Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neurovascular interactions in the ageing heart

Abstract

The global rise in life expectancy underscores the urgent need to extend healthspan and prevent age-related diseases. Cardiovascular disease is the leading cause of death worldwide, with ageing as a major non-modifiable risk factor. Ageing drives progressive vascular dysfunction and cardiac decline, including heart failure with preserved or reduced ejection fraction. Vascular cells are particularly vulnerable to ageing, resulting in structural and functional deterioration of the microvasculature and macrovasculature. Emerging evidence highlights that ageing also disrupts the neurovascular interface — an intricate axis between the nervous and vascular systems that governs cardiac function. Alterations to the neurovascular unit in the heart contribute to impaired autonomic regulation, increasing the risk of arrhythmias and heart failure. In this Review, we examine how neurovascular ageing shapes cardiac dysfunction and explore the therapeutic potential of targeting the cardiac neurovascular unit to mitigate cardiovascular ageing and promote resilience in ageing populations.

Key points

  • The nervous and vascular systems form closely interconnected interfaces that coordinate tissue homeostasis, neuroimmune communication and vascular integrity in both health and disease.

  • Vascular ageing causes endothelial dysfunction, which affects neurovascular signalling, leading to reduced cardiac innervation and electrical instability; these changes can be reversed by senolytic therapies targeting senescent cells.

  • The cardiac neurovascular unit mirrors mechanisms in the central nervous system, where nerves and blood vessels align and co-develop, regulated by neural activity and endothelial signals, to maintain cardiac function.

  • Heart–brain communication mediated by neurovascular and neuronal pathways regulates cardiac autonomic control, linking central neurodegenerative processes to peripheral cardiac innervation and function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The cardiac neurovasculome.
Fig. 2: Age-related alterations in the cardiac neurovasculome.
Fig. 3: Ageing impairs the cardiac neurovascular unit.
Fig. 4: The ageing heart–brain axis.

Similar content being viewed by others

References

  1. The Global Cardiovascular Risk Consortium. Global effect of modifiable risk factors on cardiovascular disease and mortality. N. Engl. J. Med. 389, 1273–1285 (2023).

    Article  Google Scholar 

  2. Liberale, L. et al. Roadmap for alleviating the manifestations of ageing in the cardiovascular system. Nat. Rev. Cardiol. 22, 577–605 (2025).

    Article  PubMed  Google Scholar 

  3. Iadecola, C. et al. The neurovasculome: key roles in brain health and cognitive impairment: a scientific statement from the American Heart Association/American Stroke Association. Stroke 54, e251–e271 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Anversa, P., Olivetti, G., Melissari, M. & Loud, A. V. Stereological measurement of cellular and subcellular hypertrophy and hyperplasia in the papillary muscle of adult rat. J. Mol. Cell Cardiol. 12, 781–795 (1980).

    Article  CAS  PubMed  Google Scholar 

  5. Wagner, J. U. G. & Dimmeler, S. The endothelial niche in heart failure: from development to regeneration. Eur. Heart J. 42, 4277–4279 (2021).

    Article  PubMed  Google Scholar 

  6. Wagner, J. U. G. & Dimmeler, S. Cellular cross-talks in the diseased and aging heart. J. Mol. Cell Cardiol. 138, 136–146 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Bassat, E. et al. The extracellular matrix protein agrin promotes heart regeneration in mice. Nature 547, 179–184 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dalkara, T., Østergaard, L., Heusch, G. & Attwell, D. Pericytes in the brain and heart: functional roles and response to ischaemia and reperfusion. Cardiovasc. Res. 120, 2336–2348 (2024).

    Article  CAS  Google Scholar 

  9. Vågesjö, E. et al. Perivascular macrophages regulate blood flow following tissue damage. Circ. Res. 128, 1694–1707 (2021).

    Article  PubMed  Google Scholar 

  10. He, H. et al. Perivascular macrophages limit permeability. Arterioscler. Thromb. Vasc. Biol. 36, 2203–2212 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Farbehi, N. et al. Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. eLife 8, e43882 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Litviňuková, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Majesky, M. W. Vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 36, e82–e86 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Valenza, G., Matić, Z. & Catrambone, V. The brain–heart axis: integrative cooperation of neural, mechanical and biochemical pathways. Nat. Rev. Cardiol. 22, 537–550 (2025).

    Article  PubMed  Google Scholar 

  15. Pauza, D. H., Skripka, V., Pauziene, N. & Stropus, R. Morphology, distribution, and variability of the epicardiac neural ganglionated subplexuses in the human heart. Anat. Rec. 259, 353–382 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Rysevaite, K. et al. Immunohistochemical characterization of the intrinsic cardiac neural plexus in whole-mount mouse heart preparations. Heart Rhythm. 8, 731–738 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Vincentz, J. W., Rubart, M. & Firulli, A. B. Ontogeny of cardiac sympathetic innervation and its implications for cardiac disease. Pediatric Cardiol. 33, 923–928 (2012).

    Article  Google Scholar 

  18. Kawashima, T. The autonomic nervous system of the human heart with special reference to its origin, course, and peripheral distribution. Anat. Embryol. 209, 425–438 (2005).

    Article  Google Scholar 

  19. Wu, D. et al. The blood–brain barrier: structure, regulation and drug delivery. Signal. Transduct. Target. Ther. 8, 217 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wagner, J. U. G. et al. Aging impairs the neurovascular interface in the heart. Science 381, 897–906 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Schaeffer, S. & Iadecola, C. Revisiting the neurovascular unit. Nat. Neurosci. 24, 1198–1209 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Manousiouthakis, E., Mendez, M., Garner, M. C., Exertier, P. & Makita, T. Venous endothelin guides sympathetic innervation of the developing mouse heart. Nat. Commun. 5, 3918 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Manickam, N. et al. Beneficial effects of vascular endothelial growth factor B gene transfer in the aged heart. Cardiovasc. Res. 121, 1594–1608 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nam, J. et al. Coronary veins determine the pattern of sympathetic innervation in the developing heart. Development 140, 1475–1485 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ketch, T., Biaggioni, I., Robertson, R. & Robertson, D. Four faces of baroreflex failure. Circulation 105, 2518–2523 (2002).

    Article  PubMed  Google Scholar 

  26. Lakatta, E. G. & Levy, D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises. Circulation 107, 139–146 (2003).

    Article  PubMed  Google Scholar 

  27. Song, R. et al. Associations between cardiovascular risk, structural brain changes, and cognitive decline. J. Am. Coll. Cardiol. 75, 2525–2534 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rakusan, K. & Nagai, J. Morphometry of arterioles and capillaries in hearts of senescent mice. Cardiovasc. Res. 28, 969–972 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Tamiato, A. et al. Age-dependent RGS5 loss in pericytes induces cardiac dysfunction and fibrosis. Circ. Res. 134, 1240–1255 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grootaert, M. O. J. et al. Mural cell dysfunction contributes to diastolic heart failure by promoting endothelial dysfunction and vessel remodelling. Cardiovasc. Diabetol. 24, 62 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Simmonds, S. J. et al. Pericyte loss initiates microvascular dysfunction in the development of diastolic dysfunction. Eur. Heart J. Open 4, oead129 (2024).

    Article  PubMed  Google Scholar 

  32. Gates, P. E., Strain, W. D. & Shore, A. C. Human endothelial function and microvascular ageing. Exp. Physiol. 94, 311–316 (2009).

    Article  PubMed  Google Scholar 

  33. Vasa, M., Breitschopf, K., Zeiher, A. M. & Dimmeler, S. Nitric oxide activates telomerase and delays endothelial cell senescence. Circ. Res. 87, 540–542 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Li, Z., Froehlich, J., Galis, Z. S. & Lakatta, E. G. Increased expression of matrix metalloproteinase-2 in the thickened intima of aged rats. Hypertension 33, 116–123 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Ungvari, Z. et al. Endothelial dysfunction and angiogenesis impairment in the ageing vasculature. Nat. Rev. Cardiol. 15, 555–565 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou, X., Perez, F., Han, K. & Jurivich, D. A. Clonal senescence alters endothelial ICAM-1 function. Mech. Ageing Dev. 127, 779–785 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Liu, Z. et al. Insights gained from single-cell RNA analysis of murine endothelial cells in aging hearts. Heliyon 9, e18324 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rodriguez Morales, D. et al. Vascular niches are the primary hotspots for aging within the multicellular architecture of cardiac tissue. Circ. Res. 137, 1353–1367 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hall, I. F., Kishta, F., Xu, Y., Baker, A. H. & Kovacic, J. C. Endothelial to mesenchymal transition: at the axis of cardiovascular health and disease. Cardiovasc. Res. 120, 223–236 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kovacic, J. C. et al. Endothelial to mesenchymal transition in cardiovascular disease: JACC state-of-the-art review. J. Am. Coll. Cardiol. 73, 190–209 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Damon, D. H. Sympathetic innervation promotes vascular smooth muscle differentiation. Am. J. Physiol. Heart Circ. Physiol. 288, H2785–H2791 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Vidal, R. et al. Transcriptional heterogeneity of fibroblasts is a hallmark of the aging heart. JCI Insight 4, e131092 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kortlever, R. M., Higgins, P. J. & Bernards, R. Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nat. Cell Biol. 8, 877–884 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hasan, W. et al. Sympathetic hyperinnervation and inflammatory cell NGF synthesis following myocardial infarction in rats. Brain Res. 1124, 142–154 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mias, C. et al. Cardiac fibroblasts regulate sympathetic nerve sprouting and neurocardiac synapse stability. PLoS ONE 8, e79068 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Camell, C. D. et al. Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing. Nature 550, 119–123 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pirzgalska, R. M. et al. Sympathetic neuron–associated macrophages contribute to obesity by importing and metabolizing norepinephrine. Nat. Med. 23, 1309–1318 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wolf, Y. et al. Brown-adipose-tissue macrophages control tissue innervation and homeostatic energy expenditure. Nat. Immunol. 18, 665–674 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Moura Silva, H. et al. c-MAF-dependent perivascular macrophages regulate diet-induced metabolic syndrome. Sci. Immunol. 6, eabg7506 (2021).

    Article  PubMed  Google Scholar 

  50. Viola, M. F. et al. Dedicated macrophages organize and maintain the enteric nervous system. Nature 618, 818–826 (2023).

    Article  CAS  PubMed  Google Scholar 

  51. Matheis, F. et al. Adrenergic signaling in muscularis macrophages limits infection-induced neuronal loss. Cell 180, 64–78.e16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wernli, G., Hasan, W., Bhattacherjee, A., van Rooijen, N. & Smith, P. G. Macrophage depletion suppresses sympathetic hyperinnervation following myocardial infarction. Basic Res. Cardiol. 104, 681–693 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hulsmans, M. et al. Macrophages facilitate electrical conduction in the heart. Cell 169, 510–522.e20 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Elliott, H. L., Sumner, D. J., McLean, K. & Reid, J. L. Effect of age on the responsiveness of vascular α-adrenoceptors in man. J. Cardiovasc. Pharmacol. 4, 388–392 (1982).

    Article  CAS  PubMed  Google Scholar 

  55. Pinckard, J. et al. Functional ultrasound as a quantitative approach for measuring functional hyperemia in aging models. Neuroimage 316, 121313 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bristow, M. R. et al. Decreased catecholamine sensitivity and β-adrenergic-receptor density in failing human hearts. N. Engl. J. Med. 307, 205–211 (1982).

    Article  CAS  PubMed  Google Scholar 

  57. Lakatta, E. G. & Sollott, S. J. Perspectives on mammalian cardiovascular aging: humans to molecules. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 132, 699–721 (2002).

    Article  PubMed  Google Scholar 

  58. Xiao, R. P., Spurgeon, H. A., O’Connor, F. & Lakatta, E. G. Age-associated changes in beta-adrenergic modulation on rat cardiac excitation-contraction coupling. J. Clin. Invest. 94, 2051–2059 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Perez, S. D. et al. Chronically lowering sympathetic activity protects sympathetic nerves in spleens from aging F344 rats. J. Neuroimmunol. 247, 38–51 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mahmoud, A. I. et al. Nerves regulate cardiomyocyte proliferation and heart regeneration. Dev. Cell 34, 387–399 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. White, I. A., Gordon, J., Balkan, W. & Hare, J. M. Sympathetic reinnervation is required for mammalian cardiac regeneration. Circ. Res. 117, 990–994 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tahsili-Fahadan, P. & Geocadin, R. G. Heart–brain axis. Circ. Res. 120, 559–572 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Nolte, C. H. et al. Type 1 myocardial infarction in patients with acute ischemic stroke. JAMA Neurol. 81, 703–711 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Singh, T. et al. Takotsubo syndrome: pathophysiology, emerging concepts, and clinical implications. Circulation 145, 1002–1019 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kwaśniak-Butowska, M. et al. Cardiovascular dysautonomia and cognition in Parkinson’s disease — a possible relationship. Neurol. Neurochir. Pol. 55, 525–535 (2021).

    Article  PubMed  Google Scholar 

  66. Allan, L. M. et al. Autonomic dysfunction in dementia. J. Neurol. Neurosurg. Psychiatry 78, 671 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Sanna, G. D. et al. Cardiac abnormalities in Alzheimer disease: clinical relevance beyond pathophysiological rationale and instrumental findings? JACC Heart Fail. 7, 121–128 (2019).

    Article  PubMed  Google Scholar 

  68. Guendelman, S., Kaltwasser, L., Bayer, M., Gallese, V. & Dziobek, I. Brain mechanisms underlying the modulation of heart rate variability when accepting and reappraising emotions. Sci. Rep. 14, 18756 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hsueh, B. et al. Cardiogenic control of affective behavioural state. Nature 615, 292–299 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Huang, L.-Y. et al. Associations of cardiovascular risk factors and lifestyle behaviors with neurodegenerative disease: a Mendelian randomization study. Transl. Psychiatry 13, 267 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dampney, R. A. L. Central neural control of the cardiovascular system: current perspectives. Adv. Physiol. Educ. 40, 283–296 (2016).

    Article  PubMed  Google Scholar 

  72. Ruiz Vargas, E., Sörös, P., Shoemaker, J. K. & Hachinski, V. Human cerebral circuitry related to cardiac control: a neuroimaging meta-analysis. Ann. Neurol. 79, 709–716 (2016).

    Article  PubMed  Google Scholar 

  73. Karim, S., Chahal, A., Khanji, M. Y., Petersen, S. E. & Somers, V. K. Autonomic cardiovascular control in health and disease. Compr. Physiol. 13, 4493–4511 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Harrison, N. A., Cooper, E., Voon, V., Miles, K. & Critchley, H. D. Central autonomic network mediates cardiovascular responses to acute inflammation: relevance to increased cardiovascular risk in depression? Brain Behav. Immun. 31, 189–196 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Dyavanapalli, J. Novel approaches to restore parasympathetic activity to the heart in cardiorespiratory diseases. Am. J. Physiol. Heart Circ. Physiol. 319, H1153–H1161 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liu, J. et al. Heart–brain interaction in cardiogenic dementia: pathophysiology and therapeutic potential. Front. Cardiovasc. Med. 11, 1304864 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhang, D. et al. Correlation of ventricular arrhythmogenesis with neuronal remodeling of cardiac postganglionic parasympathetic neurons in the late stage of heart failure after myocardial infarction. Front. Neurosci. 11, 252 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ziegler, K. A. et al. Immune-mediated denervation of the pineal gland underlies sleep disturbance in cardiac disease. Science 381, 285–290 (2023).

    Article  CAS  PubMed  Google Scholar 

  79. Martín Giménez, V. M. et al. Melatonin as an anti-aging therapy for age-related cardiovascular and neurodegenerative diseases. Front. Aging Neurosci. 14, 888292 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Reiter, R. J., Rosales-Corral, S. & Sharma, R. Circadian disruption, melatonin rhythm perturbations and their contributions to chaotic physiology. Adv. Med. Sci. 65, 394–402 (2020).

    Article  PubMed  Google Scholar 

  81. Li, H. et al. Pharmacological targeting of endothelial nitric oxide synthase dysfunction and nitric oxide replacement therapy. Free Radic. Biol. Med. 237, 455–472 (2025).

    Article  CAS  PubMed  Google Scholar 

  82. Yu, J. et al. Endothelial nitric oxide synthase is critical for ischemic remodeling, mural cell recruitment, and blood flow reserve. Proc. Natl Acad. Sci. USA 102, 10999–11004 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Daiber, A. et al. New therapeutic implications of endothelial nitric oxide synthase (eNOS) function/dysfunction in cardiovascular disease. Int. J. Mol. Sci. 20, 187 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Gao, J., Pan, X., Li, G., Chatterjee, E. & Xiao, J. Physical exercise protects against endothelial dysfunction in cardiovascular and metabolic diseases. J. Cardiovasc. Transl. Res. 15, 604–620 (2022).

    Article  PubMed  Google Scholar 

  85. Dookun, E., Passos, J. F., Arthur, H. M. & Richardson, G. D. Therapeutic potential of senolytics in cardiovascular disease. Cardiovasc. Drugs Ther. 36, 187–196 (2022).

    Article  PubMed  Google Scholar 

  86. Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Csik, B. et al. Senescent endothelial cells in cerebral microcirculation are key drivers of age-related blood–brain barrier disruption, microvascular rarefaction, and neurovascular coupling impairment in mice. Aging Cell 24, e70048 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tarantini, S. et al. Treatment with the BCL-2/BCL-xL inhibitor senolytic drug ABT263/Navitoclax improves functional hyperemia in aged mice. Geroscience 43, 2427–2440 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Aratani, S. & Nakanishi, M. Recent advances in senolysis for age-related diseases. Physiology 38, 205–216 (2023).

    Article  CAS  Google Scholar 

  90. Gonzales, M. M. et al. Senolytic therapy in mild Alzheimer’s disease: a phase 1 feasibility trial. Nat. Med. 29, 2481–2488 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wissler Gerdes, E. O., Misra, A., Netto, J. M. E., Tchkonia, T. & Kirkland, J. L. Strategies for late phase preclinical and early clinical trials of senolytics. Mech. Ageing Dev. 200, 111591 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Grunewald, M. et al. Counteracting age-related VEGF signaling insufficiency promotes healthy aging and extends life span. Science 373, eabc8479 (2025).

    Article  Google Scholar 

  93. Pius-Sadowska, E. & Machaliński, B. BDNF — a key player in cardiovascular system. J. Mol. Cell Cardiol. 110, 54–60 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. Story, G. M. et al. Inactivation of one copy of the mouse neurotrophin-3 gene induces cardiac sympathetic deficits. Physiol. Genomics 2, 129–136 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Miwa, K. et al. Glial cell line-derived neurotrophic factor (GDNF) enhances sympathetic neurite growth in rat hearts at early developmental stages. Biomed. Res. 31, 353–361 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Miwa, K. et al. Axon guidance of sympathetic neurons to cardiomyocytes by glial cell line-derived neurotrophic factor (GDNF). PLoS ONE 8, e65202 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rossi, D. et al. Reelin reverts biochemical, physiological and cognitive alterations in mouse models of tauopathy. Prog. Neurobiol. 186, 101743 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Liu, X. et al. Lymphoangiocrine signals promote cardiac growth and repair. Nature 588, 705–711 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sonntag, W. E. et al. The effects of growth hormone and IGF-1 deficiency on cerebrovascular and brain ageing. J. Anat. 197, 575–585 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Xu, X. et al. IGF-1 Provides protective role in arteriosclerotic cerebral small vessel disease. Hypertension 82, 1137–1150 (2025).

    Article  CAS  PubMed  Google Scholar 

  101. Zaman, R. et al. Selective loss of resident macrophage-derived insulin-like growth factor-1 abolishes adaptive cardiac growth to stress. Immunity 54, 2057–2071.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Perrotta, S. et al. A heart-brain-spleen axis controls cardiac remodeling to hypertensive stress. Immunity 58, 648–665.e7 (2025).

    Article  CAS  PubMed  Google Scholar 

  103. Cao, J.-M. et al. Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation 101, 1960–1969 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Dajani, A. H. J. et al. Heterogeneous cardiac sympathetic innervation gradients promote arrhythmogenesis in murine dilated cardiomyopathy. JCI Insight 8, e157956 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Ziegler, K. A. et al. Neural mechanisms in cardiovascular health and disease. Circ. Res. 136, 1233–1261 (2025).

    Article  CAS  PubMed  Google Scholar 

  106. Hawley, J. A., Hargreaves, M., Joyner, M. J. & Zierath, J. R. Integrative biology of exercise. Cell 159, 738–749 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Wichi, R. B., De Angelis, K., Jones, L. & Irigoyen, M. C. A brief review of chronic exercise intervention to prevent autonomic nervous system changes during the aging process. Clinics 64, 253–258 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Roh, J., Rhee, J., Chaudhari, V. & Rosenzweig, A. The role of exercise in cardiac aging. Circ. Res. 118, 279–295 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Iemitsu, M., Maeda, S., Jesmin, S., Otsuki, T. & Miyauchi, T. Exercise training improves aging-induced downregulation of VEGF angiogenic signaling cascade in hearts. Am. J. Physiol. Heart Circ. Physiol. 291, H1290–H1298 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Lerchenmüller, C. et al. Restoration of cardiomyogenesis in aged mouse hearts by voluntary exercise. Circulation 146, 412–426 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Fukuda, K., Kanazawa, H., Aizawa, Y., Ardell, J. L. & Shivkumar, K. Cardiac innervation and sudden cardiac death. Circ. Res. 116, 2005–2019 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ieda, M. et al. Nerve growth factor is critical for cardiac sensory innervation and rescues neuropathy in diabetic hearts. Circulation 114, 2351–2363 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Kiss, T. et al. Nicotinamide mononucleotide (NMN) supplementation promotes neurovascular rejuvenation in aged mice: transcriptional footprint of SIRT1 activation, mitochondrial protection, anti-inflammatory, and anti-apoptotic effects. Geroscience 42, 527–546 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Szarvas, Z. et al. Effects of NAD+ supplementation with oral nicotinamide riboside on vascular health and cognitive function in older adults with peripheral artery disease: results from a pilot 4-week open-label clinical trial. J. Pharmacol. Exp. Ther. 392, 103607 (2025).

    Article  PubMed  Google Scholar 

  115. Dierickx, P. et al. Circadian REV-ERBs repress E4bp4 to activate NAMPT-dependent NAD+ biosynthesis and sustain cardiac function. Nat. Cardiovascular Res. 1, 45–58 (2022).

    Article  Google Scholar 

  116. Weiss, E. P. & Fontana, L. Caloric restriction: powerful protection for the aging heart and vasculature. Am. J. Physiol. Heart Circ. Physiol. 301, H1205–H1219 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Anderson, R. M., Shanmuganayagam, D. & Weindruch, R. Caloric restriction and aging: studies in mice and monkeys. Toxicol. Pathol. 3, 47–51 (2009).

    Article  Google Scholar 

  118. Barzilai, N., Banerjee, S., Hawkins, M., Chen, W. & Rossetti, L. Caloric restriction reverses hepatic insulin resistance in aging rats by decreasing visceral fat. J. Clin. Invest. 101, 1353–1361 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Crandall, D. L., Lai, F. M., Huggins, F. J., Tanikella, T. K. & Cervoni, P. Effect of caloric restriction on cardiac reactivity and beta-adrenoceptor concentration. Am. J. Physiol. Heart Circ. Physiol. 244, H444–H448 (1983).

    Article  CAS  Google Scholar 

  120. Loh, J. S. et al. Microbiota–gut–brain axis and its therapeutic applications in neurodegenerative diseases. Signal. Transduct. Target. Ther. 9, 37 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Polster, S. P. et al. Permissive microbiome characterizes human subjects with a neurovascular disease cavernous angioma. Nat. Commun. 11, 2659 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lin, L. et al. The brain-protective mechanism of fecal microbiota transplantation from young donor mice in the natural aging process via exosome, gut microbiota, and metabolomics analyses. Pharmacol. Res. 207, 107323 (2024).

    Article  CAS  PubMed  Google Scholar 

  123. Kim, C.-S. et al. Probiotic supplementation improves cognitive function and mood with changes in gut microbiota in community-dwelling older adults: a randomized, double-blind, placebo-controlled, multicenter trial. J. Gerontol. A Biol. Sci. Med. Sci. 76, 32–40 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhang, C., Wang, Y., Wang, D., Zhang, J. & Zhang, F. NSAID exposure and risk of Alzheimer’s disease: an updated meta-analysis from cohort studies. Front. Aging Neurosci. 10, 83 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Everett, B. M. et al. Inhibition of Interleukin-1β and reduction in atherothrombotic cardiovascular events in the CANTOS trial. J. Am. Coll. Cardiol. 76, 1660–1670 (2020).

    Article  CAS  PubMed  Google Scholar 

  126. Finocchiaro, S. et al. Anti-inflammatory pharmacotherapy in patients with cardiovascular disease. Eur. Heart J. Cardiovasc. Pharmacother. 19, pvaf058 (2025).

    Google Scholar 

  127. Koopman, F. A. et al. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc. Natl Acad. Sci. USA 113, 8284–8289 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Tynan, A., Brines, M. & Chavan, S. S. Control of inflammation using non-invasive neuromodulation: past, present and promise. Int. Immunol. 34, 119–128 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Zandstra, T. E. et al. Asymmetry and heterogeneity: part and parcel in cardiac autonomic innervation and function. Front. Physiol. 12, 665298 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Nyúl-Tóth, Á. et al. Novel intravital approaches to quantify deep vascular structure and perfusion in the aging mouse brain using ultrasound localization microscopy (ULM). J. Cereb. Blood Flow Metab. 44, 1378–1396 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Vinegoni, C., Aguirre, A. D., Lee, S. & Weissleder, R. Imaging the beating heart in the mouse using intravital microscopy techniques. Nat. Protoc. 10, 1802–1819 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ahn, S., Yoon, J. & Kim, P. Intravital imaging of cardiac tissue utilizing tissue-stabilized heart window chamber in live animal model. Eur. Heart J. Imaging Methods Pract. 12, qyae062 (2024).

    Article  Google Scholar 

  133. Borrelli, C., Bengel, F. M. & Gimelli, A. Integrated catecholamine imaging in heart and lung across different cardiopulmonary disorders: a systems-based pilot analysis. Int. J. Cardiol. 390, 131208 (2023).

    Article  PubMed  Google Scholar 

  134. Mitsui, J. et al. Pathology of the sympathetic nervous system corresponding to the decreased cardiac uptake in 123I-metaiodobenzylguanidine (MIBG) scintigraphy in a patient with Parkinson disease. J. Neurol. Sci. 243, 101–104 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Orimo, S., Yogo, M., Nakamura, T., Suzuki, M. & Watanabe, H. 123I-meta-iodobenzylguanidine (MIBG) cardiac scintigraphy in α-synucleinopathies. Ageing Res. Rev. 30, 122–133 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Kujundzic (Goethe University Frankfurt, Germany) for providing fluorescence images of the cardiac neurovasculome. J.U.G.W. is supported by the Dr Rolf-M.-Schwiete Foundation (2021-002). J.U.G.W. and S.D. are supported by the German Research Foundation (SFB1366 No. 394046768). S.D. is supported by the European Research Council (GAP – 101053352, Neuroheart) and the German Research Foundation (SFB1531 No. 456687919, the Cluster of Excellence Cardiopulmonary Institute Exc2026/1).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed substantially to all aspects of the article.

Corresponding author

Correspondence to Stefanie Dimmeler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Cardiology thanks Stefano Tarantini and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Cardiac neurovascular unit

A microscale concept describing the intimate structural and functional association between neurons, vascular cells (endothelial cells, pericytes and vascular smooth muscle cells) and the extracellular matrix at a given microvascular segment (arteriole, capillary or venule) in the heart.

Cardiac neurovasculome

A macroscale systems concept denoting the totality of all neurovascular units, including all vascular and nervous structures, in the heart.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagner, J.U.G., Dimmeler, S. Neurovascular interactions in the ageing heart. Nat Rev Cardiol (2026). https://doi.org/10.1038/s41569-026-01260-4

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41569-026-01260-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing