Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gene therapy for cardiac arrhythmias

Abstract

Cardiovascular diseases are the leading cause of death globally, with cardiac arrhythmias contributing substantially to this burden. Gene therapy, which directly targets the underlying disease pathobiology, offers an appealing treatment strategy for cardiac arrhythmias owing to its potential as a one-time, curative solution. Over the past two decades, substantial efforts have been made to develop new gene therapy approaches that overcome the limitations of conventional treatments. In this Review, we describe the rationale for gene therapy to treat cardiac arrhythmias; discuss advantages and disadvantages of gene silencing, gene replacement, gene suppression-and-replacement and gene editing technologies; summarize vector modalities and delivery approaches used in the field; present examples of gene therapy strategies used for atrial and ventricular arrhythmias; and highlight the current challenges and limitations in the gene therapy field.

Key points

  • Available treatments for cardiac arrhythmias mainly focus on symptom management, fail to address the underlying disease substrate and are associated with substantial adverse effects, which makes gene therapy a promising alternative.

  • Key gene therapy strategies in cardiology involve gene silencing, gene replacement, direct genome editing and hybrid gene suppression and replacement to address various cardiac conditions at the genetic level.

  • Vector delivery poses substantial challenges in achieving targeted gene transfer to the heart while minimizing off-target effects; however, promising strategies include receptor-mediated targeting and tissue-specific promoters to improve cardiac specificity.

  • Suppression-and-replacement gene therapy is a variant-independent approach that can be effective for any monogenic dominant-negative disease, and proof-of-principle therapeutic efficacy has been demonstrated in a transgenic rabbit model of type 1 long QT syndrome.

  • Challenges such as immune responses, delivery efficiency and the limited size capacity of viral vectors remain important barriers to the successful clinical translation of gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gene therapy strategies.
Fig. 2: Mechanisms underlying selected inherited cardiac arrhythmias.
Fig. 3: SupRep gene therapy for type 1 LQTS.

Similar content being viewed by others

References

  1. Al-Khatib, S. M. et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: executive summary: a report of the American college of cardiology/American heart association task force on Clinical Practice Guidelines and the Heart rhythm society. Circulation 138, e210–e271 (2018).

    PubMed  Google Scholar 

  2. Parameswaran, R., Al-Kaisey, A. M. & Kalman, J. M. Catheter ablation for atrial fibrillation: current indications and evolving technologies. Nat. Rev. Cardiol. 18, 210–225 (2021).

    Article  PubMed  Google Scholar 

  3. Ang, R. & Earley, M. J. The role of catheter ablation in the management of atrial fibrillation. Clin. Med. 16, 267–271 (2016).

    Article  Google Scholar 

  4. Benali, K. et al. Procedure-related complications of catheter ablation for atrial fibrillation. J. Am. Coll. Cardiol. 81, 2089–2099 (2023).

    Article  PubMed  Google Scholar 

  5. Wellens, H. J. Forty years of invasive clinical electrophysiology: 1967–2007. Circ. Arrhythm. Electrophysiol. 1, 49–53 (2008).

    Article  PubMed  Google Scholar 

  6. Cingolani, E., Goldhaber, J. I. & Marban, E. Next-generation pacemakers: from small devices to biological pacemakers. Nat. Rev. Cardiol. 15, 139–150 (2018).

    Article  PubMed  Google Scholar 

  7. Infeld, M. et al. Physiological pacing for the prevention and treatment of heart failure: a state-of-the-art review. J. Card. Fail. 30, 1614–1628 (2024).

    Article  PubMed  Google Scholar 

  8. Neves, R. et al. Precision therapy in congenital long QT syndrome. Trends Cardiovasc. Med. 34, 39–47 (2024).

    Article  PubMed  Google Scholar 

  9. Sebastian, S. A. et al. Precision medicine and cardiac channelopathies: human iPSCs take the lead. Curr. Probl. Cardiol. 48, 101990 (2023).

    Article  PubMed  Google Scholar 

  10. Krahn, A. D. et al. Congenital long QT syndrome. JACC Clin. Electrophysiol. 8, 687–706 (2022).

    Article  PubMed  Google Scholar 

  11. Bergeman, A. T., Wilde, A. A. M. & van der Werf, C. Catecholaminergic polymorphic ventricular tachycardia: a review of therapeutic strategies. Card. Electrophysiol. Clin. 15, 293–305 (2023).

    Article  PubMed  Google Scholar 

  12. Schwartz, P. J. & Ackerman, M. J. Cardiac sympathetic denervation in the prevention of genetically mediated life-threatening ventricular arrhythmias. Eur. Heart J. 43, 2096–2102 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kotta, M. C. et al. Calmodulinopathy: a novel, life-threatening clinical entity affecting the young. Front. Cardiovasc. Med. 5, 175 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pandit, M., Finn, C., Tahir, U. A. & Frishman, W. H. Congenital long QT syndrome: a review of genetic and pathophysiologic etiologies, phenotypic subtypes, and clinical management. Cardiol. Rev. 31, 318–324 (2023).

    Article  PubMed  Google Scholar 

  15. Huang, H. et al. Mechanisms of KCNQ1 channel dysfunction in long QT syndrome involving voltage sensor domain mutations. Sci. Adv. 4, eaar2631 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Anderson, C. L. et al. Large-scale mutational analysis of Kv11.1 reveals molecular insights into type 2 long QT syndrome. Nat. Commun. 5, 5535–5535 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Mehta, A. et al. Identification of a targeted and testable antiarrhythmic therapy for long-QT syndrome type 2 using a patient-specific cellular model. Eur. Heart J. 39, 1446–1455 (2017).

    Article  Google Scholar 

  18. Helms, A. S., Thompson, A. D. & Day, S. M. Translation of new and emerging therapies for genetic cardiomyopathies. JACC Basic. Transl. Sci. 7, 70–83 (2022).

    Article  PubMed  Google Scholar 

  19. Rinaldi, C. & Wood, M. J. A. Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat. Rev. Neurol. 14, 9–21 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Di Fusco, D. et al. Antisense oligonucleotide: basic concepts and therapeutic application in inflammatory bowel disease. Front. Pharmacol. 10, 305 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Migliorati, J. M. et al. Absorption, distribution, metabolism, and excretion of US Food and Drug Administration-approved antisense oligonucleotide drugs. Drug. Metab. Dispos. 50, 888–897 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cirak, S. et al. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 378, 595–605 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Servais, L. et al. Long-term safety and efficacy data of golodirsen in ambulatory patients with Duchenne muscular dystrophy amenable to exon 53 skipping: a first-in-human, multicenter, two-part, open-label, phase 1/2 trial. Nucleic Acid Ther. 32, 29–39 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Clemens, P. R. et al. Safety, tolerability, and efficacy of viltolarsen in boys with Duchenne muscular dystrophy amenable to exon 53 skipping: a phase 2 randomized clinical trial. JAMA Neurol. 77, 982–991 (2020).

    Article  PubMed  Google Scholar 

  25. Shirley, M. Casimersen: first approval. Drugs 81, 875–879 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Bortolin, R. H. et al. Antisense oligonucleotide therapy for calmodulinopathy. Circulation 150, 1199–1210 (2024).

    Article  CAS  PubMed  Google Scholar 

  27. Mandegar, M. A. et al. CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs. Cell Stem Cell 18, 541–553 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Limpitikul, W. B. et al. A precision medicine approach to the rescue of function on malignant calmodulinopathic long-QT syndrome. Circ. Res. 120, 39–48 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cai, X., Hagedorn, C. H. & Cullen, B. R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10, 1957–1966 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Singh, S., Narang, A. S. & Mahato, R. I. Subcellular fate and off-target effects of siRNA, shRNA, and miRNA. Pharm. Res. 28, 2996–3015 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Jackson, A. L. & Linsley, P. S. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat. Rev. Drug. Discov. 9, 57–67 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Whitehead, K. A., Langer, R. & Anderson, D. G. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug. Discov. 8, 129–138 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dong, Y., Siegwart, D. J. & Anderson, D. G. Strategies, design, and chemistry in siRNA delivery systems. Adv. Drug. Deliv. Rev. 144, 133–147 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Setten, R. L., Rossi, J. J. & Han, S. P. The current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug. Discov. 18, 421–446 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Zhu, Y., Zhu, L., Wang, X. & Jin, H. RNA-based therapeutics: an overview and prospectus. Cell Death Dis. 13, 644 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Paunovska, K., Loughrey, D. & Dahlman, J. E. Drug delivery systems for RNA therapeutics. Nat. Rev. Genet. 23, 265–280 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Padda, I. S., Mahtani, A. U., Patel, P. & Parmar, M. Small interfering RNA (siRNA) therapy. StatPearls https://www.ncbi.nlm.nih.gov/books/NBK580472/ (2024).

  39. Solomon, S. D. et al. Effects of patisiran, an RNA interference therapeutic, on cardiac parameters in patients with hereditary transthyretin-mediated amyloidosis. Circulation 139, 431–443 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 11–21 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Minamisawa, M. et al. Association of patisiran, an RNA interference therapeutic, with regional left ventricular myocardial strain in hereditary transthyretin amyloidosis: the APOLLO Study. JAMA Cardiol. 4, 466–472 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Habtemariam, B. A. et al. Single-dose pharmacokinetics and pharmacodynamics of transthyretin targeting N-acetylgalactosamine-small interfering ribonucleic acid conjugate, vutrisiran, in healthy subjects. Clin. Pharmacol. Ther. 109, 372–382 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Fontana, M. et al. Vutrisiran in patients with transthyretin amyloidosis with cardiomyopathy. N. Engl. J. Med. 392, 33–44 (2025).

    Article  CAS  PubMed  Google Scholar 

  44. Balwani, M. et al. Phase 3 trial of RNAi therapeutic givosiran for acute intermittent porphyria. N. Engl. J. Med. 382, 2289–2301 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Fitzgerald, K. et al. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial. Lancet 383, 60–68 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Fitzgerald, K. et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N. Engl. J. Med. 376, 41–51 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Ray, K. K. et al. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N. Engl. J. Med. 376, 1430–1440 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Ray, K. K. et al. Effect of an siRNA therapeutic targeting PCSK9 on atherogenic lipoproteins: prespecified secondary end points in ORION 1. Circulation 138, 1304–1316 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Ray, K. K. et al. Effect of 1 or 2 doses of inclisiran on low-density lipoprotein cholesterol levels: one-year follow-up of the ORION-1 randomized clinical trial. JAMA Cardiol. 4, 1067–1075 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ray, K. K. et al. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N. Engl. J. Med. 382, 1507–1519 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Raal, F. J. et al. Inclisiran for the treatment of heterozygous familial hypercholesterolemia. N. Engl. J. Med. 382, 1520–1530 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Garrelfs, S. F. et al. Lumasiran, an RNAi therapeutic for primary hyperoxaluria type 1. N. Engl. J. Med. 384, 1216–1226 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Syed, Y. Y. Nedosiran: first approval. Drugs 83, 1729–1733 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhai, Y. et al. Clinical features of Danon disease and insights gained from LAMP-2 deficiency models. Trends Cardiovasc. Med. 33, 81–89 (2023).

    Article  CAS  PubMed  Google Scholar 

  55. Manso, A. M. et al. Systemic AAV9.LAMP2B injection reverses metabolic and physiologic multiorgan dysfunction in a murine model of Danon disease. Sci. Transl. Med. 12, eaax1744 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Grisorio, L., Bongianino, R., Gianeselli, M. & Priori, S. G. Gene therapy for cardiac diseases: methods, challenges, and future directions. Cardiovasc. Res. 120, 1664–1682 (2024).

    Article  CAS  PubMed  Google Scholar 

  57. Santiago Castillo, D. et al. Overexpression of cardiac calsequestrin as a novel gene-therapy approach to treat CPVT1: in silico and in vivo proves of principle. Eur. Heart J. 44, ehad655.3135 (2023).

    Article  Google Scholar 

  58. Anttila, V. et al. Direct intramyocardial injection of VEGF mRNA in patients undergoing coronary artery bypass grafting. Mol. Ther. 31, 866–874 (2023).

    Article  CAS  PubMed  Google Scholar 

  59. Miake, J., Marban, E. & Nuss, H. B. Biological pacemaker created by gene transfer. Nature 419, 132–133 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Aistrup, G. L. et al. Targeted G-protein inhibition as a novel approach to decrease vagal atrial fibrillation by selective parasympathetic attenuation. Cardiovasc. Res. 83, 481–492 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kingwell, K. Base editors hit the clinic. Nat. Rev. Drug. Discov. 21, 545–547 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Porto, E. M., Komor, A. C., Slaymaker, I. M. & Yeo, G. W. Base editing: advances and therapeutic opportunities. Nat. Rev. Drug. Discov. 19, 839–859 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Naddaf, M. First trial of ‘base editing’ in humans lowers cholesterol — but raises safety concerns. Nature 623, 671–672 (2023).

    Article  CAS  PubMed  Google Scholar 

  65. Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Davis, J. R. et al. Efficient prime editing in mouse brain, liver and heart with dual AAVs. Nat. Biotechnol. 42, 253–264 (2024).

    Article  CAS  PubMed  Google Scholar 

  67. Wallace, E. et al. Long QT syndrome: genetics and future perspective. Pediatr. Cardiol. 40, 1419–1430 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Johansen, A. K. et al. Postnatal cardiac gene editing using CRISPR/Cas9 with AAV9-mediated delivery of short guide rnas results in mosaic gene disruption. Circ. Res. 121, 1168–1181 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Navarrete-Welton, A. et al. Low-efficiency gene editing is capable of suppressing arrhythmogenesis in long QT syndrome type II: computer simulation study. Circulation 148, A12241 (2023).

    Article  Google Scholar 

  70. Liu, M. B., Priori, S. G., Qu, Z. & Weiss, J. N. Stabilizer cell gene therapy: a less-is-more strategy to prevent cardiac arrhythmias. Circ. Arrhythm. Electrophysiol. 13, e008420 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bains, S. et al. KCNQ1 suppression-replacement gene therapy in transgenic rabbits with type 1 long QT syndrome. Eur. Heart J. 45, 3751–3763 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dai, W. J. et al. CRISPR–Cas9 for in vivo gene therapy: promise and hurdles. Mol. Ther. Nucleic Acids 5, e349 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gillmore, J. D. et al. CRISPR–Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. Chew, W. L. Immunity to CRISPR Cas9 and Cas12a therapeutics. Wiley Interdiscip. Rev. Syst. Biol. Med. 10, e1408 (2018).

    Article  Google Scholar 

  75. Dotzler, S. M. et al. Suppression-replacement KCNQ1 gene therapy for type 1 long QT syndrome. Circulation 143, 1411–1425 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Bains, S. et al. Suppression and replacement gene therapy for KCNH2-mediated arrhythmias. Circ. Genom. Precis. Med. 15, e003719 (2022).

    Article  CAS  PubMed  Google Scholar 

  77. Cheng, K. et al. Magnetic antibody-linked nanomatchmakers for therapeutic cell targeting. Nat. Commun. 5, 4880 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Qiu, J., Cai, G., Liu, X. & Ma, D. alphavbeta3 integrin receptor specific peptide modified, salvianolic acid B and panax notoginsenoside loaded nanomedicine for the combination therapy of acute myocardial ischemia. Biomed. Pharmacother. 96, 1418–1426 (2017).

    Article  CAS  PubMed  Google Scholar 

  79. Spivak, M. Y. et al. Development and testing of gold nanoparticles for drug delivery and treatment of heart failure: a theranostic potential for PPP cardiology. EPMA J. 4, 20 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zhang, J., Ma, A. & Shang, L. Conjugating existing clinical drugs with gold nanoparticles for better treatment of heart diseases. Front. Physiol. 9, 642 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sahoo, S., Kariya, T. & Ishikawa, K. Targeted delivery of therapeutic agents to the heart. Nat. Rev. Cardiol. 18, 389–399 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Turnbull, I. C. et al. Myocardial delivery of lipidoid nanoparticle carrying modRNA induces rapid and transient expression. Mol. Ther. 24, 66–75 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Castellani, C. et al. Poly(lipoic acid)-based nanoparticles as a new therapeutic tool for delivering active molecules. Nanomedicine 45, 102593 (2022).

    Article  CAS  PubMed  Google Scholar 

  85. Zhao, J. et al. Lentiviral vectors for delivery of genes into neonatal and adult ventricular cardiac myocytes in vitro and in vivo. Basic. Res. Cardiol. 97, 348–358 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267 (1996).

    Article  CAS  PubMed  Google Scholar 

  87. Fleury, S. et al. Multiply attenuated, self-inactivating lentiviral vectors efficiently deliver and express genes for extended periods of time in adult rat cardiomyocytes in vivo. Circulation 107, 2375–2382 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Bongianino, R. & Priori, S. G. Gene therapy to treat cardiac arrhythmias. Nat. Rev. Cardiol. 12, 531–546 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Hacein-Bey-Abina, S. et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N. Engl. J. Med. 348, 255–256 (2003).

    Article  PubMed  Google Scholar 

  90. Penaud-Budloo, M. et al. Adeno-associated virus vector genomes persist as episomal chromatin in primate muscle. J. Virol. 82, 7875–7885 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nathwani, A. C. et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N. Engl. J. Med. 371, 1994–2004 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Nathwani, A. C. Gene therapy for hemophilia. Hematol. Am. Soc. Hematol. Educ. Program. 2022, 569–578 (2022).

    Article  Google Scholar 

  93. Buchlis, G. et al. Factor IX expression in skeletal muscle of a severe hemophilia B patient 10 years after AAV-mediated gene transfer. Blood 119, 3038–3041 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wilson, J. M. & Flotte, T. R. Moving forward after two deaths in a gene therapy trial of myotubular myopathy. Hum. Gene Ther. 31, 695–696 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Hinderer, C. et al. Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN. Hum. Gene Ther. 29, 285–298 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Flotte, T. R. E.-I.-C. Revisiting the ‘new’ inflammatory toxicities of adeno-associated virus vectors. Hum. Gene Ther. 31, 398–399 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. Mingozzi, F. & High, K. A. Overcoming the host immune response to adeno-associated virus gene delivery vectors: the race between clearance, tolerance, neutralization, and escape. Annu. Rev. Virol. 4, 511–534 (2017).

    Article  CAS  PubMed  Google Scholar 

  98. Tornabene, P. et al. Intein-mediated protein trans-splicing expands adeno-associated virus transfer capacity in the retina. Sci. Transl. Med. 11, eaav4523 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Asokan, A. et al. Reengineering a receptor footprint of adeno-associated virus enables selective and systemic gene transfer to muscle. Nat. Biotechnol. 28, 79–82 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Weinmann, J. et al. Identification of a myotropic AAV by massively parallel in vivo evaluation of barcoded capsid variants. Nat. Commun. 11, 5432 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tabebordbar, M. et al. Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species. Cell 184, 4919–4938.e22 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Louis Jeune, V., Joergensen, J. A., Hajjar, R. J. & Weber, T. Pre-existing anti-adeno-associated virus antibodies as a challenge in AAV gene therapy. Hum. Gene Ther. Methods 24, 59–67 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Li, X. et al. Extracellular vesicle-encapsulated adeno-associated viruses for therapeutic gene delivery to the heart. Circulation 148, 405–425 (2023).

    Article  CAS  PubMed  Google Scholar 

  104. Leborgne, C. et al. IgG-cleaving endopeptidase enables in vivo gene therapy in the presence of anti-AAV neutralizing antibodies. Nat. Med. 26, 1096–1101 (2020).

    Article  CAS  PubMed  Google Scholar 

  105. Elmore, Z. C., Oh, D. K., Simon, K. E., Fanous, M. M. & Asokan, A. Rescuing AAV gene transfer from neutralizing antibodies with an IgG-degrading enzyme. JCI Insight 5, e139881 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Schulz, M. et al. Binding and neutralizing anti-AAV antibodies: detection and implications for rAAV-mediated gene therapy. Mol. Ther. 31, 616–630 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Blaese, R. M. et al. T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years. Science 270, 475–480 (1995).

    Article  CAS  PubMed  Google Scholar 

  108. Sibbald, B. Death but one unintended consequence of gene-therapy trial. CMAJ 164, 1612 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Lek, A. et al. Death after high-dose rAAV9 gene therapy in a patient with Duchenne’s muscular dystrophy. N. Engl. J. Med. 389, 1203–1210 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Horn, S. & Fehse, B. How safe is gene therapy? Second death after Duchenne therapy. Inn. Med. 65, 617–623 (2024).

    Google Scholar 

  111. Pacak, C. A., Sakai, Y., Thattaliyath, B. D., Mah, C. S. & Byrne, B. J. Tissue specific promoters improve specificity of AAV9 mediated transgene expression following intra-vascular gene delivery in neonatal mice. Genet. Vaccines Ther. 6, 13 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Domenger, C. & Grimm, D. Next-generation AAV vectors-do not judge a virus (only) by its cover. Hum. Mol. Genet. 28, R3–R14 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. Skopenkova, V. V., Egorova, T. V. & Bardina, M. V. Muscle-specific promoters for gene therapy. Acta Nat. 13, 47–58 (2021).

    Article  CAS  Google Scholar 

  114. Jeon, J. Y., Ayyar, V. S. & Mitra, A. Pharmacokinetic and pharmacodynamic modeling of siRNA therapeutics — a minireview. Pharm. Res. 39, 1749–1759 (2022).

    Article  CAS  PubMed  Google Scholar 

  115. Lugin, M. L., Lee, R. T. & Kwon, Y. J. Synthetically engineered adeno-associated virus for efficient, safe, and versatile gene therapy applications. ACS Nano 14, 14262–14283 (2020).

    Article  CAS  PubMed  Google Scholar 

  116. Xie, Y., Sato, D., Garfinkel, A., Qu, Z. & Weiss, J. N. So little source, so much sink: requirements for afterdepolarizations to propagate in tissue. Biophys. J. 99, 1408–1415 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. US National Library of Medicine. Phase IA and IB study of AAVrh.10hFXN gene therapy for the cardiomyopathy of Friedreich’s ataxia. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05302271 (2024).

  118. US National Library of Medicine. A gene therapy study of RP-A501 in male patients with Danon disease. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06092034 (2025).

  119. US National Library of Medicine. Multi-center, open-label, single-ascending dose study of safety and tolerability of TN-201 in adults with symptomatic MYBPC3 mutation-associated HCM (MyPEAK-1). ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05836259 (2024).

  120. US National Library of Medicine. A phase 1, dose escalation trial of RP-A601 in subjects with PKP2 variant-mediated arrhythmogenic cardiomyopathy (PKP2-ACM). ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05885412 (2024).

  121. US National Library of Medicine. Open-label, dose escalation study of safety and preliminary efficacy of TN-401 in adults with PKP2 mutation-associated ARVC (RIDGE-1). ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06228924 (2025).

  122. Ravindran, D. et al. Gene and cell therapy for cardiac arrhythmias. Clin. Ther. 42, 1911–1922 (2020).

    Article  CAS  PubMed  Google Scholar 

  123. Farraha, M., Kumar, S., Chong, J., Cho, H. C. & Kizana, E. Gene therapy approaches to biological pacemakers. J. Cardiovasc. Dev. Dis. 5, 50 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Kapoor, N., Liang, W., Marban, E. & Cho, H. C. Direct conversion of quiescent cardiomyocytes to pacemaker cells by expression of Tbx18. Nat. Biotechnol. 31, 54–62 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Hu, Y. F., Dawkins, J. F., Cho, H. C., Marban, E. & Cingolani, E. Biological pacemaker created by minimally invasive somatic reprogramming in pigs with complete heart block. Sci. Transl. Med. 6, 245ra294 (2014).

    Article  Google Scholar 

  126. Miake, J., Marban, E. & Nuss, H. B. Functional role of inward rectifier current in heart probed by Kir2.1 overexpression and dominant-negative suppression. J. Clin. Invest. 111, 1529–1536 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Qu, J. et al. Expression and function of a biological pacemaker in canine heart. Circulation 107, 1106–1109 (2003).

    Article  PubMed  Google Scholar 

  128. Bucchi, A. et al. Wild-type and mutant HCN channels in a tandem biological-electronic cardiac pacemaker. Circulation 114, 992–999 (2006).

    Article  PubMed  Google Scholar 

  129. Boink, G. J. et al. HCN2/SkM1 gene transfer into canine left bundle branch induces stable, autonomically responsive biological pacing at physiological heart rates. J. Am. Coll. Cardiol. 61, 1192–1201 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Protze, S. I. et al. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nat. Biotechnol. 35, 56–68 (2017).

    Article  CAS  PubMed  Google Scholar 

  131. Zhuang, R. Z., Lock, R., Liu, B. & Vunjak-Novakovic, G. Opportunities and challenges in cardiac tissue engineering from an analysis of two decades of advances. Nat. Biomed. Eng. 6, 327–338 (2022).

    Article  PubMed  Google Scholar 

  132. Bruegmann, T. et al. Optogenetic control of heart muscle in vitro and in vivo. Nat. Methods 7, 897–900 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Arrenberg, A. B., Stainier, D. Y., Baier, H. & Huisken, J. Optogenetic control of cardiac function. Science 330, 971–974 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Jiang, C. et al. Cardiac optogenetics: a novel approach to cardiovascular disease therapy. Europace 20, 1741–1749 (2018).

    PubMed  Google Scholar 

  135. Khawajakhail, R. et al. Advancements in gene therapy approaches for atrial fibrillation: targeted delivery, mechanistic insights and future prospects. Curr. Probl. Cardiol. 49, 102431 (2024).

    Article  PubMed  Google Scholar 

  136. Amit, G. et al. Selective molecular potassium channel blockade prevents atrial fibrillation. Circulation 121, 2263–2270 (2010).

    Article  CAS  PubMed  Google Scholar 

  137. Soucek, R. et al. Genetic suppression of atrial fibrillation using a dominant-negative ether-a-go-go-related gene mutant. Heart Rhythm. 9, 265–272 (2012).

    Article  PubMed  Google Scholar 

  138. Gaborit, N. et al. Human atrial ion channel and transporter subunit gene-expression remodeling associated with valvular heart disease and atrial fibrillation. Circulation 112, 471–481 (2005).

    Article  PubMed  Google Scholar 

  139. Fedida, D. et al. Kv1.5 is an important component of repolarizing K+ current in canine atrial myocytes. Circ. Res. 93, 744–751 (2003).

    Article  CAS  PubMed  Google Scholar 

  140. Bikou, O. et al. Connexin 43 gene therapy prevents persistent atrial fibrillation in a porcine model. Cardiovasc. Res. 92, 218–225 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Igarashi, T. et al. Connexin gene transfer preserves conduction velocity and prevents atrial fibrillation. Circulation 125, 216–225 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Kunamalla, A. et al. Constitutive expression of a dominant-negative TGF-beta type II receptor in the posterior left atrium leads to beneficial remodeling of atrial fibrillation substrate. Circ. Res. 119, 69–82 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Trappe, K. et al. Suppression of persistent atrial fibrillation by genetic knockdown of caspase 3: a pre-clinical pilot study. Eur. Heart J. 34, 147–157 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Lau, D. H. et al. Epicardial border zone overexpression of skeletal muscle sodium channel SkM1 normalizes activation, preserves conduction, and suppresses ventricular arrhythmia: an in silico, in vivo, in vitro study. Circulation 119, 19–27 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. Caporali, A. et al. Non-coding RNAs as therapeutic targets and biomarkers in ischaemic heart disease. Nat. Rev. Cardiol. 21, 556–573 (2024).

    Article  PubMed  Google Scholar 

  146. Lu, D. & Thum, T. RNA-based diagnostic and therapeutic strategies for cardiovascular disease. Nat. Rev. Cardiol. 16, 661–674 (2019).

    Article  PubMed  Google Scholar 

  147. Wu, X., Reboll, M. R., Korf-Klingebiel, M. & Wollert, K. C. Angiogenesis after acute myocardial infarction. Cardiovasc. Res. 117, 1257–1273 (2021).

    Article  CAS  PubMed  Google Scholar 

  148. Cannata, A., Ali, H., Sinagra, G. & Giacca, M. Gene therapy for the heart lessons learned and future perspectives. Circ. Res. 126, 1394–1414 (2020).

    Article  CAS  PubMed  Google Scholar 

  149. Rohatgi, R. K. et al. Contemporary outcomes in patients with long QT syndrome. J. Am. Coll. Cardiol. 70, 453–462 (2017).

    Article  PubMed  Google Scholar 

  150. Martinez, K. et al. Spectrum and prevalence of side effects and complications with guideline-directed therapies for congenital long QT syndrome. Heart Rhythm. 19, 1666–1672 (2022).

    Article  PubMed  Google Scholar 

  151. Denegri, M. et al. Viral gene transfer rescues arrhythmogenic phenotype and ultrastructural abnormalities in adult calsequestrin-null mice with inherited arrhythmias. Circ. Res. 110, 663–668 (2012).

    Article  CAS  PubMed  Google Scholar 

  152. Denegri, M. et al. Single delivery of an adeno-associated viral construct to transfer the CASQ2 gene to knock-in mice affected by catecholaminergic polymorphic ventricular tachycardia is able to cure the disease from birth to advanced age. Circulation 129, 2673–2681 (2014).

    Article  CAS  PubMed  Google Scholar 

  153. Bongianino, R. et al. Allele-specific silencing of mutant mRNA rescues ultrastructural and arrhythmic phenotype in mice carriers of the R4496C mutation in the ryanodine receptor gene (RYR2). Circ. Res. 121, 525–536 (2017).

    Article  CAS  PubMed  Google Scholar 

  154. Pan, X. et al. In vivo Ryr2 editing corrects catecholaminergic polymorphic ventricular tachycardia. Circ. Res. 123, 953–963 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Bezzerides, V. J. et al. Gene therapy for catecholaminergic polymorphic ventricular tachycardia by inhibition of Ca2+/calmodulin-dependent kinase II. Circulation 140, 405–419 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Liu, B. et al. Gene transfer of engineered calmodulin alleviates ventricular arrhythmias in a calsequestrin-associated mouse model of catecholaminergic polymorphic ventricular tachycardia. J. Am. Heart Assoc. 7, e008155 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Matsa, E. et al. Allele-specific RNA interference rescues the long-QT syndrome phenotype in human-induced pluripotency stem cell cardiomyocytes. Eur. Heart J. 35, 1078–1087 (2014).

    Article  CAS  PubMed  Google Scholar 

  158. Lu, X. et al. RNA interference targeting E637K mutation rescues hERG channel currents and restores its kinetic properties. Heart Rhythm. 10, 128–136 (2013).

    Article  PubMed  Google Scholar 

  159. Cocera-Ortega, L. et al. shRNAs targeting a common KCNQ1 variant could alleviate long-QT1 disease severity by inhibiting a mutant allele. Int. J. Mol. Sci. 23, 4053 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Brunner, M. et al. Mechanisms of cardiac arrhythmias and sudden death in transgenic rabbits with long QT syndrome. J. Clin. Invest. 118, 2246–2259 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Hamrick, S. K. et al. Single construct suppression and replacement gene therapy for the treatment of all CALM1-, CALM2-, and CALM3-mediated arrhythmia disorders. Circ. Arrhythm. Electrophysiol. 17, e012036 (2024).

    Article  CAS  PubMed  Google Scholar 

  162. Bains, S., Giudicessi, J. R., Odening, K. E. & Ackerman, M. J. State of gene therapy for monogenic cardiovascular diseases. Mayo Clin. Proc. 99, 610–629 (2024).

    Article  CAS  PubMed  Google Scholar 

  163. Yu, G. et al. Gene therapy targeting protein trafficking regulator MOG1 in mouse models of Brugada syndrome, arrhythmias, and mild cardiomyopathy. Sci. Transl. Med. 14, eabf3136 (2022).

    Article  CAS  PubMed  Google Scholar 

  164. Qi, M. et al. In vivo base editing of Scn5a rescues type 3 long QT syndrome in mice. Circulation 149, 317–329 (2024).

    Article  CAS  PubMed  Google Scholar 

  165. Kyriakopoulou, E. et al. Therapeutic efficacy of AAV-mediated restoration of PKP2 in arrhythmogenic cardiomyopathy. Nat. Cardiovasc. Res. 2, 1262–1276 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Bradford, W. H. et al. Plakophilin 2 gene therapy prevents and rescues arrhythmogenic right ventricular cardiomyopathy in a mouse model harboring patient genetics. Nat. Cardiovasc. Res. 2, 1246–1261 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. US National Library of Medicine. Gene therapy for ACM due to a PKP2 pathogenic variant. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT06109181 (2025).

  168. US National Library of Medicine. Study of AOC 1001 in adult myotonic dystrophy type 1 (DM1) patients (MARINA). ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05027269 (2024).

  169. Li, J. H., Liu, L. & Zhao, X. H. Precision targeting in oncology: the future of conjugated drugs. Biomed. Pharmacother. 177, 117106 (2024).

    Article  CAS  PubMed  Google Scholar 

  170. Patel, A., Zhao, J., Duan, D. & Lai, Y. Design of AAV vectors for delivery of large or multiple transgenes. Methods Mol. Biol. 1950, 19–33 (2019).

    Article  CAS  PubMed  Google Scholar 

  171. Mendell, J. R. et al. Assessment of systemic delivery of rAAVrh74.MHCK7.micro-dystrophin in children with Duchenne muscular dystrophy: a nonrandomized controlled trial. JAMA Neurol. 77, 1122–1131 (2020).

    Article  PubMed  Google Scholar 

  172. Blackwell, D. J., Schmeckpeper, J. & Knollmann, B. C. Animal models to study cardiac arrhythmias. Circ. Res. 130, 1926–1964 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Clauss, S. et al. Animal models of arrhythmia: classic electrophysiology to genetically modified large animals. Nat. Rev. Cardiol. 16, 457–475 (2019).

    Article  PubMed  Google Scholar 

  174. Odening, K. E. et al. ESC working group on cardiac cellular electrophysiology position paper: relevance, opportunities, and limitations of experimental models for cardiac electrophysiology research. Europace 23, 1795–1814 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Vermeulen, J. T. et al. Triggered activity and automaticity in ventricular trabeculae of failing human and rabbit hearts. Cardiovasc. Res. 28, 1547–1554 (1994).

    Article  CAS  PubMed  Google Scholar 

  176. Nerbonne, J. M. Molecular basis of functional voltage-gated K+ channel diversity in the mammalian myocardium. J. Physiol. 525, 285–298 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.B. thanks the Mayo Clinic Medical Scientist Training Program for fostering an outstanding environment for physician–scientist training. M.J.A. is supported by the Mayo Clinic Windland Smith Rice Comprehensive Sudden Cardiac Death Program, Rochester, MN, USA.

Author information

Authors and Affiliations

Authors

Contributions

S.B. researched data for the article and wrote the manuscript. All the authors discussed its content and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Michael J. Ackerman.

Ethics declarations

Competing interests

S.B. and the Mayo Clinic have a license agreement with Solid Biosciences. M.J.A. is a consultant for Abbott, Boston Scientific, Bristol Myers Squibb, Daichii Sankyo, Illumina, Invitae, Medtronic, Tenaya Therapeutics and UpToDate. M.J.A. and the Mayo Clinic have license agreements with AliveCor, Anumana, ARMGO Pharma, Prolaio, Solid Biosciences and Thryv Therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Lia Crotti, who coreviewed with Luca Sala, and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bains, S., Giudicessi, J.R., Odening, K.E. et al. Gene therapy for cardiac arrhythmias. Nat Rev Cardiol (2025). https://doi.org/10.1038/s41569-025-01168-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41569-025-01168-5

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research