biol. Chem. 294, 3603–3617 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Perez-Gonzalez, N. A. et al. YAP and TAZ regulate cell volume. J. Cell Biol. 218, 3472–3488 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Schmidt, M. et al. The interaction effect of cardiac and non-cardiac comorbidity on myocardial infarction mortality: a nationwide cohort study. Int. J. Cardiol. 308, 1–8 (2020).

    Article  PubMed  Google Scholar 

  187. Weston, W. A. & Barr, A. R. A cell cycle centric view of tumour dormancy. Br. J. Cancer 129, 1535–1545 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Kwon, J. S. et al. Controlling depth of cellular quiescence by an Rb-E2F network switch. Cell Rep. 20, 3223–3235 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Felician, G. et al. Epigenetic modification at Notch responsive promoters blunts efficacy of inducing notch pathway reactivation after myocardial infarction. Circ. Res. 115, 636–649 (2014).

    Article  CAS  PubMed  Google Scholar 

  190. Zhou, P. et al. Dynamic changes in P300 enhancers and enhancer-promoter contacts control mouse cardiomyocyte maturation. Dev. Cell 58, 898–914.e7 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Stergachis, A. B. et al. Developmental fate and cellular maturity encoded in human regulatory DNA landscapes. Cell 154, 888–903 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Sim, C. B. et al. Sex-specific control of human heart maturation by the progesterone receptor. Circulation 143, 1614–1628 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Li, Z. et al. Postnatal state transition of cardiomyocyte as a primary step in heart maturation. Protein Cell 13, 842–862 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Cui, M. et al. Dynamic transcriptional responses to injury of regenerative and non-regenerative cardiomyocytes revealed by single-nucleus RNA sequencing. Dev. Cell 53, 102–116.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Litviňuková, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Nothjunge, S. et al. DNA methylation signatures follow preformed chromatin compartments in cardiac myocytes. Nat. Commun. 8, 1667 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Greco, C. M. et al. DNA hydroxymethylation controls cardiomyocyte gene expression in development and hypertrophy. Nat. Commun. 7, 12418 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Trivedi, C. M., Lu, M. M., Wang, Q. & Epstein, J. A. Transgenic overexpression of Hdac3 in the heart produces increased postnatal cardiac myocyte proliferation but does not induce hypertrophy. J. Biol. Chem. 283, 26484–26489 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Han, Z. et al. ALKBH5 regulates cardiomyocyte proliferation and heart regeneration by demethylating the mRNA of YTHDF1. Theranostics 11, 3000–3016 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Liu, X.-H. et al. Co-effects of m6A and chromatin accessibility dynamics in the regulation of cardiomyocyte differentiation. Epigenetics Chromatin 16, 32 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Deng, S. et al. RNA m6A regulates transcription via DNA demethylation and chromatin accessibility. Nat. Genet. 54, 1427–1437 (2022).

    Article  CAS  PubMed  Google Scholar 

  202. Quaife-Ryan, G. A., Sim, C. B., Porrello, E. R. & Hudson, J. E. Resetting the epigenome for heart regeneration. Semin. Cell Dev. Biol. 58, 2–13 (2016).

    Article  CAS  PubMed  Google Scholar 

  203. Ponnusamy, M. et al. Long noncoding RNA CPR (cardiomyocyte proliferation regulator) regulates cardiomyocyte proliferation and cardiac repair. Circulation 139, 2668–2684 (2019).

    Article  CAS  PubMed  Google Scholar 

  204. Liu, X.-M., Mao, Y., Wang, S., Zhou, J. & Qian, S.-B. METTL3 modulates chromatin and transcription dynamics during cell fate transition. Cell Mol. Life Sci. 79, 559 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Jiang, F.-Q. et al. Mettl3-mediated m6A modification of Fgf16 restricts cardiomyocyte proliferation during heart regeneration. eLife 11, e77014 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Dorn, L. E. et al. The N6-methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy. Circulation 139, 533–545 (2019).

    Article  CAS  PubMed  Google Scholar 

  207. Cho, K.-W. et al. Polycomb group protein CBX7 represses cardiomyocyte proliferation through modulation of the TARDBP/RBM38 axis. Circulation 147, 1823–1842 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Boogerd, C. J. et al. Cardiomyocyte proliferation is suppressed by ARID1A-mediated YAP inhibition during cardiac maturation. Nat. Commun. 14, 4716 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Bouwman, M. et al. Cross-species comparison reveals that Hmga1 reduces H3K27me3 levels to promote cardiomyocyte proliferation and cardiac regeneration. Nat. Cardiovasc. Res. 4, 64–82 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Shi, Y. et al. α-Ketoglutarate promotes cardiomyocyte proliferation and heart regeneration after myocardial infarction. Nat. Cardiovasc. Res. 3, 1083–1097 (2024).

    Article  CAS  PubMed  Google Scholar 

  211. Li, X. et al. Inhibition of fatty acid oxidation enables heart regeneration in adult mice. Nature 622, 619–626 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Ji, X. et al. Sphingolipid metabolism controls mammalian heart regeneration. Cell Metab. 36, 839–856.e8 (2024).

    Article  CAS  PubMed  Google Scholar 

  213. Bywater, M. J. et al. Reactivation of Myc transcription in the mouse heart unlocks its proliferative capacity. Nat. Commun. 11, 1827 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Sano, M. et al. Activation and function of cyclin T-Cdk9 (positive transcription elongation factor-b) in cardiac muscle-cell hypertrophy. Nat. Med. 8, 1310–1317 (2002).

    Article  CAS  PubMed  Google Scholar 

  215. Boikova, A. et al. A transient modified mRNA encoding Myc and Cyclin T1 induces cardiac regeneration and improves cardiac function after myocardial injury. Preprint at bioRxiv https://doi.org/10.1101/2023.08.02.551469 (2023).

  216. Gao, R. et al. Pioneering function of Isl1 in the epigenetic control of cardiomyocyte cell fate. Cell Res. 29, 486–501 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Stone, N. R. et al. Context-specific transcription factor functions regulate epigenomic and transcriptional dynamics during cardiac reprogramming. Cell Stem Cell 25, 87–102.e9 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Mellis, I. A. et al. Responsiveness to perturbations is a hallmark of transcription factors that maintain cell identity in vitro. Cell Syst. 12, 885–899.e8 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. DeLaughter, D. M. et al. Single-cell resolution of temporal gene expression during heart development. Dev. Cell 39, 480–490 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Pinto, A. R. et al. Revisiting cardiac cellular composition. Circ. Res. 118, 400–409 (2016).

    Article  CAS  PubMed  Google Scholar 

  221. Ivey, M. J. et al. Resident fibroblast expansion during cardiac growth and remodeling. J. Mol. Cell Cardiol. 114, 161–174 (2018).

    Article  CAS  PubMed  Google Scholar 

  222. Wang, Z. et al. Cell-type-specific gene regulatory networks underlying murine neonatal heart regeneration at single-cell resolution. Cell Rep. 33, 108472 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Kuppe, C. et al. Spatial multi-omic map of human myocardial infarction. Nature 608, 766–777 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Liu, X. et al. Lymphoangiocrine signals promote cardiac growth and repair. Nature 588, 705–711 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Bai, Y. et al. EphrinB2-mediated CDK5/ISL1 pathway enhances cardiac lymphangiogenesis and alleviates ischemic injury by resolving post-MI inflammation. Signal. Transduct. Target. Ther. 9, 326 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Mahmoud, A. I. et al. Nerves regulate cardiomyocyte proliferation and heart regeneration. Dev. Cell 34, 387–399 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Tampakakis, E. et al. Heart neurons use clock genes to control myocyte proliferation. Sci. Adv. 7, eabh4181 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Hortells, L. et al. A specialized population of periostin-expressing cardiac fibroblasts contributes to postnatal cardiomyocyte maturation and innervation. Proc. Natl Acad. Sci. USA 117, 21469–21479 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Kaur, H. et al. Targeted ablation of periostin-expressing activated fibroblasts prevents adverse cardiac remodeling in mice. Circ. Res. 118, 1906–1917 (2016).

    Article  CAS  PubMed  Google Scholar 

  230. Kuwabara, J. T. et al. Regulation of extracellular matrix composition by fibroblasts during perinatal cardiac maturation. J. Mol. Cell Cardiol. 169, 84–95 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Wang, Y. et al. Single-cell analysis of murine fibroblasts identifies neonatal to adult switching that regulates cardiomyocyte maturation. Nat. Commun. 11, 2585 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Notari, M. et al. The local microenvironment limits the regenerative potential of the mouse neonatal heart. Sci. Adv. 4, eaao5553 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Williams, C., Quinn, K. P., Georgakoudi, I. & Black, L. D. 3rd Young developmental age cardiac extracellular matrix promotes the expansion of neonatal cardiomyocytes in vitro. Acta Biomater. 10, 194–204 (2014).

    Article  CAS  PubMed  Google Scholar 

  234. Koopmans, T. et al. Ischemic tolerance and cardiac repair in the spiny mouse (Acomys). NPJ Regen. Med. 6, 78 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Garcia-Puig, A. et al. Proteomics analysis of extracellular matrix remodeling during zebrafish heart regeneration. Mol. Cell Proteom. 18, 1745–1755 (2019).

    Article  CAS  Google Scholar 

  236. Jacot, J. G., Martin, J. C. & Hunt, D. L. Mechanobiology of cardiomyocyte development. J. Biomech. 43, 93–98 (2010).

    Article  PubMed  Google Scholar 

  237. Yokota, T. et al. Type V collagen in scar tissue regulates the size of scar after heart injury. Cell 182, 545–562.e23 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Li, S. et al. Cardiomyocytes disrupt pyrimidine biosynthesis in nonmyocytes to regulate heart repair. J. Clin. Invest. 132, e149711 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Valiente-Alandi, I. et al. Inhibiting fibronectin attenuates fibrosis and improves cardiac function in a model of heart failure. Circulation 138, 1236–1252 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Wu, C.-C. et al. Modulation of mammalian cardiomyocyte cytokinesis by the extracellular matrix. Circ. Res. 127, 896–907 (2020).

    Article  CAS  PubMed  Google Scholar 

  241. Feng, J. et al. Versican promotes cardiomyocyte proliferation and cardiac repair. Circulation 149, 1004–1015 (2024).

    Article  CAS  PubMed  Google Scholar 

  242. Ieda, M. et al. Cardiac fibroblasts regulate myocardial proliferation through β1 integrin signaling. Dev. Cell 16, 233–244 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Aurora, A. B. et al. Macrophages are required for neonatal heart regeneration. J. Clin. Invest. 124, 1382–1392 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Lavine, K. J. et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc. Natl Acad. Sci. USA 111, 16029–16034 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Bajpai, G. et al. Tissue resident CCR2- and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury. Circ. Res. 124, 263–278 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Epelman, S. et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40, 91–104 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Paddock, S. J. et al. IL4Rα signaling promotes neonatal cardiac regeneration and cardiomyocyte cell cycle activity. J. Mol. Cell Cardiol. 161, 62–74 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Zlatanova, I. et al. Iron regulator hepcidin impairs macrophage-dependent cardiac repair after injury. Circulation 139, 1530–1547 (2019).

    Article  CAS  PubMed  Google Scholar 

  249. Li, J. et al. Regulatory T-cells regulate neonatal heart regeneration by potentiating cardiomyocyte proliferation in a paracrine manner. Theranostics 9, 4324–4341 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Tan, Y., Duan, X., Wang, B., Liu, X. & Zhan, Z. Murine neonatal cardiac B cells promote cardiomyocyte proliferation and heart regeneration. NPJ Regen. Med. 8, 7 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Dolejsi, T. et al. Adult T-cells impair neonatal cardiac regeneration. Eur. Heart J. 43, 2698–2709 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Wang, G. et al. “Default” generation of neonatal regulatory T cells. J. Immunol. 185, 71–78 (2010).

    Article  CAS  PubMed  Google Scholar 

  253. Vargas Aguilar, S. et al. The PD-1–PD-L1 pathway maintains an immunosuppressive environment essential for neonatal heart regeneration. Nat. Cardiovasc. Res. 3, 389–402 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Aluvihare, V. R., Kallikourdis, M. & Betz, A. G. Regulatory T cells mediate maternal tolerance to the fetus. Nat. Immunol. 5, 266–271 (2004).

    Article  CAS  PubMed  Google Scholar 

  255. Zacchigna, S. et al. Paracrine effect of regulatory T cells promotes cardiomyocyte proliferation during pregnancy and after myocardial infarction. Nat. Commun. 9, 2432 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Hernandez-Segura, A., Nehme, J. & Demaria, M. Hallmarks of cellular senescence. Trends Cell Biol. 28, 436–453 (2018).

    Article  CAS  PubMed  Google Scholar 

  257. Sarig, R. et al. Transient p53-mediated regenerative senescence in the injured heart. Circulation 139, 2491–2494 (2019).

    Article  PubMed  Google Scholar 

  258. Zhang, L. et al. Egr1 regulates regenerative senescence and cardiac repair. Nat. Cardiovasc. Res. 3, 915–932 (2024).

    Article  CAS  PubMed  Google Scholar 

  259. Feng, T. et al. CCN1-induced cellular senescence promotes heart regeneration. Circulation 139, 2495–2498 (2019).

    Article  PubMed  Google Scholar 

  260. Vagnozzi, R. J. et al. An acute immune response underlies the benefit of cardiac stem cell therapy. Nature 577, 405–409 (2020).

    Article  CAS  PubMed  Google Scholar 

  261. Han, C. et al. Acute inflammation stimulates a regenerative response in the neonatal mouse heart. Cell Res. 25, 1137–1151 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Velayutham, N. et al. P53 activation promotes maturational characteristics of pluripotent stem cell-derived cardiomyocytes in 3-dimensional suspension culture via FOXO-FOXM1 regulation. J. Am. Heart Assoc. 13, e033155 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Chen, X. et al. p53-dependent mitochondrial compensation in heart failure with preserved ejection fraction. J. Am. Heart Assoc. 11, e024582 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  264. Mosteiro, L. et al. Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science 354, aaf4445 (2016).

    Article  PubMed  Google Scholar 

  265. Kubin, T. et al. Oncostatin M is a major mediator of cardiomyocyte dedifferentiation and remodeling. Cell Stem Cell 9, 420–432 (2011).

    Article  CAS  PubMed  Google Scholar 

  266. Abe, H. et al. Macrophage hypoxia signaling regulates cardiac fibrosis via Oncostatin M. Nat. Commun. 10, 2824 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Müller, J. et al. Interleukin-6-dependent phenotypic modulation of cardiac fibroblasts after acute myocardial infarction. Basic. Res. Cardiol. 109, 440 (2014).

    Article  PubMed  Google Scholar 

  268. Shin, K. et al. Harnessing the regenerative potential of interleukin11 to enhance heart repair. Nat. Commun. 15, 9666 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Broch, K. et al. Randomized trial of interleukin-6 receptor inhibition in patients with acute ST-segment elevation myocardial infarction. J. Am. Coll. Cardiol. 77, 1845–1855 (2021).

    Article  CAS  PubMed  Google Scholar 

  270. Li, R. G. et al. YAP induces a neonatal-like pro-renewal niche in the adult heart. Nat. Cardiovasc. Res. 3, 283–300 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Kim, E. E. et al. The transcription factor EBF1 non-cell-autonomously regulates cardiac growth and differentiation. Development 150, dev202054 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Chen, Y. et al. LDHA-mediated metabolic reprogramming promoted cardiomyocyte proliferation by alleviating ROS and inducing M2 macrophage polarization. Redox Biol. 56, 102446 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Marin-Garcia, J., Ananthakrishnan, R. & Goldenthal, M. J. Heart mitochondrial DNA and enzyme changes during early human development. Mol. Cell Biochem. 210, 47–52 (2000).

    Article  CAS  PubMed  Google Scholar 

  274. Warshaw, J. B. & Terry, M. L. Cellular energy metabolism during fetal development. II. Fatty acid oxidation by the developing heart. J. Cell Biol. 44, 354–360 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Lopaschuk, G. D., Collins-Nakai, R. L. & Itoi, T. Developmental changes in energy substrate use by the heart. Cardiovasc. Res. 26, 1172–1180 (1992).

    Article  CAS  PubMed  Google Scholar 

  276. Menendez-Montes, I. et al. Myocardial VHL-HIF signaling controls an embryonic metabolic switch essential for cardiac maturation. Dev. Cell 39, 724–739 (2016).

    Article  CAS  PubMed  Google Scholar 

  277. Neary, M. T. et al. Hypoxia signaling controls postnatal changes in cardiac mitochondrial morphology and function. J. Mol. Cell Cardiol. 74, 340–352 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Vega, R. B., Horton, J. L. & Kelly, D. P. Maintaining ancient organelles: mitochondrial biogenesis and maturation. Circ. Res. 116, 1820–1834 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Nichtová, Z. et al. Enhanced mitochondria-SR tethering triggers adaptive cardiac muscle remodeling. Circ. Res. 132, e171–e187 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  280. Paredes, A. et al. γ-Linolenic acid in maternal milk drives cardiac metabolic maturation. Nature 618, 365–373 (2023).

    Article  CAS  PubMed  Google Scholar 

  281. Schraps, N. et al. Cardiomyocyte maturation alters molecular stress response capacities and determines cell survival upon mitochondrial dysfunction. Free. Radic. Biol. Med. 213, 248–265 (2024).

    Article  CAS  PubMed  Google Scholar 

  282. Puente, B. N. et al. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell 157, 565–579 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Randle, P. J., Garland, P. B., Hales, C. N. & Newsholme, E. A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1, 785–789 (1963).

    Article  CAS  PubMed  Google Scholar 

  284. Nakada, Y. et al. Hypoxia induces heart regeneration in adult mice. Nature 541, 222–227 (2017).

    Article  CAS  PubMed  Google Scholar 

  285. Jopling, C., Suñé, G., Faucherre, A., Fabregat, C. & Izpisua Belmonte, J. C. Hypoxia induces myocardial regeneration in zebrafish. Circulation 126, 3017–3027 (2012).

    Article  PubMed  Google Scholar 

  286. Johnson, J. et al. Systemic hypoxemia induces cardiomyocyte hypertrophy and right ventricular specific induction of proliferation. Circ. Res. 132, 723–740 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Ye, L. et al. Role of blood oxygen saturation during post-natal human cardiomyocyte cell cycle activities. JACC Basic. Transl. Sci. 5, 447–460 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  288. Rigaud, V. O. et al. UCP2 modulates cardiomyocyte cell cycle activity, acetyl-CoA, and histone acetylation in response to moderate hypoxia. JCI Insight 7, e155475 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  289. Kimura, W. et al. Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart. Nature 523, 226–230 (2015).

    Article  CAS  PubMed  Google Scholar 

  290. Zou, J. et al. Neddylation is required for perinatal cardiac development through stimulation of metabolic maturation. Cell Rep. 42, 112018 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Fan, Q. et al. Depletion of endothelial prolyl hydroxylase domain protein 2 and 3 promotes cardiomyocyte proliferation and prevents ventricular failure induced by myocardial infarction. Circulation 140, 440–442 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Kaelin, W. G. J. & Ratcliffe, P. J. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell 30, 393–402 (2008).

    Article  CAS  PubMed  Google Scholar 

  293. Blasco, N. et al. Involvement of the mitochondrial nuclease EndoG in the regulation of cell proliferation through the control of reactive oxygen species. Redox Biol. 37, 101736 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. McDermott-Roe, C. et al. Endonuclease G is a novel determinant of cardiac hypertrophy and mitochondrial function. Nature 478, 114–118 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  295. Cohen, E. D. et al. Neonatal hyperoxia inhibits proliferation and survival of atrial cardiomyocytes by suppressing fatty acid synthesis. JCI Insight 6, e140785 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  296. Cui, M. et al. Nrf1 promotes heart regeneration and repair by regulating proteostasis and redox balance. Nat. Commun. 12, 5270 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Zhang, D. et al. Mitochondrial cardiomyopathy caused by elevated reactive oxygen species and impaired cardiomyocyte proliferation. Circ. Res. 122, 74–87 (2018).

    Article  CAS  PubMed  Google Scholar 

  298. Waypa, G. B. et al. Mitochondria regulate proliferation in adult cardiac myocytes. J. Clin. Invest. 134, e165482 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Cardoso, A. C. et al. Mitochondrial substrate utilization regulates cardiomyocyte cell cycle progression. Nat. Metab. 2, 167–178 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Gao, F. et al. Reduced mitochondrial protein translation promotes cardiomyocyte proliferation and heart regeneration. Circulation 148, 1887–1906 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Pianca, N. et al. Glucocorticoid receptor antagonization propels endogenous cardiomyocyte proliferation and cardiac regeneration. Nat. Cardiovasc. Res. 1, 617–633 (2022).

    Article  CAS  PubMed  Google Scholar 

  302. Bae, J. et al. Malonate promotes adult cardiomyocyte proliferation and heart regeneration. Circulation 143, 1973–1986 (2021).

    Article  CAS  PubMed  Google Scholar 

  303. Luo, X. et al. The fatty acid receptor CD36 promotes HCC progression through activating Src/PI3K/AKT axis-dependent aerobic glycolysis. Cell Death Dis. 12, 328 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Chong, D. et al. Neonatal ketone body elevation regulates postnatal heart development by promoting cardiomyocyte mitochondrial maturation and metabolic reprogramming. Cell Discov. 8, 106 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Cheng, Y.-Y. et al. Metabolic changes associated with cardiomyocyte dedifferentiation enable adult mammalian cardiac regeneration. Circulation 146, 1950–1967 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Abouleisa, R. R. E. et al. Cell cycle induction in human cardiomyocytes is dependent on biosynthetic pathway activation. Redox Biol. 46, 102094 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Mohamed, T. M. A. et al. Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration. Cell 173, 104–116.e12 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Zhu, Y. et al. Asparagine synthetase marks a distinct dependency threshold for cardiomyocyte dedifferentiation. Circulation 149, 1833–1851 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Chen, Y. et al. Reversible reprogramming of cardiomyocytes to a fetal state drives heart regeneration in mice. Science 373, 1537–1540 (2021).

    Article  CAS  PubMed  Google Scholar 

  310. Williams, A. L. et al. HIF1 mediates a switch in pyruvate kinase isoforms after myocardial infarction. Physiol. Genomics 50, 479–494 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Hauck, L., Dadson, K., Chauhan, S., Grothe, D. & Billia, F. Inhibiting the Pkm2/b-catenin axis drives in vivo replication of adult cardiomyocytes following experimental MI. Cell Death Differ. 28, 1398–1417 (2021).

    Article  CAS  PubMed  Google Scholar 

  312. Israelsen, W. J. et al. PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells. Cell 155, 397–409 (2013).

    Article  CAS  PubMed  Google Scholar 

  313. Yuko, A. E. et al. LIN28a induced metabolic and redox regulation promotes cardiac cell survival in the heart after ischemic injury. Redox Biol. 47, 102162 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Li, Z. et al. The de novo purine synthesis enzyme Adssl1 promotes cardiomyocyte proliferation and cardiac regeneration. Sci. Signal. 17, eadn3285 (2024).

    Article  CAS  PubMed  Google Scholar 

  315. Nishiyama, C. et al. Prolonged myocardial regenerative capacity in neonatal opossum. Circulation 146, 125–139 (2022).

    Article  CAS  PubMed  Google Scholar 

  316. Tamai, T. et al. Rheb (Ras homologue enriched in brain)-dependent mammalian target of rapamycin complex 1 (mTORC1) activation becomes indispensable for cardiac hypertrophic growth after early postnatal period. J. Biol. Chem. 288, 10176–10187 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Garbern, J. C. et al. Inhibition of mTOR signaling enhances maturation of cardiomyocytes derived from human-induced pluripotent stem cells via p53-induced quiescence. Circulation 141, 285–300 (2020).

    Article  CAS  PubMed  Google Scholar 

  318. Paltzer, W. G. et al. mTORC1 regulates the metabolic switch of postnatal cardiomyocytes during regeneration. J. Mol. Cell Cardiol. 187, 15–25 (2024).

    Article  CAS  PubMed  Google Scholar 

  319. Du, J. et al. A small-molecule cocktail promotes mammalian cardiomyocyte proliferation and heart regeneration. Cell Stem Cell 29, 545–558.e13 (2022).

    Article  CAS  PubMed  Google Scholar 

  320. Fan, Y. et al. Phosphoproteomic analysis of neonatal regenerative myocardium revealed important roles of checkpoint kinase 1 via activating mammalian target of rapamycin c1/ribosomal protein s6 kinase b-1 pathway. Circulation 141, 1554–1569 (2020).

    Article  CAS  PubMed  Google Scholar 

  321. Shapiro, S. D. et al. Cyclin A2 induces cardiac regeneration after myocardial infarction through cytokinesis of adult cardiomyocytes. Sci. Transl. Med. 6, 224ra27 (2014).

    Article  PubMed  Google Scholar 

  322. Sun, J. et al. CCND2 modified mRNA activates cell cycle of cardiomyocytes in hearts with myocardial infarction in mice and pigs. Circ. Res. 133, 484–504 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Yan, R. et al. An enhancer-based gene-therapy strategy for spatiotemporal control of cargoes during tissue repair. Cell Stem Cell 30, 96–111.e6 (2023).

    Article  CAS  PubMed  Google Scholar 

  324. Riscal, R., Riquier-Morcant, B., Gadea, G. & Linares, L. K. Give and take: the reciprocal control of metabolism and cell cycle. Methods Mol. Biol. 2740, 155–168 (2024).

    Article  CAS  PubMed  Google Scholar 

  325. Shakked, A. et al. Redifferentiated cardiomyocytes retain residual dedifferentiation signatures and are protected against ischemic injury. Nat. Cardiovasc. Res. 2, 383–398 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Nguyen, P. D. et al. Interplay between calcium and sarcomeres directs cardiomyocyte maturation during regeneration. Science 380, 758–764 (2023).

    Article  CAS  PubMed  Google Scholar 

  327. Borden, A. et al. Transient introduction of miR-294 in the heart promotes cardiomyocyte cell cycle reentry after injury. Circ. Res. 125, 14–25 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Chen, J. et al. mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ. Res. 112, 1557–1566 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Huang, S. et al. Loss of super-enhancer-regulated circRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice. Circulation 139, 2857–2876 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Zhu, Y. et al. Overexpression of circRNA SNRK targets miR-103-3p to reduce apoptosis and promote cardiac repair through GSK3β/β-catenin pathway in rats with myocardial infarction. Cell Death Discov. 7, 84 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Raso, A. et al. A microRNA program regulates the balance between cardiomyocyte hyperplasia and hypertrophy and stimulates cardiac regeneration. Nat. Commun. 12, 4808 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Chen, X.-Z. et al. TMEM11 regulates cardiomyocyte proliferation and cardiac repair via METTL1-mediated m7G methylation of ATF5 mRNA. Cell Death Differ. 30, 1786–1798 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Liang, T. et al. Loss of phosphatase and tensin homolog promotes cardiomyocyte proliferation and cardiac repair after myocardial infarction. Circulation 142, 2196–2199 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  334. Valussi, M. et al. Repression of Osmr and Fgfr1 by miR-1/133a prevents cardiomyocyte dedifferentiation and cell cycle entry in the adult heart. Sci. Adv. 7, eabi6648 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Eulalio, A. et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature 492, 376–381 (2012).

    Article  CAS  PubMed  Google Scholar 

  336. Ma, W. et al. The highly conserved PIWI-interacting RNA CRAPIR antagonizes PA2G4-mediated NF110-NF45 disassembly to promote heart regeneration in mice. Nat. Cardiovasc. Res. 4, 102–118 (2025).

    Article  CAS  PubMed  Google Scholar 

  337. Pilz, P. M. et al. Large and small animal models of heart failure with reduced ejection fraction. Circ. Res. 130, 1888–1905 (2022).

    Article  CAS  PubMed  Google Scholar 

  338. Karpurapu, A. et al. Deep learning resolves myovascular dynamics in the failing human heart. JACC Basic. Transl. Sci. 9, 674–686 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  339. Swift, S. K. et al. A broadly applicable method for quantifying cardiomyocyte cell division identifies proliferative events following myocardial infarction. Cell Rep. Methods 4, 100860 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Zong, H., Espinosa, J. S., Su, H. H., Muzumdar, M. D. & Luo, L. Mosaic analysis with double markers in mice. Cell 121, 479–492 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

E.v.R. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme (grant agreement 874764).

Author information

Authors and Affiliations

Authors

Contributions

T.K. researched data for the article, and both authors discussed its content. T.K. wrote the manuscript, and both authors reviewed/edited it before submission.

Corresponding author

Correspondence to Eva van Rooij.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Mauro Giacca and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koopmans, T., van Rooij, E. Molecular gatekeepers of endogenous adult mammalian cardiomyocyte proliferation. Nat Rev Cardiol 22, 857–882 (2025). https://doi.org/10.1038/s41569-025-01145-y

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41569-025-01145-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing