Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Multimodal, device-based therapeutic targeting of the cardiovascular autonomic nervous system

Abstract

The miniaturization of implantable sensors and actuators, combined with advances in interactive modelling and high-resolution imaging, is propelling the use of medical devices for counteracting impaired neural control of the cardiovascular system. In this Review, we discuss the current effectiveness of this technology for modulating autonomic activity in numerous cardiovascular conditions, including high blood pressure, heart failure and cardiac arrhythmias. We advocate for smarter closed-loop bionic devices fitted with feedback from multiple sensors to allow adaptive, state-dependent control, and discuss how the adoption of artificial intelligence technology would facilitate auto-personalization to meet the needs of patients. We also describe how transcriptomics of autonomic circuits can guide device-based approaches. Finally, the use of stem cell therapies to target sympathetic circuits more precisely will help to optimize the therapeutic effects of autonomic modulation for the treatment of arrhythmia. For bioelectronic medicine to achieve clinical utility in neurocardiology, these innovations must demonstrate improved efficacy beyond that offered by contemporary interventions.

Key points

  • Emerging evidence suggests that bioelectronic strategies that involve the site-specific targeting of the autonomic circuit could be used to treat cardiovascular diseases, including arrhythmia, heart failure and neurogenic hypertension.

  • Advances in implantable sensor technology and device miniaturization, together with the design of closed-loop bioelectronics linked to multi-feedback sensors, should contribute to the development of therapies to modulate autonomic nervous system activity.

  • Combining artificial intelligence and machine learning technologies with novel neuroceutical devices could result in optimized and personalized parameter set points that respond to physiological feedback within a closed-loop system, thereby enabling dynamic state-dependent adjustment.

  • Advances in Bluetooth technology might facilitate real-time device readout, effectiveness and feedback dosing of neuroceutical devices.

  • The use of transcriptomics to understand whether visceral reflex pathways are associated with distinct phenotypes might enable highly selective functional neuromodulation in device-based medicine.

  • The autografting of novel biomaterials into the autonomic nervous system or to the end organ, such as the heart, to alter excitability with closed-loop bioelectronics is promising for the treatment of arrhythmias.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Integrative sensory neural control of the blood circulation mediated by the autonomic nervous system.
Fig. 2: Autonomic dysregulation and pathological phenotypes in heart failure.
Fig. 3: Proposed configurations of neuroceutical device actuators with incorporated sensory feedback and AI–ML technologies for treating cardiac diseases.
Fig. 4: Making neuroceuticals more physiological with closed-loop feedback.
Fig. 5: Phenotypically distinct afferents from carotid body driving the sympathetic nervous system.
Fig. 6: High-resolution and high-fidelity computational model of closed-loop control of cardiac physiology incorporating molecular, anatomical and connectome details of the central and peripheral autonomic nervous circuits.
Fig. 7: Global data repository of autonomic nervous system data for high resolution mapping on common cardiovascular scaffolds.
Fig. 8: Novel targeting of multifunctional cardiac sympathetic neurons in inherited cardiac arrhythmias.
Fig. 9: Future interventional approaches and targets for restoring autonomic imbalance in cardiovascular disease.

Similar content being viewed by others

References

  1. Zhu, C. et al. High-resolution structure-function mapping of intact hearts reveals altered sympathetic control of infarct border zones. JCI Insight 7, e153913 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhou, L. et al. Wireless self-powered optogenetic system for long-term cardiac neuromodulation to improve post-MI cardiac remodeling and malignant arrhythmia. Adv. Sci. 10, e2205551 (2023).

    Article  Google Scholar 

  3. Sharma, K. et al. Long-term follow-up of patients with heart failure and reduced ejection fraction receiving autonomic regulation therapy in the ANTHEM-HF pilot study. Int. J. Cardiol. 323, 175–178 (2021).

    Article  PubMed  Google Scholar 

  4. Schwartz, P. J. & Ackerman, M. J. Cardiac sympathetic denervation in the prevention of genetically mediated life-threatening ventricular arrhythmias. Eur. Heart J. 43, 2096–2102 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. La Rovere, M. T., Porta, A. & Schwartz, P. J. Autonomic control of the heart and its clinical impact. a personal perspective. Front. Physiol. 11, 582 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Horn, C. C., Ardell, J. L. & Fisher, L. E. Electroceutical targeting of the autonomic nervous system. Physiology 34, 150–162 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Herring, N., Kalla, M. & Paterson, D. J. The autonomic nervous system and cardiac arrhythmias: current concepts and emerging therapies. Nat. Rev. Cardiol. 16, 707–726 (2019).

    Article  PubMed  Google Scholar 

  8. Hanna, P. et al. Neuroscientific therapies for atrial fibrillation. Cardiovasc. Res. 117, 1732–1745 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hadaya, J. & Ardell, J. L. Autonomic modulation for cardiovascular disease. Front. Physiol. 11, 617459 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tonko, J. B. & Lambiase, P. D. The proarrhythmogenic role of autonomics and emerging neuromodulation approaches to prevent sudden death in cardiac ion channelopathies. Cardiovasc. Res. 120, 114–131 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stimulating Peripheral Activity to Relieve Conditions (SPARC). National Institutes of Health, and Office of Strategic Coordination-The Common Fund https://commonfund.nih.gov/sparc (2025).

  12. University of Minnesota awarded $21M to lead research revealing effects of vagus nerve stimulation in humans. University of Minnesota https://twin-cities.umn.edu/news-events/university-minnesota-awarded-21m-lead-research-revealing-effects-vagus-nerve (2022).

  13. Paterson, D. J. & Shivkumar, K. Bioelectronics for neurocardiology: diagnosis and therapeutics. Eur. Heart J. 44, 4822–4825 (2023).

    Article  PubMed  Google Scholar 

  14. Habecker, B. A. et al. Molecular and cellular neurocardiology in heart disease. J. Physiol. 603, 1689–1728 (2025).

    Article  CAS  PubMed  Google Scholar 

  15. Herring, N. et al. Neurocardiology: translational advancements and potential. J. Physiol. 603, 1729–1779 (2025).

    Article  CAS  PubMed  Google Scholar 

  16. Mori, S. & Shivkumar, K. Atlas of Cardiac Anatomy (Cardiotext, 2022).

  17. Osanlouy, M. et al. The SPARC DRC: building a resource for the autonomic nervous system community. Front. Physiol. 12, 693735 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zera, T., Moraes, D. J. A., da Silva, M. P., Fisher, J. P. & Paton, J. F. R. The logic of carotid body connectivity to the brain. Physiology 34, 264–282 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Moss, A. et al. A single cell transcriptomics map of paracrine networks in the intrinsic cardiac nervous system. iScience 24, 102713 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gorky, J., Moss, A., Balycheva, M., Vadigepalli, R. & Schwaber, J. S. Input–output signal processing plasticity of vagal motor neurons in response to cardiac ischemic injury. iScience 24, 102143 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gee, M. M. et al. Unpacking the multimodal, multi-scale data of the fast and slow lanes of the cardiac vagus through computational modelling. Exp. Physiol. 109, 1994–2000 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ran, C., Boettcher, J. C., Kaye, J. A., Gallori, C. E. & Liberles, S. D. A brainstem map for visceral sensations. Nature 609, 320–326 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bin, N. R. et al. An airway-to-brain sensory pathway mediates influenza-induced sickness. Nature 615, 660–667 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dvoryanchikov, G. et al. Transcriptomes and neurotransmitter profiles of classes of gustatory and somatosensory neurons in the geniculate ganglion. Nat. Commun. 8, 760 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kupari, J., Häring, M., Agirre, E., Castelo-Branco, G. & Ernfors, P. An atlas of vagal sensory neurons and their molecular specialization. Cell Rep. 27, 2508–2523 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Prescott, S. L., Umans, B. D., Williams, E. K., Brust, R. D. & Liberles, S. D. An airway protection program revealed by sweeping genetic control of vagal afferents. Cell 181, 574–589.e514 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zheng, Y. et al. Deep sequencing of somatosensory neurons reveals molecular determinants of intrinsic physiological properties. Neuron 103, 598–616.e597 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mazzone, S. B. et al. Transcriptional profiling of individual airway projecting vagal sensory neurons. Mol. Neurobiol. 57, 949–963 (2020).

    Article  PubMed  Google Scholar 

  29. Brierley, D. I. & de Lartigue, G. Reappraising the role of the vagus nerve in GLP-1-mediated regulation of eating. Br. J. Pharmacol. 179, 584–599 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Bai, L. et al. Genetic identification of vagal sensory neurons that control feeding. Cell 179, 1129–1143.e1123 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Moss, A., Kuttippurathu, L., Srivastava, A., Schwaber, J. S. & Vadigepalli, R. Dynamic dysregulation of transcriptomic networks in brainstem autonomic nuclei during hypertension development in the female spontaneously hypertensive rat. Physiol. Genom. 56, 283–300 (2024).

    Article  CAS  Google Scholar 

  32. Ngo, H. B. et al. A chemogenetic tool that enables functional neural circuit analysis. Cell Rep. 32, 108139 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, Y. et al. A microscale soft ionic power source modulates neuronal network activity. Nature 620, 1001–1006 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu, J. et al. Enzyme-enabled droplet biobattery for powering synthetic tissues. Angew. Chem. Int. Ed. Engl. 63, e202408665 (2024).

    Article  CAS  PubMed  Google Scholar 

  35. Wu, H. F., Hamilton, C., Porritt, H., Winbo, A. & Zeltner, N. Modelling neurocardiac physiology and diseases using human pluripotent stem cells: current progress and future prospects. J. Physiol. 603, 1865–1885 (2024).

    Article  PubMed  Google Scholar 

  36. Li, N. et al. Human induced pluripotent stem cell-derived cardiac myocytes and sympathetic neurons in disease modelling. Phil. Trans. R. Soc. Lond. B 378, 20220173 (2023).

    Article  CAS  Google Scholar 

  37. Paton, J. F., Boscan, P., Pickering, A. E. & Nalivaiko, E. The yin and yang of cardiac autonomic control: vago-sympathetic interactions revisited. Brain Res. Brain Res. Rev. 49, 555–565 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Fisher, J. P., Zera, T. & Paton, J. F. R. Respiratory-cardiovascular interactions. Handb. Clin. Neurol. 188, 279–308 (2022).

    Article  PubMed  Google Scholar 

  39. Bardsley, E. N. & Paterson, D. J. Neurocardiac regulation: from cardiac mechanisms to novel therapeutic approaches. J. Physiol. 598, 2957–2976 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Guyenet, P. G. The sympathetic control of blood pressure. Nat. Rev. Neurosci. 7, 335–346 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Moore, J. P. Interoceptive signals from the heart and coronary circulation in health and disease. Auton. Neurosci. 253, 103180 (2024).

    Article  CAS  PubMed  Google Scholar 

  42. Floras, J. S. & Ponikowski, P. The sympathetic/parasympathetic imbalance in heart failure with reduced ejection fraction. Eur. Heart J. 36, 1974–1982b (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Felippe, I. S. A., Río, R. D., Schultz, H., Machado, B. H. & Paton, J. F. R. Commonalities and differences in carotid body dysfunction in hypertension and heart failure. J. Physiol. 601, 5527–5551 (2023).

    Article  CAS  PubMed  Google Scholar 

  44. Danson, E. J., Li, D., Wang, L., Dawson, T. A. & Paterson, D. J. Targeting cardiac sympatho-vagal imbalance using gene transfer of nitric oxide synthase. J. Mol. Cell Cardiol. 46, 482–489 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Zucker, I. H., Xiao, L. & Haack, K. K. The central renin-angiotensin system and sympathetic nerve activity in chronic heart failure. Clin. Sci. 126, 695–706 (2014).

    Article  CAS  Google Scholar 

  46. Schwartz, P. J. Cardiac sympathetic denervation to prevent life-threatening arrhythmias. Nat. Rev. Cardiol. 11, 346–353 (2014).

    Article  PubMed  Google Scholar 

  47. Savastano, S. & Schwartz, P. J. Blocking nerves and saving lives: left stellate ganglion block for electrical storms. HeartRhythm 20, 1039–1047 (2023).

    Google Scholar 

  48. Sridharan, A., Bradfield, J. S., Shivkumar, K. & Ajijola, O. A. Autonomic nervous system and arrhythmias in structural heart disease. Auton. Neurosci. 243, 103037 (2022).

    Article  PubMed  Google Scholar 

  49. La Rovere, M. T. et al. Baroreflex sensitivity and heart rate variability in the identification of patients at risk for life-threatening arrhythmias: implications for clinical trials. Circulation 103, 2072–2077 (2001).

    Article  PubMed  Google Scholar 

  50. Tse, R. et al. Sudden cardiac deaths have higher proportion of left stellate ganglionitis. Forensic Sci. Med. Pathol. 18, 156–164 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Tobert, K. E., Bos, J. M., Moir, C., Polites, S. F. & Ackerman, M. J. Bilateral cardiac sympathetic denervation in patients with congenital long QT syndrome. HeartRhythm 20, 1033–1038 (2023).

    Google Scholar 

  52. Qassim, H. et al. Deep brain stimulation for chronic facial pain: an individual participant data (IPD) meta-analysis. Brain Sci. 13, 492 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Owen, S. L. F., Green, A. L., Stein, J. F. & Aziz, T. Z. Deep brain stimulation for the alleviation of post-stroke neuropathic pain. Pain 120, 202–206 (2006).

    Article  PubMed  Google Scholar 

  54. Bittar, R. G. et al. Deep brain stimulation for pain relief: a meta-analysis. J. Clin. Neurosci. 12, 515–519 (2005).

    Article  PubMed  Google Scholar 

  55. Singleton, W. G. B., Ashida, R. & Patel, N. K. Deep brain stimulation for facial pain. Prog. Neurol. Surg. 35, 141–161 (2020).

    Article  PubMed  Google Scholar 

  56. Moran, C. H. et al. Clinical outcome of “asleep” deep brain stimulation for Parkinson disease using robot-assisted delivery and anatomic targeting of the subthalamic nucleus: a series of 152 patients. Neurosurgery 88, 165–173 (2020).

    Article  PubMed  Google Scholar 

  57. Little, S. et al. Adaptive deep brain stimulation in advanced Parkinson disease. Ann. Neurol. 74, 449–457 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sagalow, E. S., Ananth, A., Alapati, R., Fares, E. & Fast, Z. Transvenous phrenic nerve stimulation for central sleep apnea. Am. J. Cardiol. 180, 155–162 (2022).

    Article  PubMed  Google Scholar 

  59. Angeli, T. R. et al. Acute slow wave responses to high-frequency gastric electrical stimulation in patients with gastroparesis defined by high-resolution mapping. Neuromodulation 19, 864–871 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mastoris, I. et al. Emerging implantable-device technology for patients at the intersection of electrophysiology and heart failure interdisciplinary care. J. Card. Fail. 28, 991–1015 (2022).

    Article  PubMed  Google Scholar 

  61. Bekfani, T. et al. A current and future outlook on upcoming technologies in remote monitoring of patients with heart failure. Eur. J. Heart Fail. 23, 175–185 (2021).

    Article  PubMed  Google Scholar 

  62. Pereira, E. A. et al. Sustained reduction of hypertension by deep brain stimulation. J. Clin. Neurosci. 17, 124–127 (2010).

    Article  PubMed  Google Scholar 

  63. Heusser, K. et al. Acute response to unilateral unipolar electrical carotid sinus stimulation in patients with resistant arterial hypertension. Hypertension 67, 585–591 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. McMurray, J. J. & Pfeffer, M. A. Heart failure. Lancet 365, 1877–1889 (2005).

    Article  PubMed  Google Scholar 

  65. McKee, P. A., Castelli, W. P., McNamara, P. M. & Kannel, W. B. The natural history of congestive heart failure: the Framingham study. N. Engl. J. Med. 285, 1441–1446 (1971).

    Article  CAS  PubMed  Google Scholar 

  66. Lloyd-Jones, D. M. et al. Lifetime risk for developing congestive heart failure: the Framingham heart study. Circulation 106, 3068–3072 (2002).

    Article  PubMed  Google Scholar 

  67. Mosterd, A. & Hoes, A. W. Clinical epidemiology of heart failure. Heart 93, 1137–1146 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ziaeian, B. & Fonarow, G. C. Epidemiology and aetiology of heart failure. Nat. Rev. Cardiol. 13, 368–378 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  69. GBD 2021 Risk Factors Collaborators. Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the global burden of disease study 2021. Lancet 403, 2162–2203 (2024).

    Article  Google Scholar 

  70. Fuchs, F. D. & Whelton, P. K. High blood pressure and cardiovascular disease. Hypertension 75, 285–292 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Zhou, B., Perel, P., Mensah, G. A. & Ezzati, M. Global epidemiology, health burden and effective interventions for elevated blood pressure and hypertension. Nat. Rev. Cardiol. 18, 785–802 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kario, K., Okura, A., Hoshide, S. & Mogi, M. The WHO Global report 2023 on hypertension warning the emerging hypertension burden in globe and its treatment strategy. Hypertens. Res. 47, 1099–1102 (2024).

    Article  PubMed  Google Scholar 

  73. Lawlor, D. A. et al. Survival with treated and well-controlled blood pressure: findings from a prospective cohort study. PLoS ONE 6, e17792 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Almgren, T., Persson, B., Wilhelmsen, L., Rosengren, A. & Andersson, O. K. Stroke and coronary heart disease in treated hypertension — a prospective cohort study over three decades. J. Intern. Med. 257, 496–502 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Brown, R. E., Riddell, M. C., Macpherson, A. K., Canning, K. L. & Kuk, J. L. The joint association of physical activity, blood-pressure control, and pharmacologic treatment of hypertension for all-cause mortality risk. Am. J. Hypertens. 26, 1005–1010 (2013).

    Article  PubMed  Google Scholar 

  76. Voora, R. & Hinderliter, A. L. Modulation of sympathetic overactivity to treat resistant hypertension. Curr. Hypertens. Rep. 20, 92 (2018).

    Article  PubMed  Google Scholar 

  77. Grassi, G. Sympathomodulatory effects of antihypertensive drug treatment. Am. J. Hypertens. 29, 665–675 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Sakata, K., Shirotani, M., Yoshida, H. & Kurata, C. Comparison of effects of enalapril and nitrendipine on cardiac sympathetic nervous system in essential hypertension. J. Am. Coll. Cardiol. 32, 438–443 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Ohbayashi, Y. et al. Effect of an angiotensin II type 1 receptor blocker, valsartan, on neurohumoral factors in patients with hypertension: comparison with a long-acting calcium channel antagonist, amlodipine. J. Cardiovasc. Pharmacol. 42, S71–S74 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Bardsley, E. N., Davis, H., Buckler, K. J. & Paterson, D. J. Neurotransmitter switching coupled to β-adrenergic signaling in sympathetic neurons in prehypertensive states. Hypertension 71, 1226–1238 (2018).

    Article  CAS  PubMed  Google Scholar 

  81. Mancia, G. et al. Individualized beta-blocker treatment for high blood pressure dictated by medical comorbidities: indications beyond the 2018 European Society of Cardiology/European Society Of Hypertension guidelines. Hypertension 79, 1153–1166 (2022).

    Article  CAS  PubMed  Google Scholar 

  82. Grassi, G. et al. Comparative effects of candesartan and hydrochlorothiazide on blood pressure, insulin sensitivity, and sympathetic drive in obese hypertensive individuals: results of the CROSS study. J. Hypertens. 21, 1761–1769 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Neumann, J. et al. Sympathetic hyperactivity in hypertensive chronic kidney disease patients is reduced during standard treatment. Hypertension 49, 506–510 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Grassi, G. Sympathetic modulation as a goal of antihypertensive treatment: from drugs to devices. J. Hypertens. 41, 1688–1695 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Quarti-Trevano, F. et al. Failure of antihypertensive treatment to restore normal sympathetic activity. Hypertension 82, 1024–1034 (2025).

    Article  CAS  PubMed  Google Scholar 

  86. Kario, K. et al. Additional impact of morning haemostatic risk factors and morning blood pressure surge on stroke risk in older Japanese hypertensive patients. Eur. Heart J. 32, 574–580 (2011).

    Article  PubMed  Google Scholar 

  87. Malan, L. et al. Facilitated defensive coping, silent ischaemia and ECG left-ventricular hypertrophy: the SABPA study. J. Hypertens. 30, 543–550 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Renna, N. F. et al. Morning blood pressure surge as a predictor of cardiovascular events in patients with hypertension. Blood Press. Monit. 28, 149–157 (2023).

    Article  PubMed  Google Scholar 

  89. van den Born, B. H. et al. ESC Council on Hypertension position document on the management of hypertensive emergencies. Eur. Heart J. Cardiovasc. Pharmacother. 5, 37–46 (2019).

    Article  PubMed  Google Scholar 

  90. Webb, A. J. & Rothwell, P. M. The effect of antihypertensive treatment on headache and blood pressure variability in randomized controlled trials: a systematic review. J. Neurol. 259, 1781–1787 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Chant, B. et al. Antihypertensive treatment fails to control blood pressure during exercise. Hypertension 72, 102–109 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Sica, D. A. Centrally acting antihypertensive agents: an update. J. Clin. Hypertens. 9, 399–405 (2007).

    Article  CAS  Google Scholar 

  93. Vongpatanasin, W., Kario, K., Atlas, S. A. & Victor, R. G. Central sympatholytic drugs. J. Clin. Hypertens. 13, 658–661 (2011).

    Article  CAS  Google Scholar 

  94. Shahim, B., Kapelios, C. J., Savarese, G. & Lund, L. H. Global public health burden of heart failure: an updated review. Card. Fail. Rev. 9, e11 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Taylor, C. J. et al. Survival following a diagnosis of heart failure in primary care. Fam. Pract. 34, 161–168 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  96. McDonagh, T. A. et al. 2023 focused update of the 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 44, 3627–3639 (2023).

    Article  CAS  PubMed  Google Scholar 

  97. Heidenreich, P. A. et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College Of Cardiology/American Heart Association joint committee on clinical practice guidelines. Circulation 145, e895–e1032 (2022).

    PubMed  Google Scholar 

  98. Jasinska-Piadlo, A. & Campbell, P. Management of patients with heart failure and preserved ejection fraction. Heart 109, 874–883 (2023).

    Article  CAS  PubMed  Google Scholar 

  99. Anker, S. D. et al. Empagliflozin in heart failure with a preserved ejection fraction. N. Engl. J. Med. 385, 1451–1461 (2021).

    Article  CAS  PubMed  Google Scholar 

  100. Solomon, S. D. et al. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N. Engl. J. Med. 387, 1089–1098 (2022).

    Article  PubMed  Google Scholar 

  101. Kosiborod, M. N. et al. Semaglutide in patients with heart failure with preserved ejection fraction and obesity. N. Engl. J. Med. 389, 1069–1084 (2023).

    Article  CAS  PubMed  Google Scholar 

  102. Floras, J. S. The 2021 Carl Ludwig lecture. unsympathetic autonomic regulation in heart failure: patient-inspired insights. Am. J. Physiol. Regul. Integr. Comp. Physiol. 321, R338–r351 (2021).

    Article  CAS  PubMed  Google Scholar 

  103. Kalla, M. et al. The cardiac sympathetic co-transmitter neuropeptide Y is pro-arrhythmic following ST-elevation myocardial infarction despite beta-blockade. Eur. Heart J. 41, 2168–2179 (2020).

    Article  CAS  PubMed  Google Scholar 

  104. Schwartz, P. J. The rationale and the role of left stellectomy for the prevention of malignant arrhythmias. Ann. NY Acad. Sci. 427, 199–221 (1984).

    Article  CAS  PubMed  Google Scholar 

  105. Elliott, I. A. et al. Minimally invasive bilateral stellate ganglionectomy for refractory ventricular tachycardia. Ann. Thor. Surg. 111, e295–e296 (2021).

    Article  Google Scholar 

  106. Dusi, V., De Ferrari, G. M., Pugliese, L. & Schwartz, P. J. Cardiac sympathetic denervation in channelopathies. Front. Cardiovasc. Med. 6, 27 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Vrabec, T. et al. Bioelectronic block of stellate ganglia mitigates pacing-induced heterogeneous release of catecholamine and neuropeptide Y in the infarcted pig heart. J. Physiol. 603, 2071–2088 (2024).

    Article  PubMed  Google Scholar 

  108. Muir, J., Anguiano, M. & Kim, C. K. Neuromodulator and neuropeptide sensors and probes for precise circuit interrogation in vivo. Science 385, eadn6671 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Nelson, A. J., Pagidipati, N. J. & Bosworth, H. B. Improving medication adherence in cardiovascular disease. Nat. Rev. Cardiol. 21, 417–429 (2024).

    Article  PubMed  Google Scholar 

  110. Martinez-Sanchez, N. et al. The sympathetic nervous system in the 21st century: neuroimmune interactions in metabolic homeostasis and obesity. Neuron 110, 3597–3626 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhu, Y. et al. Sympathetic neuropeptide Y protects from obesity by sustaining thermogenic fat. Nature 634, 243–250 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Vanoli, E. et al. Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circ. Res. 68, 1471–1481 (1991).

    Article  CAS  PubMed  Google Scholar 

  113. Cole, C. R., Blackstone, E. H., Pashkow, F. J., Snader, C. E. & Lauer, M. S. Heart-rate recovery immediately after exercise as a predictor of mortality. N. Engl. J. Med. 341, 1351–1357 (1999).

    Article  CAS  PubMed  Google Scholar 

  114. Hernesniemi, J. A. et al. Cardiorespiratory fitness and heart rate recovery predict sudden cardiac death independent of ejection fraction. Heart 106, 434–440 (2020).

    Article  PubMed  Google Scholar 

  115. De Ferrari, G. M. et al. Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur. Heart J. 32, 847–855 (2011).

    Article  PubMed  Google Scholar 

  116. Hilz, M. J. Transcutaneous vagus nerve stimulation — a brief introduction and overview. Auton. Neurosci. 243, 103038 (2022).

    Article  PubMed  Google Scholar 

  117. Schwartz, P. J. et al. Long term vagal stimulation in patients with advanced heart failure: first experience in man. Eur. J. Heart Fail. 10, 884–891 (2008).

    Article  PubMed  Google Scholar 

  118. Premchand, R. K. et al. Autonomic regulation therapy via left or right cervical vagus nerve stimulation in patients with chronic heart failure: results of the ANTHEM-HF trial. J. Card. Fail. 20, 808–816 (2014).

    Article  PubMed  Google Scholar 

  119. Premchand, R. K. et al. Extended follow-up of patients with heart failure receiving autonomic regulation therapy in the ANTHEM-HF study. J. Card. Fail. 22, 639–642 (2016).

    Article  PubMed  Google Scholar 

  120. Gold, M. R. et al. Vagus nerve stimulation for the treatment of heart failure: the INOVATE-HF trial. J. Am. Coll. Cardiol. 68, 149–158 (2016).

    Article  PubMed  Google Scholar 

  121. Zannad, F. et al. Chronic vagal stimulation for the treatment of low ejection fraction heart failure: results of the NEural cardiac TherApy foR heart failure (NECTAR-HF) randomized controlled trial. Eur. Heart J. 36, 425–433 (2015).

    Article  PubMed  Google Scholar 

  122. Konstam, M. et al. Autonomic regulation therapy to improve symptoms and clinical outcomes in patients with heart failure and reduced ejection fraction (ANTHEM-HFrEF) pivotal study results. J. Card. Fail. 30, 313 (2024).

    Article  Google Scholar 

  123. Kronsteiner, B. et al. Characterization, number, and spatial organization of nerve fibers in the human cervical vagus nerve and its superior cardiac branch. Brain Stimul. 17, 510–524 (2024).

    Article  PubMed  Google Scholar 

  124. Lewis, M. E. et al. Vagus nerve stimulation decreases left ventricular contractility in vivo in the human and pig heart. J. Physiol. 534, 547–552 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Muppidi, S., Gupta, P. K. & Vernino, S. Reversible right vagal neuropathy. Neurology 77, 1577–1579 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  126. O’Callaghan, E. L. et al. Utility of a novel biofeedback device for within-breath modulation of heart rate in rats: a quantitative comparison of vagus nerve vs. right atrial pacing. Front. Physiol. 7, 27 (2016).

    PubMed  PubMed Central  Google Scholar 

  127. Nogaret, A. et al. Silicon central pattern generators for cardiac diseases. J. Physiol. 593, 763–774 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. De Ferrari, G. M. & Schwartz, P. J. Vagus nerve stimulation: from pre-clinical to clinical application: challenges and future directions. Heart Fail. Rev. 16, 195–203 (2011).

    Article  PubMed  Google Scholar 

  129. Thompson, N. et al. Towards spatially selective efferent neuromodulation: anatomical and functional organization of cardiac fibres in the porcine cervical vagus nerve. J. Physiol. 603, 1983–2004 (2024).

    Article  PubMed  Google Scholar 

  130. Fitchett, A., Mastitskaya, S. & Aristovich, K. Selective neuromodulation of the vagus nerve. Front. Neurosci. 15, 685872 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Ravagli, E., Ardell, J., Holder, D. & Aristovich, K. A combined cuff electrode array for organ-specific selective stimulation of vagus nerve enabled by electrical impedance tomography. Front. Med. Technol. 5, 1122016 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Ardell, J. L. et al. Defining the neural fulcrum for chronic vagus nerve stimulation: implications for integrated cardiac control. J. Physiol. 595, 6887–6903 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Butt, M. F., Albusoda, A., Farmer, A. D. & Aziz, Q. The anatomical basis for transcutaneous auricular vagus nerve stimulation. J. Anat. 236, 588–611 (2020).

    Article  PubMed  Google Scholar 

  134. Krahl, S. E., Senanayake, S. S. & Handforth, A. Destruction of peripheral C-fibers does not alter subsequent vagus nerve stimulation-induced seizure suppression in rats. Epilepsia 42, 586–589 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. Yu, L. et al. Chronic intermittent low-level stimulation of tragus reduces cardiac autonomic remodeling and ventricular arrhythmia inducibility in a post-infarction canine model. JACC Clin. Electrophysiol. 2, 330–339 (2016).

    Article  PubMed  Google Scholar 

  136. Yu, L. et al. Low-level tragus stimulation for the treatment of ischemia and reperfusion injury in patients with ST-segment elevation myocardial infarction: a proof-of-concept study. JACC Cardiovasc. Interv. 10, 1511–1520 (2017).

    Article  PubMed  Google Scholar 

  137. Stavrakis, S. et al. Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation. J. Am. Coll. Cardiol. 65, 867–875 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Stavrakis, S. et al. TREAT AF (Transcutaneous Electrical Vagus Nerve Stimulation to Suppress Atrial Fibrillation): a randomized clinical trial. JACC Clin. Electrophysiol. 6, 282–291 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Stavrakis, S. et al. Noninvasive vagus nerve stimulation in postural tachycardia syndrome: a randomized clinical trial. JACC Clin. Electrophysiol. 10, 346–355 (2024).

    Article  PubMed  Google Scholar 

  140. Antonino, D. et al. Non-invasive vagus nerve stimulation acutely improves spontaneous cardiac baroreflex sensitivity in healthy young men: a randomized placebo-controlled trial. Brain Stimul. 10, 875–881 (2017).

    Article  PubMed  Google Scholar 

  141. Sinkovec, M., Trobec, R. & Meglic, B. Cardiovascular responses to low-level transcutaneous vagus nerve stimulation. Auton. Neurosci. 236, 102851 (2021).

    Article  CAS  PubMed  Google Scholar 

  142. Aaronson, S. T. et al. Vagus nerve stimulation therapy randomized to different amounts of electrical charge for treatment-resistant depression: acute and chronic effects. Brain Stimul. 6, 631–640 (2013).

    Article  PubMed  Google Scholar 

  143. Huang, F. et al. Effect of transcutaneous auricular vagus nerve stimulation on impaired glucose tolerance: a pilot randomized study. BMC Complement. Altern. Med. 14, 203 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Jacobs, H. I., Riphagen, J. M., Razat, C. M., Wiese, S. & Sack, A. T. Transcutaneous vagus nerve stimulation boosts associative memory in older individuals. Neurobiol. Aging 36, 1860–1867 (2015).

    Article  PubMed  Google Scholar 

  145. Huston, J. M. et al. Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis. Crit. Care Med. 35, 2762–2768 (2007).

    PubMed  Google Scholar 

  146. Schwartz, P. J., Foreman, R. D., Stone, H. L. & Brown, A. M. Effect of dorsal root section on the arrhythmias associated with coronary occlusion. Am. J. Physiol. 231, 923–928 (1976).

    Article  CAS  PubMed  Google Scholar 

  147. Rock, A. K., Truong, H., Park, Y. L. & Pilitsis, J. G. Spinal cord stimulation. Neurosurg. Clin. N. Am. 30, 169–194 (2019).

    Article  PubMed  Google Scholar 

  148. Sdrulla, A. D., Guan, Y. & Raja, S. N. Spinal cord stimulation: clinical efficacy and potential mechanisms. Pain Pract. 18, 1048–1067 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Sverrisdottir, Y. B. et al. Human dorsal root ganglion stimulation reduces sympathetic outflow and long-term blood pressure. JACC Basic Transl. Sci. 5, 973–985 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Howard-Quijano, K. et al. Spinal cord stimulation reduces ventricular arrhythmias during acute ischemia by attenuation of regional myocardial excitability. Am. J. Physiol. Heart Circ. Physiol. 313, H421–H431 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Kuwabara, Y. et al. Neuromodulation with thoracic dorsal root ganglion stimulation reduces ventricular arrhythmogenicity. Front. Physiol. https://doi.org/10.3389/fphys.2021.713717 (2021).

  152. Southerland, E. M. et al. Preemptive, but not reactive, spinal cord stimulation mitigates transient ischemia-induced myocardial infarction via cardiac adrenergic neurons. Am. J. Physiol. Heart Circ. Physiol. 292, H311–H317 (2007).

    Article  CAS  PubMed  Google Scholar 

  153. Lopshire, J. C. et al. Spinal cord stimulation improves ventricular function and reduces ventricular arrhythmias in a canine postinfarction heart failure model. Circulation 120, 286–294 (2009).

    Article  PubMed  Google Scholar 

  154. Squair, J. W. et al. Neuroprosthetic baroreflex controls haemodynamics after spinal cord injury. Nature 590, 308–314 (2021).

    Article  CAS  PubMed  Google Scholar 

  155. Sarikhani, P. et al. Reinforcement learning for closed-loop regulation of cardiovascular system with vagus nerve stimulation: a computational study. J. Neural Eng. 21, 036027 (2024).

    Article  PubMed Central  Google Scholar 

  156. Bender, S. A. et al. Closed-loop multimodal neuromodulation of vagus nerve for control of heart rate. Proc. Am. Control. Conf. 2024, 4536–4541 (2024).

    PubMed  PubMed Central  Google Scholar 

  157. Solinsky, R., Burns, K., Tuthill, C., Hamner, J. W. & Taylor, J. A. Transcutaneous spinal cord stimulation and its impact on cardiovascular autonomic regulation after spinal cord injury. Am. J. Physiol. Heart Circ. Physiol. 326, H116–H122 (2024).

    PubMed  Google Scholar 

  158. Lenarczyk, R. et al. Management of patients with an electrical storm or clustered ventricular arrhythmias: a clinical consensus statement of the European Heart Rhythm Association of the ESC-endorsed by the Asia-Pacific Heart Rhythm Society, Heart Rhythm Society, and Latin-American Heart Rhythm Society. Europace 26, euae049 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Herring, N. & Paterson, D. J. Neuromodulators of peripheral cardiac sympatho-vagal balance. Exp. Physiol. 94, 46–53 (2009).

    Article  CAS  PubMed  Google Scholar 

  160. Tan, C. M. J. et al. The role of neuropeptide Y in cardiovascular health and disease. Front. Physiol. 9, 1281 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Hashmonai, M. The history of sympathetic surgery. Thorac. Surg. Clin. 26, 383–388 (2016).

    Article  PubMed  Google Scholar 

  162. Jonnesco, T. Traitment chirurgical de I’angine de poitrine par la resection du sympathetique cervicothoracique. Presse Méd. 29, 193–195 (1921).

    Google Scholar 

  163. Zipes, D. P. et al. Treatment of ventricular arrhythmia by permanent atrial pacemaker and cardiac sympathectomy. Ann. Intern. Med. 68, 591–597 (1968).

    Article  CAS  PubMed  Google Scholar 

  164. Schwartz, P. J. & Malliani, A. Electrical alternation of the T-wave: clinical and experimental evidence of its relationship with the sympathetic nervous system and with the long Q–T syndrome. Am. Heart J. 89, 45–50 (1975).

    Article  CAS  PubMed  Google Scholar 

  165. Xiong, L. et al. Targeted ablation of cardiac sympathetic neurons attenuates adverse postinfarction remodelling and left ventricular dysfunction. Exp. Physiol. 103, 1221–1229 (2018).

    Article  CAS  PubMed  Google Scholar 

  166. Ziegler, K. A. et al. Local sympathetic denervation attenuates myocardial inflammation and improves cardiac function after myocardial infarction in mice. Cardiovasc. Res. 114, 291–299 (2018).

    Article  CAS  PubMed  Google Scholar 

  167. Yang, X., Zhang, L., Liu, H., Shao, Y. & Zhang, S. Cardiac sympathetic denervation suppresses atrial fibrillation and blood pressure in a chronic intermittent hypoxia rat model of obstructive sleep apnea. J. Am. Heart Assoc. 8, e010254 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Surman, T. L., Stuklis, R. G. & Chan, J. C. Thoracoscopic sympathectomy for long QT syndrome. Literature review and case study. Heart Lung Circ. 28, 486–494 (2019).

    Article  PubMed  Google Scholar 

  169. Chihara, R. K., Chan, E. Y., Meisenbach, L. M. & Kim, M. P. Surgical cardiac sympathetic denervation for ventricular arrhythmias: a systematic review. Methodist Debakey Cardiovasc. J. 17, 24–35 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Dusi, V. et al. Left cardiac sympathetic denervation for long QT syndrome: 50 years’ experience provides guidance for management. JACC Clin. Electrophysiol. 8, 281–294 (2022).

    Article  PubMed  Google Scholar 

  171. Wilde, A. A. et al. Left cardiac sympathetic denervation for catecholaminergic polymorphic ventricular tachycardia. N. Engl. J. Med. 358, 2024–2029 (2008).

    Article  CAS  PubMed  Google Scholar 

  172. Li, Y. L. et al. Stellate ganglia: a key therapeutic target for malignant ventricular arrhythmia in heart disease. Circulation Res. 136, 1049–1069 (2025).

    Article  CAS  PubMed  Google Scholar 

  173. Do, D. H. et al. Thoracic epidural anesthesia can be effective for the short-term management of ventricular tachycardia storm. J. Am. Heart Assoc. 6, e007080 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Savastano, S. et al. Electrical storm treatment by percutaneous stellate ganglion block: the STAR study. Eur. Heart J. 45, 823–833 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Ali, R., Ciccone, J. & Tseng, V. Cervical sympathetic blockade for the management of electrical storm. J. Clin. Anesth. 36, 47–50 (2017).

    Article  PubMed  Google Scholar 

  176. Przybylski, A., Romanek, J., Chlebuś, M., Deręgowska, B. & Kuźniar, J. Percutaneous stellate ganglion block as an adjunctive therapy in the treatment of incessant ventricular tachycardia. Kardiol. Pol. 76, 1018–1020 (2018).

    Article  PubMed  Google Scholar 

  177. Schwartz, P. J. & Stone, H. L. Left stellectomy in the prevention of ventricular fibrillation caused by acute myocardial ischemia in conscious dogs with anterior myocardial infarction. Circulation 62, 1256–1265 (1980).

    Article  CAS  PubMed  Google Scholar 

  178. Schwartz, P. J., Stone, H. L. & Brown, A. M. Effects of unilateral stellate ganglion blockade on the arrhythmias associated with coronary occlusion. Am. Heart J. 92, 589–599 (1976).

    Article  CAS  PubMed  Google Scholar 

  179. Perlow, S. & Vehe, K. L. Variations in the gross anatomy of the stellate and lumbar sympathetic ganglia. Am. J. Surg. 30, 454–458 (1935).

    Article  Google Scholar 

  180. Song, Z. F., Sun, M. M., Wu, Z. Y. & Xia, C. L. Anatomical study and clinical significance of the rami communicantes between cervicothoracic ganglion and brachial plexus. Clin. Anat. 23, 811–814 (2010).

    Article  PubMed  Google Scholar 

  181. Tubbs, R. S. et al. The vertebral nerve revisited. Clin. Anat. 20, 644–647 (2007).

    Article  PubMed  Google Scholar 

  182. Krum, H. et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 373, 1275–1281 (2009).

    Article  PubMed  Google Scholar 

  183. Böhm, M. et al. Efficacy of catheter-based renal denervation in the absence of antihypertensive medications (SPYRAL HTN-OFF MED Pivotal): a multicentre, randomised, sham-controlled trial. Lancet 395, 1444–1451 (2020).

    Article  PubMed  Google Scholar 

  184. Mahfoud, F. et al. Long-term efficacy and safety of renal denervation in the presence of antihypertensive drugs (SPYRAL HTN-ON MED): a randomised, sham-controlled trial. Lancet 399, 1401–1410 (2022).

    Article  CAS  PubMed  Google Scholar 

  185. Dibona, G. F. Differentiation of vasoactive renal sympathetic nerve fibres. Acta Physiol. Scand. 168, 195–200 (2000).

    Article  CAS  PubMed  Google Scholar 

  186. Marfurt, C. F. & Echtenkamp, S. F. Sensory innervation of the rat kidney and ureter as revealed by the anterograde transport of wheat germ agglutinin-horseradish peroxidase (WGA-HRP) from dorsal root ganglia. J. Comp. Neurol. 311, 389–404 (1991).

    Article  CAS  PubMed  Google Scholar 

  187. Tyshynsky, R. et al. Periglomerular afferent innervation of the mouse renal cortex. Front. Neurosci. 17, 974197 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Ong, J. et al. Renal sensory nerves increase sympathetic nerve activity and blood pressure in 2-kidney 1-clip hypertensive mice. J. Neurophysiol. 122, 358–367 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Vongpatanasin, W. & Addo, T. The next chapter of renal denervation after US Food And Drug Administration approval. Circulation 149, 760–763 (2024).

    Article  PubMed  Google Scholar 

  190. Foss, J. D. et al. Role of afferent and efferent renal nerves in the development of AngII-salt hypertension in rats. Physiol. Rep. 6, e13602 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Osborn, J. W., Tyshynsky, R. & Vulchanova, L. Function of renal nerves in kidney physiology and pathophysiology. Annu. Rev. Physiol. 83, 429–450 (2021).

    Article  CAS  PubMed  Google Scholar 

  192. Burchell, A. E. et al. Controversies surrounding renal denervation: lessons learned from real-world experience in two United Kingdom centers. J. Clin. Hypertens. 18, 585–592 (2016).

    Article  Google Scholar 

  193. Burchell, A. Renal denervation for resistant hypertension: predictors of procedural response and efficacy. PhD thesis, University of Bristol. https://research-information.bris.ac.uk/en/studentTheses/renal-denervation-for-resistant-hypertension (2019).

  194. Plunkett, M. J., Paton, J. F. R. & Fisher, J. P. Autonomic control of the pulmonary circulation: implications for pulmonary hypertension. Exp. Physiol. 110, 42–57 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Zhang, H. et al. Pulmonary artery denervation for pulmonary arterial hypertension: a sham-controlled randomized PADN-CFDA Trial. JACC Cardiovasc. Interv. 15, 2412–2423 (2022).

    Article  PubMed  Google Scholar 

  196. Chen, S. L. et al. Pulmonary artery denervation to treat pulmonary arterial hypertension: the single-center, prospective, first-in-man PADN-1 study (first-in-man pulmonary artery denervation for treatment of pulmonary artery hypertension). J. Am. Coll. Cardiol. 62, 1092–1100 (2013).

    Article  PubMed  Google Scholar 

  197. Velez-Roa, S. et al. Increased sympathetic nerve activity in pulmonary artery hypertension. Circulation 110, 1308–1312 (2004).

    Article  PubMed  Google Scholar 

  198. Ciarka, A., Doan, V., Velez-Roa, S., Naeije, R. & van de Borne, P. Prognostic significance of sympathetic nervous system activation in pulmonary arterial hypertension. Am. J. Resp. Crit. Care Med. 181, 1269–1275 (2010).

    Article  PubMed  Google Scholar 

  199. Simpson, L. L. et al. Evidence for a physiological role of pulmonary arterial baroreceptors in sympathetic neural activation in healthy humans. J. Physiol. 598, 955–965 (2020).

    Article  CAS  PubMed  Google Scholar 

  200. Zhang, H. et al. Pulmonary artery denervation significantly increases 6-min walk distance for patients with combined pre- and post-capillary pulmonary hypertension associated with left heart failure: the PADN-5 study. JACC Cardiovasc. Inter. 12, 274–284 (2019).

    Article  Google Scholar 

  201. Witkowski, A. et al. Transcatheter pulmonary denervation in patients with left heart failure with reduced ejection fraction and combined precapillary and postcapillary pulmonary hypertension: a prospective single center experience. Catheter Cardiovasc. Interv. 98, 588–594 (2021).

    PubMed  Google Scholar 

  202. Zheng, M. et al. Pulmonary artery denervation inhibits left stellate ganglion stimulation-induced ventricular arrhythmias originating from the RVOT. JACC Clin. Electrophysiol. 9, 1354–1367 (2023).

    Article  PubMed  Google Scholar 

  203. Emans, T. W. et al. Forgotten circulation: reduced mesenteric venous capacitance in hypertensive rats is improved by decreasing sympathetic activity. Hypertension 81, 823–835 (2024).

    Article  CAS  PubMed  Google Scholar 

  204. Kittipibul, V. et al. Splanchnic nerve modulation effects on surrogate measures of venous capacitance. J. Am. Heart Assoc. 12, e028780 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Fudim, M. et al. Endovascular ablation of the right greater splanchnic nerve in heart failure with preserved ejection fraction: early results of the REBALANCE-HF trial roll-in cohort. Eur. J. Heart Fail. 24, 1410–1414 (2022).

    Article  CAS  PubMed  Google Scholar 

  206. Green, A. L. & Paterson, D. J. Using deep brain stimulation to unravel the mysteries of cardiorespiratory control. Compr. Physiol. 10, 1085–1104 (2020).

    Article  PubMed  Google Scholar 

  207. Kringelbach, M. L., Jenkinson, N., Owen, S. L. & Aziz, T. Z. Translational principles of deep brain stimulation. Nat. Rev. Neurosci. 8, 623–635 (2007).

    Article  CAS  PubMed  Google Scholar 

  208. Boccard, S. G., Pereira, E. A., Moir, L., Aziz, T. Z. & Green, A. L. Long-term outcomes of deep brain stimulation for neuropathic pain. Neurosurgery 72, 221–230 (2013).

    Article  PubMed  Google Scholar 

  209. McDowell, K. et al. Neuropeptide Y is elevated in heart failure and is an independent predictor of outcomes. Eur. J. Heart Fail. 26, 107–116 (2024).

    Article  CAS  PubMed  Google Scholar 

  210. Gibbs, T. et al. Neuropeptide-Y levels in ST-segment-elevation myocardial infarction: relationship with coronary microvascular function, heart failure, and mortality. J. Am. Heart Assoc. 11, e024850 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Januzzi, J. L. et al. NT-proBNP testing for diagnosis and short-term prognosis in acute destabilized heart failure: an international pooled analysis of 1256 patients: the international collaborative of NT-proBNP study. Eur. Heart J. 27, 330–337 (2006).

    Article  CAS  PubMed  Google Scholar 

  212. Cohn, J. N. et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N. Engl. J. Med. 311, 819–823 (1984).

    Article  CAS  PubMed  Google Scholar 

  213. Rennert, R. C. et al. A histological and mechanical analysis of the cardiac lead-tissue interface: implications for lead extraction. Acta Biomater. 10, 2200–2208 (2014).

    Article  PubMed  Google Scholar 

  214. Bilal, M., Syed, N. N., Jamil, Y., Tariq, A. & Khan, H. R. Powering the future: exploring self-charging cardiac implantable electronic devices and the Qi revolution. Pacing Clin. Electrophysiol. 47, 542–550 (2024).

    Article  PubMed  Google Scholar 

  215. Somani, S. & Rogers, A. J. Advances in cardiac pacing with leadless pacemakers and conduction system pacing. Curr. Opin. Cardiol. 39, 1–5 (2024).

    Article  PubMed  Google Scholar 

  216. Knops, R. E. et al. A dual-chamber leadless pacemaker. N. Engl. J. Med. 388, 2360–2370 (2023).

    Article  PubMed  Google Scholar 

  217. Knops, R. E. et al. A modular communicative leadless pacing-defibrillator system. N. Engl. J. Med. 391, 1402–1412 (2024).

    Article  PubMed  Google Scholar 

  218. O’Callaghan, E. L. et al. Enhancing respiratory sinus arrhythmia increases cardiac output in rats with left ventricular dysfunction. J. Physiol. 598, 455–471 (2020).

    Article  PubMed  Google Scholar 

  219. Shanks, J. et al. Reverse re-modelling chronic heart failure by reinstating heart rate variability. Basic Res. Cardiol. 117, 4 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Azizi, M. et al. Patient-level pooled analysis of endovascular ultrasound renal denervation or a sham procedure 6 months after medication escalation: the RADIANCE clinical trial program. Circulation 149, 747–759 (2024).

    Article  CAS  PubMed  Google Scholar 

  221. Spiering, W. et al. Endovascular baroreflex amplification for resistant hypertension: a safety and proof-of-principle clinical study. Lancet 390, 2655–2661 (2017).

    Article  PubMed  Google Scholar 

  222. Seravalle, G., Dell’Oro, R. & Grassi, G. Baroreflex activation therapy systems: current status and future prospects. Expert Rev. Med. Devices 16, 1025–1033 (2019).

    Article  CAS  PubMed  Google Scholar 

  223. Patel, N. K. et al. Deep brain stimulation relieves refractory hypertension. Neurology 76, 405–407 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. O’Callaghan, E. L. et al. Deep brain stimulation for the treatment of resistant hypertension. Curr. Hypertens. Rep. 16, 493 (2014).

    Article  PubMed  Google Scholar 

  225. Esler, M. & Kaye, D. Sympathetic nervous system activation in essential hypertension, cardiac failure and psychosomatic heart disease. J. Cardiovasc. Pharmacol. 35, S1–S7 (2000).

    Article  CAS  PubMed  Google Scholar 

  226. Seagard, J. L., Hopp, F. A., Drummond, H. A. & Van Wynsberghe, D. M. Selective contribution of two types of carotid sinus baroreceptors to the control of blood pressure. Circ. Res. 72, 1011–1022 (1993).

    Article  CAS  PubMed  Google Scholar 

  227. Thrasher, T. N. Arterial baroreceptor input contributes to long-term control of blood pressure. Curr. Hypertens. Rep. 8, 249–254 (2006).

    Article  PubMed  Google Scholar 

  228. Thrasher, T. N. Unloading arterial baroreceptors causes neurogenic hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, R1044–R1053 (2002).

    Article  CAS  PubMed  Google Scholar 

  229. Thoren, P., Andresen, M. C. & Brown, A. M. Resetting of aortic baroreceptors with non-myelinated afferent fibers in spontaneously hypertensive rats. Acta Physiol. Scand. 117, 91–97 (1983).

    Article  CAS  PubMed  Google Scholar 

  230. Andresen, M. C. & Brown, A. M. Baroreceptor function in spontaneously hypertensive rats. effect of preventing hypertension. Circ. Res. 47, 829–834 (1980).

    Article  CAS  PubMed  Google Scholar 

  231. van Kleef, M. et al. Treatment of resistant hypertension with endovascular baroreflex amplification: 3-year results from the CALM-FIM study. JACC Cardiovasc. Interv. 15, 321–332 (2022).

    Article  PubMed  Google Scholar 

  232. van Kleef, M. et al. Endovascular baroreflex amplification and the effect on sympathetic nerve activity in patients with resistant hypertension: a proof-of-principle study. PLoS ONE 16, e0259826 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Heusser, K. et al. Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension 55, 619–626 (2010).

    Article  CAS  PubMed  Google Scholar 

  234. Scheffers, I. J. et al. Novel baroreflex activation therapy in resistant hypertension: results of a European multi-center feasibility study. J. Am. Coll. Cardiol. 56, 1254–1258 (2010).

    Article  PubMed  Google Scholar 

  235. Bakris, G. L. et al. Baroreflex activation therapy provides durable benefit in patients with resistant hypertension: results of long-term follow-up in the rheos pivotal trial. J. Am. Soc. Hypertens. 6, 152–158 (2012).

    Article  PubMed  Google Scholar 

  236. Bloch, M. J. & Basile, J. N. The Rheos Pivotol trial evaluating baroreflex activation therapy fails to meet efficacy and safety end points in resistant hypertension: back to the drawing board. J. Clin. Hypertens. 14, 184–186 (2012).

    Article  Google Scholar 

  237. Hoppe, U. C. et al. Minimally invasive system for baroreflex activation therapy chronically lowers blood pressure with pacemaker-like safety profile: results from the Barostim Neo trial. J. Am. Soc. Hypertens. 6, 270–276 (2012).

    Article  PubMed  Google Scholar 

  238. Wallbach, M. et al. Effects of baroreflex activation therapy on ambulatory blood pressure in patients with resistant hypertension. Hypertension 67, 701–709 (2016).

    Article  CAS  PubMed  Google Scholar 

  239. Abraham, W. T. et al. Baroreflex activation therapy for the treatment of heart failure with a reduced ejection fraction. JACC Heart Fail. 3, 487–496 (2015).

    Article  PubMed  Google Scholar 

  240. Neuzil, P. et al. Pacemaker-mediated programmable hypertension control therapy. J. Am. Heart Assoc. 6, e006974 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Kalarus, Z. et al. Pacemaker-based cardiac neuromodulation therapy in patients with hypertension: a pilot study. J. Am. Heart Assoc. 10, e020492 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Manisty, C. H. et al. The acute effects of changes to AV delay on BP and stroke volume: potential implications for design of pacemaker optimization protocols. Circ. Arrhythm. Electrophysiol. 5, 122–130 (2012).

    Article  PubMed  Google Scholar 

  243. Evaluation of sympathetic activity effects by the backbeat medical cardiac neuromodulation therapy (CNT). ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05462405 (2024).

  244. Marcus, N. J., Del Rio, R., Schultz, E. P., Xia, X. H. & Schultz, H. D. Carotid body denervation improves autonomic and cardiac function and attenuates disordered breathing in congestive heart failure. J. Physiol. 592, 391–408 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Abdala, A. P. et al. Hypertension is critically dependent on the carotid body input in the spontaneously hypertensive rat. J. Physiol. 590, 4269–4277 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Izdebska, E., Izdebski, J. & Trzebski, A. Hemodynamic responses to brief hyperoxia in healthy and in mild hypertensive human subjects in rest and during dynamic exercise. J. Physiol. Pharmacol. 47, 243–256 (1996).

    CAS  PubMed  Google Scholar 

  247. Ponikowski, P. et al. Peripheral chemoreceptor hypersensitivity: an ominous sign in patients with chronic heart failure. Circulation 104, 544–549 (2001).

    Article  CAS  PubMed  Google Scholar 

  248. Siński, M. et al. Tonic activity of carotid body chemoreceptors contributes to the increased sympathetic drive in essential hypertension. Hypertens. Res. 35, 487–491 (2012).

    Article  PubMed  Google Scholar 

  249. Tymoteusz, Ż. et al. Translating physiology of the arterial chemoreflex into novel therapeutic interventions targeting carotid bodies in cardiometabolic disorders. J. Physiol. 603, 2487–2516 (2025).

    Article  Google Scholar 

  250. Narkiewicz, K. et al. Unilateral carotid body resection in resistant hypertension: a safety and feasibility trial. JACC Basic Transl. Sci. 1, 313–324 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Niewinski, P. et al. Carotid body resection for sympathetic modulation in systolic heart failure: results from first-in-man study. Eur. J. Heart Fail. 19, 391–400 (2017).

    Article  PubMed  Google Scholar 

  252. Lobo, M. D. In Renal Denervation: Treatment and Device-Based Neuromodulation (eds Heuser, R. R. et al.) 193–198 (Springer International, 2023).

  253. Neuzil, P. et al. Long term effect of transvenous carotid body ablation in the treatment of patients with resistant hypertension. Eur. Heart J. 38, ehx504.4123 (2017).

    Article  Google Scholar 

  254. Schlaich, M. et al. Transvenous carotid body ablation for resistant hypertension: main results of a multicentre safety and proof-of-principle cohort study. Eur. Heart J. 39, ehy565.1416 (2018).

    Article  Google Scholar 

  255. Kulej-Lyko, K., Niewinski, P., Tubek, S. & Ponikowski, P. Contribution of peripheral chemoreceptors to exercise intolerance in heart failure. Front. Physiol. 13, 878363 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Kulej-Lyko, K. et al. Inhibition of peripheral chemoreceptors improves ventilatory efficiency during exercise in heart failure with preserved ejection fraction — a role of tonic activity and acute reflex response. Front. Physiol. 13, 911636 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  257. Bernard, C. Lectures on the Phenomena of Life Common to Animals and Plants (1872, 1873) (transl. Hoff, H. E. et al.) (Charles C. Thomas, 1974).

  258. Cannon, W. B. The Wisdom of the Body (W. W. Norton & Company, 1932).

  259. Hypertension. World Health Organization https://www.who.int/news-room/fact-sheets/detail/hypertension (2023).

  260. High blood pressure and older adults. National Heart, Lung, and Blood Institute https://www.nia.nih.gov/health/high-blood-pressure/high-blood-pressure-and-older-adults (2022).

  261. McEvoy, J. W. et al. 2024 ESC guidelines for the management of elevated blood pressure and hypertension. Eur. Heart J. 45, 3912–4018 (2024).

    Article  PubMed  Google Scholar 

  262. Paton, J. F., Dickinson, C. J. & Mitchell, G. Harvey Cushing and the regulation of blood pressure in giraffe, rat and man: introducing ‘Cushing’s mechanism’. Exp. Physiol. 94, 11–17 (2009).

    Article  CAS  PubMed  Google Scholar 

  263. Potts, J. T. et al. Contraction-sensitive skeletal muscle afferents inhibit arterial baroreceptor signalling in the nucleus of the solitary tract: role of intrinsic GABA interneurons. Neuroscience 119, 201–214 (2003).

    Article  CAS  PubMed  Google Scholar 

  264. Ottaviani, M. M., Wright, L., Dawood, T. & Macefield, V. G. In vivo recordings from the human vagus nerve using ultrasound-guided microneurography. J. Physiol. 598, 3569–3576 (2020).

    Article  CAS  PubMed  Google Scholar 

  265. Incognito, A. V. et al. Arterial baroreflex regulation of muscle sympathetic nerve activity at rest and during stress. J. Physiol. 597, 4729–4741 (2019).

    Article  CAS  PubMed  Google Scholar 

  266. Barrett, C. J., Navakatikyan, M. A. & Malpas, S. C. Long-term control of renal blood flow: what is the role of the renal nerves? Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, R1534–R1545 (2001).

    Article  CAS  PubMed  Google Scholar 

  267. Briant, L. J., O’Callaghan, E. L., Champneys, A. R. & Paton, J. F. Respiratory modulated sympathetic activity: a putative mechanism for developing vascular resistance? J. Physiol. 593, 5341–5360 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. D’Souza, A. W. et al. Age- and sex-related differences in sympathetic vascular transduction and neurohemodynamic balance in humans. Am. J. Physiol. Heart Circ. Physiol. 325, H917–H932 (2023).

    Article  PubMed  Google Scholar 

  269. Stehlin, E. et al. Chronic measurement of left ventricular pressure in freely moving rats. J. Appl. Physiol. 115, 1672–1682 (2013).

    Article  PubMed  Google Scholar 

  270. Hawryluk, G. W. J. et al. Intracranial pressure: current perspectives on physiology and monitoring. Intensive Care Med. 48, 1471–1481 (2022).

    Article  PubMed  Google Scholar 

  271. Abraham, W. T. et al. Sustained efficacy of pulmonary artery pressure to guide adjustment of chronic heart failure therapy: complete follow-up results from the CHAMPION randomised trial. Lancet 387, 453–461 (2016).

    Article  PubMed  Google Scholar 

  272. Dabbour, A. H. et al. The safety of micro-implants for the brain. Front. Neurosci. 15, 796203 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  273. Osswald, S. et al. Closed-loop stimulation using intracardiac impedance as a sensor principle: correlation of right ventricular dP/dtmax and intracardiac impedance during dobutamine stress test. Pacing Clin. Electrophysiol. 23, 1502–1508 (2000).

    Article  CAS  PubMed  Google Scholar 

  274. Griesbach, L. et al. Clinical performance of automatic closed-loop stimulation systems. Pacing Clin. Electrophysiol. 26, 1432–1437 (2003).

    Article  PubMed  Google Scholar 

  275. Prabhu, S., Rangarajan, S. & Kothare, M. Data-driven discovery of sparse dynamical model of cardiovascular system for model predictive control. Comput. Biol. Med. 166, 107513 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  276. Gee, M. M., Lenhoff, A. M., Schwaber, J. S., Ogunnaike, B. A. & Vadigepalli, R. Closed-loop modeling of central and intrinsic cardiac nervous system circuits underlying cardiovascular control. AIChE J. 69, e18033 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Thompson, N. et al. Organotopic organization of the porcine mid-cervical vagus nerve. Front. Neurosci. 17, 963503 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  278. Shanks, J., Pachen, M., Chang, J. W., George, B. & Ramchandra, R. Cardiac vagal nerve activity increases during exercise to enhance coronary blood flow. Circ. Res. 133, 559–571 (2023).

    Article  CAS  PubMed  Google Scholar 

  279. Wang, L. et al. Neuronal nitric oxide synthase gene transfer decreases [Ca2+]i in cardiac sympathetic neurons. J. Mol. Cell Cardiol. 43, 717–725 (2007).

    Article  CAS  PubMed  Google Scholar 

  280. Mohan, R. M. et al. Neuronal nitric oxide synthase gene transfer promotes cardiac vagal gain of function. Circ. Res. 91, 1089–1091 (2002).

    Article  CAS  PubMed  Google Scholar 

  281. Heaton, D. A. et al. Gene transfer of neuronal nitric oxide synthase into intracardiac ganglia reverses vagal impairment in hypertensive rats. Hypertension 49, 380–388 (2007).

    Article  CAS  PubMed  Google Scholar 

  282. Park, J. H., Gorky, J., Ogunnaike, B., Vadigepalli, R. & Schwaber, J. S. Investigating the effects of brainstem neuronal adaptation on cardiovascular homeostasis. Front. Neurosci. 14, 470 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  283. Park, J. et al. Inputs drive cell phenotype variability. Genome Res. 24, 930–941 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Staehle, M. M. et al. Diurnal patterns of gene expression in the dorsal vagal complex and the central nucleus of the amygdala — non-rhythm-generating brain regions. Front. Neurosci. 14, 375 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  285. Hornung, E. et al. Neuromodulatory co-expression in cardiac vagal motor neurons of the dorsal motor nucleus of the vagus. iScience 27, 110549 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  286. Roth, E. et al. Effects of PACAP and preconditioning against ischemia/reperfusion-induced cardiomyocyte apoptosis in vitro. Ann. NY Acad. Sci. 1163, 512–516 (2009).

    Article  CAS  PubMed  Google Scholar 

  287. Lee, E. H. & Seo, S. R. Neuroprotective roles of pituitary adenylate cyclase-activating polypeptide in neurodegenerative diseases. BMB Rep. 47, 369–375 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  288. Liu, D. M., Cuevas, J. & Adams, D. J. VIP and PACAP potentiation of nicotinic ACh-evoked currents in rat parasympathetic neurons is mediated by G-protein activation. Eur. J. Neurosci. 12, 2243–2251 (2000).

    Article  CAS  PubMed  Google Scholar 

  289. Mao, P. et al. Mitochondrial mechanism of neuroprotection by CART. Eur. J. Neurosci. 26, 624–632 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  290. Machhada, A. et al. Optogenetic stimulation of vagal efferent activity preserves left ventricular function in experimental heart failure. JACC Basic Transl. Sci. 5, 799–810 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  291. Hanna, P. et al. Innervation and neuronal control of the mammalian sinoatrial node a comprehensive atlas. Circ. Res. 128, 1279–1296 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Achanta, S. et al. A comprehensive integrated anatomical and molecular atlas of rat intrinsic cardiac nervous system. iScience 23, 101140 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Leung, C. et al. 3D single cell scale anatomical map of sex-dependent variability of the rat intrinsic cardiac nervous system. iScience 24, 102795 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  294. Cheng, Z., Zhang, H., Guo, S. Z., Wurster, R. & Gozal, D. Differential control over postganglionic neurons in rat cardiac ganglia by NA and DmnX neurons: anatomical evidence. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R625–R633 (2004).

    Article  CAS  PubMed  Google Scholar 

  295. Kellett, D. O. et al. Transcriptional response of the heart to vagus nerve stimulation. Physiol. Genom. 56, 167–178 (2024).

    Article  CAS  Google Scholar 

  296. Winbo, A. & Paterson, D. J. The brain–heart connection in sympathetically triggered inherited arrhythmia syndromes. Heart Lung Circ. 29, 529–537 (2020).

    Article  PubMed  Google Scholar 

  297. Zeppenfeld, K. et al. 2022 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur. Heart J. 43, 3997–4126 (2022).

    Article  PubMed  Google Scholar 

  298. Priori, S. G. et al. HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes: document endorsed by HRS, EHRA, and APHRS in May 2013 and by ACCF, AHA, PACES, and AEPC in June 2013. HeartRhythm 10, 1932–1963 (2013).

    Google Scholar 

  299. Wu, H. F. et al. Parasympathetic neurons derived from human pluripotent stem cells model human diseases and development. Cell Stem Cell 31, 734–753.e738 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Zaglia, T. & Mongillo, M. Cardiac sympathetic innervation, from a different point of (re)view. J. Physiol. 595, 3919–3930 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Shivkumar, K. & Ardell, J. L. Cardiac autonomic control in health and disease. J. Physiol. 594, 3851–3852 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Bardsley, E. N. et al. RNA sequencing reveals novel transcripts from sympathetic stellate ganglia during cardiac sympathetic hyperactivity. Sci. Rep. 8, 8633 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  303. Larsen, H. E., Lefkimmiatis, K. & Paterson, D. J. Sympathetic neurons are a powerful driver of myocyte function in cardiovascular disease. Sci. Rep. 6, 38898 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Dokshokova, L. et al. Nerve growth factor transfer from cardiomyocytes to innervating sympathetic neurons activates TrkA receptors at the neuro-cardiac junction. J. Physiol. 600, 2853–2875 (2022).

    Article  CAS  PubMed  Google Scholar 

  305. Davis, H., Liu, K., Li, N., Li, D. & Paterson, D. J. Healthy cardiac myocytes can decrease sympathetic hyperexcitability in the early stages of hypertension. Front. Synaptic Neurosci. 14, 949150 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  306. Berg, T. & Jensen, J. Simultaneous parasympathetic and sympathetic activation reveals altered autonomic control of heart rate, vascular tension, and epinephrine release in anesthetized hypertensive rats. Front. Neurol. 2, 71 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  307. Landis, S. C. Rat sympathetic neurons and cardiac myocytes developing in microcultures: correlation of the fine structure of endings with neurotransmitter function in single neurons. Proc. Natl Acad. Sci. USA 73, 4220–4224 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Furshpan, E. J., MacLeish, P. R., O’Lague, P. H. & Potter, D. D. Chemical transmission between rat sympathetic neurons and cardiac myocytes developing in microcultures: evidence for cholinergic, adrenergic, and dual-function neurons. Proc. Natl Acad. Sci. USA 73, 4225–4229 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Oh, Y. et al. Functional coupling with cardiac muscle promotes maturation of hPSC-derived sympathetic neurons. Cell Stem Cell 19, 95–106 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Luther, J. A. & Birren, S. J. Neurotrophins and target interactions in the development and regulation of sympathetic neuron electrical and synaptic properties. Auton. Neurosci. 151, 46–60 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Fagan, A. M. et al. TrkA, but not TrkC, receptors are essential for survival of sympathetic neurons in vivo. J. Neurosci. 16, 6208–6218 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Bengel, F. M. et al. Effect of sympathetic reinnervation on cardiac performance after heart transplantation. N. Engl. J. Med. 345, 731–738 (2001).

    Article  CAS  PubMed  Google Scholar 

  313. Takahashi, K. & Yamanaka, S. A decade of transcription factor-mediated reprogramming to pluripotency. Nat. Rev. Mol. Cell Biol. 17, 183–193 (2016).

    Article  CAS  PubMed  Google Scholar 

  314. Ludwig, T. E. et al. 20 years of human pluripotent stem cell research: it all started with five lines. Cell Stem Cell 23, 644–648 (2018).

    Article  CAS  PubMed  Google Scholar 

  315. Moretti, A. et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N. Engl. J. Med. 363, 1397–1409 (2010).

    Article  CAS  PubMed  Google Scholar 

  316. Wu, H. F. & Zeltner, N. Overview of methods to differentiate sympathetic neurons from human pluripotent stem cells. Curr. Protoc. Stem Cell Biol. 50, e92 (2019).

    Article  PubMed  Google Scholar 

  317. Wu, H. F. et al. Norepinephrine transporter defects lead to sympathetic hyperactivity in familial dysautonomia models. Nat. Commun. 13, 7032 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  318. Takayama, Y. et al. Selective induction of human autonomic neurons enables precise control of cardiomyocyte beating. Sci. Rep. 10, 9464 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Narkar, A., Feaster, T. K., Casciola, M. & Blinova, K. Human in vitro neurocardiac coculture (ivNCC) assay development for evaluating cardiac contractility modulation. Physiol. Rep. 10, e15498 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  320. Winbo, A. et al. Functional hyperactivity in long QT syndrome type 1 pluripotent stem cell-derived sympathetic neurons. Am. J. Physiol. Heart Circ. Physiol. 321, H217–h227 (2021).

    Article  CAS  PubMed  Google Scholar 

  321. Goldstein, R. S., Pomp, O., Brokhman, I. & Ziegler, L. Generation of neural crest cells and peripheral sensory neurons from human embryonic stem cells. Meth. Mol. Biol. 584, 283–300 (2010).

    Article  CAS  Google Scholar 

  322. Neely, O. C., Domingos, A. I. & Paterson, D. J. Macrophages can drive sympathetic excitability in the early stages of hypertension. Front. Cardiovasc. Med. 8, 807904 (2021).

    Article  CAS  PubMed  Google Scholar 

  323. Zimmermann, C. J., Herson, P. S., Neeves, K. B. & Marr, D. W. M. Multimodal microwheel swarms for targeting in three-dimensional networks. Sci. Rep. 12, 5078 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Madonna, R. et al. ESC working group on cellular biology of the heart: position paper for cardiovascular research: tissue engineering strategies combined with cell therapies for cardiac repair in ischaemic heart disease and heart failure. Cardiovasc. Res. 115, 488–500 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Zimmermann, W. H. et al. Tissue engineering of a differentiated cardiac muscle construct. Circ. Res. 90, 223–230 (2002).

    Article  CAS  PubMed  Google Scholar 

  326. Ergir, E. et al. Generation and maturation of human iPSC-derived 3D organotypic cardiac microtissues in long-term culture. Sci. Rep. 12, 17409 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Qian, T., Shusta, E. V. & Palecek, S. P. Advances in microfluidic platforms for analyzing and regulating human pluripotent stem cells. Curr. Opin. Genet. Dev. 34, 54–60 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Kolanowski, T. J. et al. Enhanced structural maturation of human induced pluripotent stem cell-derived cardiomyocytes under a controlled microenvironment in a microfluidic system. Acta Biomater. 102, 273–286 (2020).

    Article  CAS  PubMed  Google Scholar 

  329. Kolanowski, T. J., Antos, C. L. & Guan, K. Making human cardiomyocytes up to date: derivation, maturation state and perspectives. Int. J. Cardiol. 241, 379–386 (2017).

    Article  PubMed  Google Scholar 

  330. Zhang, Y. et al. Millimetre-scale bioresorbable optoelectronic systems for electrotherapy. Nature 640, 77–86 (2025).

    Article  CAS  PubMed  Google Scholar 

  331. Stark, C., Rytkin, E., Mircea, A. A. & Efimov, I. R. Advances in cardiac devices and bioelectronics augmented with artificial intelligence. J. Physiol. https://doi.org/10.1113/JP287135 (2025).

  332. Brüning, J. et al. In-silico enhanced animal study of pulmonary artery pressure sensors: assessing hemodynamics using computational fluid dynamics. Front. Cardiovasc. Med. 10, 1193209 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  333. Kushwah, C., Riesenhuber, M., Asmul, S., Gyöngyösi, M. & Nogaret, A. In-vivo blood pressure sensing with bi-filler nanocomposite. Biomater. Adv. 162, 213905 (2024).

    Article  CAS  PubMed  Google Scholar 

  334. Grinstein, J. et al. HVAD waveform analysis as a noninvasive marker of pulmonary capillary wedge pressure: a first step toward the development of a smart left ventricular assist device pump. ASAIO J. 64, 10–15 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  335. Imamura, T. & Narang, N. Advances in hemodynamic monitoring in heart failure patients. Intern. Med. 60, 167–171 (2021).

    Article  PubMed  Google Scholar 

  336. Pijacka, W. et al. Purinergic receptors in the carotid body as a new drug target for controlling hypertension. Nat. Med. 22, 1151–1159 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  337. Gold, O. M. S., Bardsley, E. N., Ponnampalam, A. P., Pauza, A. G. & Paton, J. F. R. Cellular basis of learning and memory in the carotid body. Front. Synaptic Neurosci. 14, 902319 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.F.R.P. is funded by the Health Research Council, Marsden Fund, the Royal Society of New Zealand, the Sidney Taylor Trust and is an inaugural Partridge Family laureate. J.F.R.P. was supported by a visiting research fellowship at Merton College, Oxford, during the writing of this Review with D.J.P. R.V. is funded by the National Heart Lung and Blood Institute (R01 HL161696). N.H. is supported by a British Heart Foundation Senior Clinical Research Fellowship (FS/SCRF/20/32005). D.J.P. is supported by a BHF Special Project Grant (SP/F/22/150027) and a Leducq International Network of Excellence Award (23CVD04) on Bioelectronics for Neurocardiology (with N.H.).

Author information

Authors and Affiliations

Authors

Contributions

J.F.R.P., T.Z., N.H. and D.J.P. researched data and wrote the article. J.F.R.P., N.H. and D.J.P. contributed to the discussion of its content. All authors reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Julian F. R. Paton or David J. Paterson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Gaetano De Ferrari, who co-reviewed with Veronica Dusi, and John Osborn for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

SPARC portal: https://sparc.science/apps/maps?type=ac

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paton, J.F.R., Żera, T., Vadigepalli, R. et al. Multimodal, device-based therapeutic targeting of the cardiovascular autonomic nervous system. Nat Rev Cardiol (2025). https://doi.org/10.1038/s41569-025-01212-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41569-025-01212-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing