Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A unified view on catalytic conversion of biomass and waste plastics

Abstract

Originating from the desire to improve sustainability, producing fuels and chemicals from the conversion of biomass and waste plastic has become an important research topic in the twenty-first century. Although biomass is natural and plastic synthetic, the chemical nature of the two are not as distinct as they first appear. They share substantial structural similarities in terms of their polymeric nature and the types of bonds linking their monomeric units, resulting in close relationships between the two materials and their conversions. Previously, their transformations were mostly studied and reviewed separately in the literature. Here, we summarize the catalytic conversion of biomass and waste plastics, with a focus on bond activation chemistry and catalyst design. By tracking the historical and more recent developments, it becomes clear that biomass and plastic have not only evolved their unique conversion pathways but have also started to cross paths with each other, with each influencing the landscape of the other. As a result, this Review on the catalytic conversion of biomass and waste plastic in a unified angle offers improved insights into existing technologies, and more importantly, may enable new opportunities for future advances.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemical similarities between biomass and plastics.
Fig. 2: Conversion strategies of Caliph–C linkages in biomass valorization and plastic upcycling.
Fig. 3: Conversion strategies of Carom–C linkages in biomass valorization and plastic upcycling.
Fig. 4: Conversion strategies of C–O bond linkages in biomass valorization and plastic upcycling.
Fig. 5: Conversion strategies of C–N linkages in biomass valorization and plastic upcycling.

Similar content being viewed by others

References

  1. International Energy Agency. Technology roadmap: delivering sustainable bioenergy (IEA, 2017).

  2. Malico, I., Nepomuceno Pereira, R., Gonçalves, A. C. & Sousa, A. M. O. Current status and future perspectives for energy production from solid biomass in the European industry. Renew. Sustain. Energy Rev. 112, 960–977 (2019).

    Article  Google Scholar 

  3. National Renewable Energy Laboratory. Chemicals from Biomass: a Market Assessment of Bioproducts with Near-term Potential (NREL, 2016); https://www.nrel.gov/docs/fy16osti/65509.pdf

  4. Garcia, J. M. & Robertson, M. L. The future of plastics recycling. Science 358, 870–872 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Zheng, J. & Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Change 9, 374–378 (2019).

    Article  Google Scholar 

  6. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Adyel, T. M. Accumulation of plastic waste during COVID-19. Science 369, 1314–1315 (2020).

    Article  PubMed  Google Scholar 

  8. Ritter, S. K. Lignocellulose: a complex biomaterial. Plant Biochem. 86, 15 (2008).

    Google Scholar 

  9. Sun, Z., Fridrich, B., de Santi, A., Elangovan, S. & Barta, K. Bright side of lignin depolymerization: toward new platform chemicals. Chem. Rev. 118, 614–678 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sudarsanam, P., Peeters, E., Makshina, E. V., Parvulescu, V. I. & Sels, B. F. Advances in porous and nanoscale catalysts for viable biomass conversion. Chem. Soc. Rev. 48, 2366–2421 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Schutyser, W. et al. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. 47, 852–908 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Wu, X. et al. Photocatalytic transformations of lignocellulosic biomass into chemicals. Chem. Soc. Rev. 49, 6198–6223 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Shrotri, A., Kobayashi, H. & Fukuoka, A. Cellulose depolymerization over heterogeneous catalysts. Acc. Chem. Res. 51, 761–768 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Granone, L. I., Sieland, F., Zheng, N., Dillert, R. & Bahnemann, D. W. Photocatalytic conversion of biomass into valuable products: a meaningful approach? Green Chem. 20, 1169–1192 (2018).

    Article  CAS  Google Scholar 

  15. Liu, X., Duan, X., Wei, W., Wang, S. & Ni, B.-J. Photocatalytic conversion of lignocellulosic biomass to valuable products. Green Chem. 21, 4266–4289 (2019).

    Article  CAS  Google Scholar 

  16. Yoo, C. G., Meng, X., Pu, Y. & Ragauskas, A. J. The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: a comprehensive review. Bioresour. Technol. 301, 122784 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Rahimi, A. & García, J. M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 1, 0046 (2017).

    Article  CAS  Google Scholar 

  18. Coates, G. W. & Getzler, Y. D. Y. L. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 5, 501–516 (2020).

    Article  CAS  Google Scholar 

  19. Vollmer, I. et al. Beyond mechanical recycling: giving new life to plastic waste. Angew. Chem. Int. Ed. 59, 15402–15423 (2020).

    Article  CAS  Google Scholar 

  20. Martín, A. J., Mondelli, C., Jaydev, S. D. & Pérez-Ramírez, J. Catalytic processing of plastic waste on the rise. Chem 7, 1487–1533 (2021).

    Article  CAS  Google Scholar 

  21. Zhang, X., Fevre, M., Jones, G. O. & Waymouth, R. M. Catalysis as an enabling science for sustainable polymers. Chem. Rev. 118, 839–885 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Sohn, Y. J. et al. Recent advances in sustainable plastic upcycling and biopolymers. Biotechnol. J. 15, e1900489 (2020).

    Article  PubMed  CAS  Google Scholar 

  23. Huber, G. W., Iborra, S. & Corma, A. Synthesis of transportation fuels from biomass chemistry, catalysts, and engineering. Chem. Rev. 106, 4044–4098 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Al-Salem, S. M., Lettieri, P. & Baeyens, J. Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manag. 29, 2625–2643 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Ragaert, K., Delva, L. & Van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 69, 24–58 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Zhou, C. H., Xia, X., Lin, C. X., Tong, D. S. & Beltramini, J. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem. Soc. Rev. 40, 5588–5617 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Ennaert, T. et al. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Chem. Soc. Rev. 45, 584–611 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M. & Nizami, A. S. Catalytic pyrolysis of plastic waste: a review. Process. Saf. Environ. Prot. 102, 822–838 (2016).

    Article  CAS  Google Scholar 

  29. Nikles, D. E. & Farahat, M. S. New motivation for the depolymerization products derived from poly(ethylene terephthalate) (PET) waste: a review. Macromol. Mater. Eng. 290, 13–30 (2005).

    Article  CAS  Google Scholar 

  30. Garedew, M. et al. Electrochemical upgrading of depolymerized lignin: a review of model compound studies. Green Chem. 23, 2868–2899 (2021).

    Article  CAS  Google Scholar 

  31. Chen, C.-C., Dai, L., Ma, L. & Guo, R.-T. Enzymatic degradation of plant biomass and synthetic polymers. Nat. Rev. Chem. 4, 114–126 (2020).

    Article  Google Scholar 

  32. Marignan, A.-L. Anellotech’s Bio-TCat™ technology for making Bio p-xylene, toluene and benzene from woody biomass is ready for commercialization. IFP Energies Nouvelles https://www.ifpenergiesnouvelles.com/article/anellotechs-bio-tcattm-technology-ready-commercialization (2021).

  33. Marker, T. L., Felix, L. G., Linck, M. B. & Roberts, M. J. Integrated hydropyrolysis and hydroconversion (IH2) for the direct production of gasoline and diesel fuels or blending components from biomass, part 1: proof of principle testing. Environ. Prog. Sustain. Energy 31, 191–199 (2012).

    Article  CAS  Google Scholar 

  34. Vásquez, M. C., Silva, E. E. & Castillo, E. F. Hydrotreatment of vegetable oils: a review of the technologies and its developments for jet biofuel production. Biomass Bioenergy 105, 197–206 (2017).

    Article  CAS  Google Scholar 

  35. Baldiraghi, F. et al. in Sustainable Industrial Chemistry (eds Cabani, F., Centi, G., Perathoner, S. & Trifiró, F.) 427–438 (Wiley-VCH, 2009).

  36. Weitkamp, J. Catalytic hydrocracking — mechanisms and versatility of the process. ChemCatChem 4, 292–306 (2012).

    Article  CAS  Google Scholar 

  37. Corma, A. & Orchillés, A. V. Current views on the mechanism of catalytic cracking. Micropor. Mesopor. Mater. 35–36, 21–30 (2000).

    Article  Google Scholar 

  38. Haag, W. & Dessau, R. Duality of mechanism for acid-catalyzed paraffin cracking. In Proc. 8th International Congress on Catalysis 2, 305–316 (Dechema, 1984).

  39. Vogt, E. T. & Weckhuysen, B. M. Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis. Chem. Soc. Rev. 44, 7342–7370 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Marker, T. L. Opportunities for Biorenewables in Oil Refineries (UOP, 2005); https://www.osti.gov/servlets/purl/861458

  41. Williams, P. T. & Horne, P. A. Characterisation of oils from the fluidised bed pyrolysis of biomass with zeolite catalyst upgrading. Biomass Bioenergy 7, 223–236 (1994).

    Article  CAS  Google Scholar 

  42. Horne, P. A. & Williams, P. T. The effect of zeolite ZSM-5 catalyst deactivation during the upgrading of biomass-derived pyrolysis vapours. J. Anal. Appl. Pyrolysis 34, 65–85 (1995).

    Article  CAS  Google Scholar 

  43. Thring, R. W., Katikaneni, S. P. & Bakhshi, N. N. The production of gasoline range hydrocarbons from Alcell® lignin using HZSM-5 catalyst. Fuel Process. Technol. 62, 17–30 (2000).

    Article  CAS  Google Scholar 

  44. Huber, G. W. & Corma, A. Synergies between bio-and oil refineries for the production of fuels from biomass. Angew. Chem. Int. Ed. 46, 7184–7201 (2007).

    Article  CAS  Google Scholar 

  45. Corma, A., Huber, G., Sauvanaud, L. & O’Connor, P. Processing biomass-derived oxygenates in the oil refinery: catalytic cracking (FCC) reaction pathways and role of catalyst. J. Catal. 247, 307–327 (2007).

    Article  CAS  Google Scholar 

  46. Vollmer, I., Jenks, M. J. F., Mayorga Gonzalez, R., Meirer, F. & Weckhuysen, B. M. Plastic waste conversion over a refinery waste catalyst. Angew. Chem. Int. Ed. 60, 16101–16108 (2021).

    Article  CAS  Google Scholar 

  47. Tukker, A., de Groot, H., Simons, L. & Wiegersma, S. Chemical recycling of plastics waste (PVC and other resins) (TNO Institute of Strategy, Technology and Policy, Netherlands Organization for Applied Scientific Research (TNO), 1999).

  48. Rorrer, J. E., Beckham, G. T. & Román-Leshkov, Y. Conversion of polyolefin waste to liquid alkanes with Ru-based catalysts under mild conditions. JACS Au 1, 8–12 (2020).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Celik, G. et al. Upcycling single-use polyethylene into high-quality liquid products. ACS Cent. Sci. 5, 1795–1803 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tennakoon, A. et al. Catalytic upcycling of high-density polyethylene via a processive mechanism. Nat. Catal. 3, 893–901 (2020).

    Article  CAS  Google Scholar 

  51. Zhang, F. et al. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization. Science 370, 437–441 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Sotelo-Boyás, R., Trejo-Zárraga, F. & Hernández-Loyo, F. D. J. Hydroconversion of triglycerides into green liquid fuels. Hydrogenation 338, 187–216 (2012).

    Google Scholar 

  53. Anderson, A. D., Lanci, M. P., Buchanan, J. S., Dumesic, J. A. & Huber, G. W. The hydrodeoxygenation of glycerol over NiMoSx: catalyst stability and activity at hydropyrolysis conditions. ChemCatChem 13, 425–437 (2021).

    Article  CAS  Google Scholar 

  54. Kim, M. Y., Kim, J.-K., Lee, M.-E., Lee, S. & Choi, M. Maximizing biojet fuel production from triglyceride: importance of the hydrocracking catalyst and separate deoxygenation/hydrocracking steps. ACS Catal. 7, 6256–6267 (2017).

    Article  CAS  Google Scholar 

  55. McCall, M. J., Kocal, J. A., Bhattacharyya, A., Kalnes, T. N. & Brandvold, T. A. Production of aviation fuel from renewable feedstocks. US patent US 8,039,682 B2 (2011).

  56. Simley, J. Honeywell introduces simplified technology to produce renewable diesel. Honeywell UOP https://uop.honeywell.com/en/news-events/2021/january/honeywell-uop-ecofining-single-stage-process (2021).

  57. Lee, K., Lee, M.-E., Kim, J.-K., Shin, B. & Choi, M. Single-step hydroconversion of triglycerides into biojet fuel using CO-tolerant PtRe catalyst supported on USY. J. Catal. 379, 180–190 (2019).

    Article  CAS  Google Scholar 

  58. Guisnet, M. “Ideal” bifunctional catalysis over Pt-acid zeolites. Catal. Today 218–219, 123–134 (2013).

    Article  CAS  Google Scholar 

  59. Alvarez, F., Ribeiro, F., Perot, G., Thomazeau, Y. C. & Guisnet, M. Hydroisomerization and hydrocracking of alkanes: 7. Influence of the balance between acid and hydrogenating functions on the transformation of n-decane on PtHY catalysts. J. Catal. 162, 179–189 (1996).

    Article  CAS  Google Scholar 

  60. Munir, D., Irfan, M. F. & Usman, M. R. Hydrocracking of virgin and waste plastics: a detailed review. Renew. Sustain. Energy Rev. 90, 490–515 (2018).

    Article  CAS  Google Scholar 

  61. Ding, W., Liang, J. & Anderson, L. L. Hydrocracking and hydroisomerization of high-density polyethylene and waste plastic over zeolite and silica-alumina-supported Ni and Ni-Mo sulfides. Energy Fuels 11, 1219–1224 (1997).

    Article  CAS  Google Scholar 

  62. Venkatesh, K. R. et al. Hydrocracking and hydroisomerization of long-chain alkanes and polyolefins over metal-promoted anion-modified zirconium oxides. Energy Fuels 10, 1163–1170 (1996).

    Article  CAS  Google Scholar 

  63. Joo, H. K. & Curtis, C. W. Catalytic coprocessing of LDPE with coal and petroleum resid using different catalysts. Fuel Process. Technol. 53, 197–214 (1998).

    Article  Google Scholar 

  64. Bin Jumah, A., Anbumuthu, V., Tedstone, A. A. & Garforth, A. A. Catalyzing the hydrocracking of low density polyethylene. Ind. Eng. Chem. Res. 58, 20601–20609 (2019).

    Article  CAS  Google Scholar 

  65. Liu, S., Kots, P. A., Vance, B. C., Danielson, A. & Vlachos, D. G. Plastic waste to fuels by hydrocracking at mild conditions. Sci. Adv. 7, eabf8283 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Akah, A., Hernandez-Martinez, J., Rallan, C. & Garforth, A. Enhanced feedstock recycling of post-consumer plastic. Chem. Eng. Trans. 43, 2395–2400 (2015).

    Google Scholar 

  67. Serrano, D. P., Melero, J. A., Morales, G., Iglesias, J. & Pizarro, P. Progress in the design of zeolite catalysts for biomass conversion into biofuels and bio-based chemicals. Catal. Rev. 60, 1–70 (2018).

    Article  CAS  Google Scholar 

  68. Serrano, D. P., Aguado, J. & Escola, J. M. Developing advanced catalysts for the conversion of polyolefinic waste plastics into fuels and chemicals. ACS Catal. 2, 1924–1941 (2012).

    Article  CAS  Google Scholar 

  69. Verboekend, D. et al. Synthesis, characterisation, and catalytic evaluation of hierarchical faujasite zeolites: milestones, challenges, and future directions. Chem. Soc. Rev. 45, 3331–3352 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Kim, M. Y., Lee, K. & Choi, M. Cooperative effects of secondary mesoporosity and acid site location in Pt/SAPO-11 on n-dodecane hydroisomerization selectivity. J. Catal. 319, 232–238 (2014).

    Article  CAS  Google Scholar 

  71. Kim, K., Ryoo, R., Jang, H.-D. & Choi, M. Spatial distribution, strength, and dealumination behavior of acid sites in nanocrystalline MFI zeolites and their catalytic consequences. J. Catal. 288, 115–123 (2012).

    Article  CAS  Google Scholar 

  72. Chikkali, S. & Mecking, S. Refining of plant oils to chemicals by olefin metathesis. Angew. Chem. Int. Ed. 51, 5802–5808 (2012).

    Article  CAS  Google Scholar 

  73. Mol, J. C. Application of olefin metathesis in oleochemistry: an example of green chemistry. Green Chem. 4, 5–13 (2002).

    Article  CAS  Google Scholar 

  74. Jenkins, R. W. et al. Cross-metathesis of microbial oils for the production of advanced biofuels and chemicals. ACS Sustain. Chem. Eng. 3, 1526–1535 (2015).

    Article  CAS  Google Scholar 

  75. Gallo, A. et al. Ligand exchange-mediated activation and stabilization of a Re-based olefin metathesis catalyst by chlorinated alumina. J. Am. Chem. Soc. 138, 12935–12947 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Lwin, S. & Wachs, I. E. Olefin metathesis by supported metal oxide catalysts. ACS Catal. 4, 2505–2520 (2014).

    Article  CAS  Google Scholar 

  77. Elevance Renewable Sciences, Inc. Elevance Renewable Sciences announces joint venture with Wilmar International to build world scale biochemical refinery. PR Newswire https://www.prnewswire.com/news-releases/elevance-renewable-sciences-announces-joint-venture-with-wilmar-international-to-build-world-scale-biochemical-refinery-97299669.html (2010).

  78. Jia, X., Qin, C., Friedberger, T., Guan, Z. & Huang, Z. Efficient and selective degradation of polyethylenes into liquid fuels and waxes under mild conditions. Sci. Adv. 2, e1501591 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  79. Ellis, L. D. et al. Tandem heterogeneous catalysis for polyethylene depolymerization via an Olefin-intermediate process. ACS Sustain. Chem. Eng. 9, 623–628 (2021).

    Article  CAS  Google Scholar 

  80. Goldman, A. S. et al. Catalytic alkane metathesis by tandem alkane dehydrogenation-olefin metathesis. Science 312, 257–261 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Maerten, S. et al. Glucose oxidation to formic acid and methyl formate in perfect selectivity. Green Chem. 22, 4311–4320 (2020).

    Article  CAS  Google Scholar 

  82. Wang, C. et al. Room temperature, near-quantitative conversion of glucose into formic acid. Green Chem. 21, 6089–6096 (2019).

    Article  CAS  Google Scholar 

  83. Deng, W., Zhang, Q. & Wang, Y. Catalytic transformations of cellulose and cellulose-derived carbohydrates into organic acids. Catal. Today 234, 31–41 (2014).

    Article  CAS  Google Scholar 

  84. Chheda, J. N. & Dumesic, J. A. An overview of dehydration, aldol-condensation and hydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates. Catal. Today 123, 59–70 (2007).

    Article  CAS  Google Scholar 

  85. Bobbink, F. D., Zhang, J., Pierson, Y., Chen, X. & Yan, N. Conversion of chitin derived N-acetyl-d-glucosamine (NAG) into polyols over transition metal catalysts and hydrogen in water. Green Chem. 17, 1024–1031 (2015).

    Article  CAS  Google Scholar 

  86. Liang, G. et al. Production of primary amines by reductive amination of biomass-derived aldehydes/ketones. Angew. Chem. Int. Ed. 56, 3050–3054 (2017).

    Article  CAS  Google Scholar 

  87. Wang, C., Zhang, Q., Chen, Y., Zhang, X. & Xu, F. Highly efficient conversion of xylose residues to levulinic acid over FeCl3 catalyst in green salt solutions. ACS Sustain. Chem. Eng. 6, 3154–3161 (2018).

    Article  CAS  Google Scholar 

  88. Bayu, A. et al. Catalytic conversion of biomass derivatives to lactic acid with increased selectivity in an aqueous tin(II) chloride/choline chloride system. Green Chem. 20, 4112–4119 (2018).

    Article  CAS  Google Scholar 

  89. Wang, A. & Zhang, T. One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts. Acc. Chem. Res. 46, 1377–1386 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Clippel, F. et al. Fast and selective sugar conversion to alkyl lactate and lactic acid with bifunctional carbon-silica catalysts. J. Am. Chem. Soc. 134, 10089–10101 (2012).

    Article  PubMed  CAS  Google Scholar 

  91. Holm, M. S., Saravanamurugan, S. & Taarning, E. Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts. Science 328, 602–605 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Zirbes, M. et al. High-temperature electrolysis of Kraft lignin for selective vanillin formation. ACS Sustain. Chem. Eng. 8, 7300–7307 (2020).

    Article  CAS  Google Scholar 

  93. Kanbur, U. et al. Catalytic carbon-carbon bond cleavage and carbon-element bond formation give new life for polyolefins as biodegradable surfactants. Chem 7, 1347–1362 (2021).

    Article  CAS  Google Scholar 

  94. Xu, Y. et al. Research status, industrial application demand and prospects of phenolic resin. RSC Adv. 9, 28924–28935 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tiseo, H. Polycarbonate production capacity worldwide in 2016, by producer. Statista https://www.statista.com/statistics/720476/polycarbonate-global-production-capacity-distribution-by-producer/ (2021).

  96. Chen, H., Wan, K., Zhang, Y. & Wang, Y. Waste to wealth: chemical recycling and chemical upcycling of waste plastics for a great future. ChemSusChem 14, 4123–4136 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Al-Salem, S., Antelava, A., Constantinou, A., Manos, G. & Dutta, A. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). J. Environ. Manag. 197, 177–198 (2017).

    Article  CAS  Google Scholar 

  98. Sebestyén, Z. et al. Thermo-catalytic pyrolysis of biomass and plastic mixtures using HZSM-5. Appl. Energy 207, 114–122 (2017).

    Article  CAS  Google Scholar 

  99. Liao, Y., d’Halluin, M., Makshina, E., Verboekend, D. & Sels, B. F. Shape selectivity vapor-phase conversion of lignin-derived 4-ethylphenol to phenol and ethylene over acidic aluminosilicates: impact of acid properties and pore constraint. Appl. Catal. B Environ. 234, 117–129 (2018).

    Article  CAS  Google Scholar 

  100. Liao, Y. et al. A sustainable wood biorefinery for low-carbon footprint chemicals production. Science 367, 1385–1390 (2020).

    Article  CAS  PubMed  Google Scholar 

  101. Chattopadhyay, J., Pathak, T., Srivastava, R. & Singh, A. Catalytic co-pyrolysis of paper biomass and plastic mixtures (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) and product analysis. Energy 103, 513–521 (2016).

    Article  CAS  Google Scholar 

  102. Sophonrat, N., Sandström, L., Johansson, A.-C. & Yang, W. Co-pyrolysis of mixed plastics and cellulose: an interaction study by Py-GC × GC/MS. Energy Fuels 31, 11078–11090 (2017).

    Article  CAS  Google Scholar 

  103. Dong, L. et al. Breaking the limit of lignin monomer production via cleavage of interunit carbon–carbon linkages. Chem 5, 1521–1536 (2019).

    Article  CAS  Google Scholar 

  104. Jing, Y. et al. Towards the circular economy: converting aromatic plastic waste back to arenes over a Ru/Nb2 O5 catalyst. Angew. Chem. Int. Ed. 60, 5527–5535 (2021).

    Article  CAS  Google Scholar 

  105. Huang, X. et al. Selective production of biobased phenol from lignocellulose-derived alkylmethoxyphenols. ACS Catal. 8, 11184–11190 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lu, S. et al. H2-free plastic conversion: converting PET back to BTX by unlocking hidden hydrogen. ChemSusChem 14, 4242–4250 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. Xia, Q. et al. Selective one-pot production of high-grade diesel-range alkanes from furfural and 2-methylfuran over Pd/NbOPO4. ChemSusChem 10, 747–753 (2017).

    Article  CAS  PubMed  Google Scholar 

  108. Xin, Y. et al. Selective production of indane and its derivatives from lignin over a modified niobium-based catalyst. Chem. Commun. 55, 9391–9394 (2019).

    Article  CAS  Google Scholar 

  109. Verboekend, D., Liao, Y., Schutyser, W. & Sels, B. F. Alkylphenols to phenol and olefins by zeolite catalysis: a pathway to valorize raw and fossilized lignocellulose. Green Chem. 18, 297–306 (2016).

    Article  Google Scholar 

  110. Wang, M. et al. Dealkylation of lignin to phenol via oxidation–hydrogenation strategy. ACS Catal. 8, 6837–6843 (2018).

    Article  CAS  Google Scholar 

  111. Dong, L. et al. Mechanisms of caromatic-C bonds cleavage in lignin over NbOx-supported Ru catalyst. J. Catal. 394, 94–103 (2021).

    Article  CAS  Google Scholar 

  112. Li, S. et al. Selective hydrogenation of 5-(hydroxymethyl)furfural to 5-methylfurfural over single atomic metals anchored on Nb2O5. Nat. Commun. 12, 584 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yan, J. et al. Selective valorization of lignin to phenol by direct transformation of Csp2–Csp3 and C–O bonds. Sci. Adv. 6, eabd1951 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhu, J., Wang, J. & Dong, G. Catalytic activation of unstrained C(aryl)-C(aryl) bonds in 2,2′-biphenols. Nat. Chem. 11, 45–51 (2019).

    Article  CAS  PubMed  Google Scholar 

  115. Zakzeski, J. & Weckhuysen, B. M. Lignin solubilization and aqueous phase reforming for the production of aromatic chemicals and hydrogen. ChemSusChem 4, 369–378 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Shuai, L. et al. Selective C–C bond cleavage of methylene-linked lignin models and kraft lignin. ACS Catal. 8, 6507–6512 (2018).

    Article  CAS  Google Scholar 

  117. Che, P. et al. Hydrogen bond distinction and activation upon catalytic etherification of hydroxyl compounds. Chem. Commun. 51, 1077–1080 (2015).

    Article  CAS  Google Scholar 

  118. Mordor Intelligence. Epoxy resins market — growth, trends, COVID-19 impact, and forecasts (2022–2027). Mordor Intelligence https://www.mordorintelligence.com/industry-reports/global-epoxy-resin-market-industry (2021).

  119. Acute Market Reports. Global polyphenylene oxide (PPO) resins market size & share, application analysis, regional outlook, growth trends, key players, competitive strategies and forecasts to 2026. Research and Markets https://www.researchandmarkets.com/research/75xn3c/global?w=4 (2018).

  120. Jing, Y., Dong, L., Guo, Y., Liu, X. & Wang, Y. Chemicals from lignin: a review of catalytic conversion involving hydrogen. ChemSusChem 13, 4181–4198 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Zhang, J., Sun, J. & Wang, Y. Recent advances in the selective catalytic hydrodeoxygenation of lignin-derived oxygenates to arenes. Green Chem. 22, 1072–1098 (2020).

    Article  CAS  Google Scholar 

  122. Chiu, C.-c, Genest, A., Borgna, A. & Rösch, N. Hydrodeoxygenation of guaiacol over Ru(0001): a DFT study. ACS Catal. 4, 4178–4188 (2014).

    Article  CAS  Google Scholar 

  123. Shi, D., Arroyo-Ramírez, L. & Vohs, J. M. The use of bimetallics to control the selectivity for the upgrading of lignin-derived oxygenates: reaction of anisole on Pt and PtZn catalysts. J. Catal. 340, 219–226 (2016).

    Article  CAS  Google Scholar 

  124. Shi, D. & Vohs, J. M. Deoxygenation of biomass-derived oxygenates: reaction of furfural on Zn-modified Pt(111). ACS Catal. 5, 2177–2183 (2015).

    Article  CAS  Google Scholar 

  125. Ma, D., Lu, S., Liu, X., Guo, Y. & Wang, Y. Depolymerization and hydrodeoxygenation of lignin to aromatic hydrocarbons with a Ru catalyst on a variety of Nb-based supports. Chin. J. Catal. 40, 609–617 (2019).

    Article  CAS  Google Scholar 

  126. Yang, F. et al. Size dependence of vapor phase hydrodeoxygenation of m-cresol on Ni/SiO2 catalysts. ACS Catal. 8, 1672–1682 (2018).

    Article  CAS  Google Scholar 

  127. Mondelli, C., Gozaydin, G., Yan, N. & Perez-Ramirez, J. Biomass valorisation over metal-based solid catalysts from nanoparticles to single atoms. Chem. Soc. Rev. 49, 3764–3782 (2020).

    Article  CAS  PubMed  Google Scholar 

  128. Kim, S. et al. Recent advances in hydrodeoxygenation of biomass-derived oxygenates over heterogeneous catalysts. Green Chem. 21, 3715–3743 (2019).

    Article  CAS  Google Scholar 

  129. Zhang, C. & Wang, F. Catalytic lignin depolymerization to aromatic chemicals. Acc. Chem. Res. 53, 470–484 (2020).

    Article  CAS  PubMed  Google Scholar 

  130. Zeng, H., Cao, D., Qiu, Z. & Li, C. J. Palladium-catalyzed formal cross-coupling of diaryl ethers with amines: slicing the 4-O-5 linkage in lignin models. Angew. Chem. Int. Ed. 57, 3752–3757 (2018).

    Article  CAS  Google Scholar 

  131. Wong, S. S., Shu, R., Zhang, J., Liu, H. & Yan, N. Downstream processing of lignin derived feedstock into end products. Chem. Soc. Rev. 49, 5510–5560 (2020).

    Article  CAS  PubMed  Google Scholar 

  132. Wang, M., Shi, H., Camaioni, D. M. & Lercher, J. A. Palladium-catalyzed hydrolytic cleavage of aromatic C–O bonds. Angew. Chem. Int. Ed. 56, 2110–2114 (2017).

    Article  CAS  Google Scholar 

  133. Shao, Y. et al. Selective production of arenes via direct lignin upgrading over a niobium-based catalyst. Nat. Commun. 8, 16104 (2017).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  134. Shu, R. et al. A review on the catalytic hydrodeoxygenation of lignin-derived phenolic compounds and the conversion of raw lignin to hydrocarbon liquid fuels. Biomass Bioenergy 132, 105432 (2020).

    Article  CAS  Google Scholar 

  135. Kong, J., He, M., Lercher, J. A. & Zhao, C. Direct production of naphthenes and paraffins from lignin. Chem. Commun. 51, 17580–17583 (2015).

    Article  CAS  Google Scholar 

  136. Dong, L. et al. Comparison of two multifunctional catalysts [M/Nb2O5 (M=Pd, Pt)] for one-pot hydrodeoxygenation of lignin. Catal. Sci. Technol. 8, 6129–6136 (2018).

    Article  CAS  Google Scholar 

  137. Mao, J. et al. Anatase TiO2 activated by gold nanoparticles for selective hydrodeoxygenation of guaiacol to phenolics. ACS Catal. 7, 695–705 (2017).

    Article  CAS  Google Scholar 

  138. Liu, K. et al. Silver initiated hydrogen spillover on anatase TiO2 creates active sites for selective hydrodeoxygenation of guaiacol. J. Catal. 369, 396–404 (2019).

    Article  CAS  Google Scholar 

  139. Li, H., Bunrit, A., Li, N. & Wang, F. Heteroatom-participated lignin cleavage to functionalized aromatics. Chem. Soc. Rev. 49, 3748–3763 (2020).

    Article  CAS  PubMed  Google Scholar 

  140. Cao, D., Zeng, H. & Li, C.-J. Formal cross-coupling of diaryl ethers with ammonia by dual C(Ar)–O bond cleavages. ACS Catal. 8, 8873–8878 (2018).

    Article  CAS  Google Scholar 

  141. Fedorov, A., Toutov, A. A., Swisher, N. A. & Grubbs, R. H. Lewis-base silane activation: from reductive cleavage of aryl ethers to selective ortho-silylation. Chem. Sci. 4, 1640–1645 (2013).

    Article  CAS  Google Scholar 

  142. Ren, Y., Yan, M., Wang, J., Zhang, Z. C. & Yao, K. Selective reductive cleavage of inert aryl C–O bonds by an iron catalyst. Angew. Chem. Int. Ed. 52, 12674–12678 (2013).

    Article  CAS  Google Scholar 

  143. Wu, W. B. & Huang, J. M. Electrochemical cleavage of aryl ethers promoted by sodium borohydride. J. Org. Chem. 79, 10189–10195 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. He, J. et al. Sustainable access to renewable N-containing chemicals from reductive amination of biomass-derived platform compounds. Green Chem. 22, 6714–6747 (2020).

    Article  CAS  Google Scholar 

  145. Wang, Y., Furukawa, S., Fu, X. & Yan, N. Organonitrogen chemicals from oxygen-containing feedstock over heterogeneous catalysts. ACS Catal. 10, 311–335 (2019).

    Article  CAS  Google Scholar 

  146. Movil-Cabrera, O., Rodriguez-Silva, A., Arroyo-Torres, C. & Staser, J. A. Electrochemical conversion of lignin to useful chemicals. Biomass Bioenergy 88, 89–96 (2016).

    Article  CAS  Google Scholar 

  147. Garedew, M. et al. Electrocatalytic cleavage of lignin model dimers using ruthenium supported on activated carbon cloth. Sustain. Energy Fuels 4, 1340–1350 (2020).

    Article  CAS  Google Scholar 

  148. Yang, F., Zhang, Q., Fan, H.-X., Li, Y. & Li, G. Electrochemical control of the conversion of cellulose oligosaccharides into glucose. J. Ind. Eng. Chem. 20, 3487–3492 (2014).

    Article  CAS  Google Scholar 

  149. Sanyal, U., Lopez-Ruiz, J., Padmaperuma, A. B., Holladay, J. & Gutiérrez, O. Y. Electrocatalytic hydrogenation of oxygenated compounds in aqueous phase. Org. Process. Res. Dev. 22, 1590–1598 (2018).

    Article  CAS  Google Scholar 

  150. Song, Y., Chia, S. H., Sanyal, U., Gutiérrez, O. Y. & Lercher, J. A. Integrated catalytic and electrocatalytic conversion of substituted phenols and diaryl ethers. J. Catal. 344, 263–272 (2016).

    Article  CAS  Google Scholar 

  151. Rahimi, A., Ulbrich, A., Coon, J. J. & Stahl, S. S. Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature 515, 249–252 (2014).

    Article  CAS  PubMed  Google Scholar 

  152. Rahimi, A., Azarpira, A., Kim, H., Ralph, J. & Stahl, S. S. Chemoselective metal-free aerobic alcohol oxidation in lignin. J. Am. Chem. Soc. 135, 6415–6418 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Lancefield, C. S., Ojo, O. S., Tran, F. & Westwood, N. J. Isolation of functionalized phenolic monomers through selective oxidation and C–O bond cleavage of the beta-O-4 linkages in lignin. Angew. Chem. Int. Ed. 54, 258–262 (2015).

    Article  CAS  Google Scholar 

  154. Cai, Z. et al. Selective production of diethyl maleate via oxidative cleavage of lignin aromatic unit. Chem 5, 2365–2377 (2019).

    Article  CAS  Google Scholar 

  155. Dai, J., Gözaydın, G., Hu, C. & Yan, N. Catalytic conversion of chitosan to glucosaminic acid by tandem hydrolysis and oxidation. ACS Sustain. Chem. Eng. 7, 12399–12407 (2019).

    CAS  Google Scholar 

  156. Yang, Y. et al. Conversion of cellulose to high-yield glucose in water over sulfonated mesoporous carbon fibers with optimized acidity. Green Chem. 23, 4477–4489 (2021).

    Article  CAS  Google Scholar 

  157. Li, O. L., Ikura, R. & Ishizaki, T. Hydrolysis of cellulose to glucose over carbon catalysts sulfonated via a plasma process in dilute acids. Green Chem. 19, 4774–4777 (2017).

    Article  CAS  Google Scholar 

  158. Chen, P., Shrotri, A. & Fukuoka, A. Soluble cello-oligosaccharides produced by carbon-catalyzed hydrolysis of cellulose. ChemSusChem 12, 2576–2580 (2019).

    Article  CAS  PubMed  Google Scholar 

  159. Cai, H., Li, C., Wang, A., Xu, G. & Zhang, T. Zeolite-promoted hydrolysis of cellulose in ionic liquid, insight into the mutual behavior of zeolite, cellulose and ionic liquid. Appl. Catal. B Environ. 123, 333–338 (2012).

    Article  CAS  Google Scholar 

  160. Zhong, J., Pérez-Ramírez, J. & Yan, N. Biomass valorisation over polyoxometalate-based catalysts. Green Chem. 23, 18–36 (2021).

    Article  CAS  Google Scholar 

  161. Huo, F., Liu, Z. & Wang, W. Cosolvent or antisolvent? A molecular view of the interface between ionic liquids and cellulose upon addition of another molecular solvent. J. Phys. Chem. B 117, 11780–11792 (2013).

    Article  CAS  PubMed  Google Scholar 

  162. Andanson, J.-M. et al. Understanding the role of co-solvents in the dissolution of cellulose in ionic liquids. Green Chem. 16, 2528–2538 (2014).

    Article  CAS  Google Scholar 

  163. Zhang, X., Qu, T., Mosier, N. S., Han, L. & Xiao, W. Cellulose modification by recyclable swelling solvents. Biotechnol. Biofuels 11, 191 (2018).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  164. Zhang, L., Huang, C., Zhang, C. & Pan, H. Swelling and dissolution of cellulose in binary systems of three ionic liquids and three co-solvents. Cellulose 28, 4643–4653 (2021).

    Article  CAS  Google Scholar 

  165. Gözaydın, G., Song, S. & Yan, N. Chitin hydrolysis in acidified molten salt hydrates. Green Chem. 22, 5096–5104 (2020).

    Article  Google Scholar 

  166. Luo, Y.-R. Comprehensive Handbook of Chemical Bond Energies (CRC Press, 2007).

  167. Canakci, M. & Van Gerpen, J. Biodiesel production via acid catalysis. Trans. ASAE 42, 1203–1210 (1999).

    Article  CAS  Google Scholar 

  168. Tamura, M., Nakagawa, Y. & Tomishige, K. Recent developments of heterogeneous catalysts for hydrogenation of carboxylic acids to their corresponding alcohols. Asian J. Org. Chem. 9, 126–143 (2020).

    Article  CAS  Google Scholar 

  169. Pham, D. D. & Cho, J. Low-energy catalytic methanolysis of poly(ethyleneterephthalate). Green Chem. 23, 511–525 (2021).

    Article  CAS  Google Scholar 

  170. Fernandes, J. R., Amaro, L. P., Muniz, E. C., Favaro, S. L. & Radovanovic, E. PET depolimerization in supercritical ethanol conditions catalysed by nanoparticles of metal oxides. J. Supercrit. Fluids 158, 104715 (2020).

    Article  CAS  Google Scholar 

  171. Wang, H., Li, Z., Liu, Y., Zhang, X. & Zhang, S. Degradation of poly(ethylene terephthalate) using ionic liquids. Green Chem. 11, 1568–1575 (2009).

    Article  CAS  Google Scholar 

  172. Iannone, F. et al. Ionic liquids/ZnO nanoparticles as recyclable catalyst for polycarbonate depolymerization. J. Mol. Catal. A Chem. 426, 107–116 (2017).

    Article  CAS  Google Scholar 

  173. Al-Sabagh, A. M. et al. Glycolysis of poly(ethylene terephthalate) catalyzed by the Lewis base ionic liquid [Bmim][OAc]. Ind. Eng. Chem. Res. 53, 18443–18451 (2014).

    Article  CAS  Google Scholar 

  174. Ullah, Z., Bustam, M. A. & Man, Z. Biodiesel production from waste cooking oil by acidic ionic liquid as a catalyst. Renew. Energy 77, 521–526 (2015).

    Article  CAS  Google Scholar 

  175. Leadbeater, N. E. & Stencel, L. M. Fast, easy preparation of biodiesel using microwave heating. Energy Fuels 20, 2281–2283 (2006).

    Article  CAS  Google Scholar 

  176. Parab, Y. S., Pingale, N. D. & Shukla, S. R. Aminolytic depolymerization of poly (ethylene terephthalate) bottle waste by conventional and microwave irradiation heating. J. Appl. Polym. Sci. 125, 1103–1107 (2012).

    Article  CAS  Google Scholar 

  177. Goto, M., Sasaki, M. & Hirose, T. Reactions of polymers in supercritical fluids for chemical recycling of waste plastics. J. Mater. Sci. 41, 1509–1515 (2006).

    Article  CAS  Google Scholar 

  178. Saka, S. & Kusdiana, D. Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel 80, 225–231 (2001).

    Article  CAS  Google Scholar 

  179. Bhogle, C. S. & Pandit, A. B. Ultrasound assisted methanolysis of polycarbonate at room temperature. Ultrason. Sonochem. 58, 104667 (2019).

    Article  PubMed  CAS  Google Scholar 

  180. Boffito, D. C. et al. Ultrafast biodiesel production using ultrasound in batch and continuous reactors. ACS Sustain. Chem. Eng. 1, 1432–1439 (2013).

    Article  CAS  Google Scholar 

  181. PET Monomer Recycling Special Industry Group. PET monomer recycling SIG primary members. Petcore Europe https://www.petmonomerrecycling.org/members (2019).

  182. Tullo, A. H. Eastman will build a $250 million plastics recycling plant. Chemical & Engineering News https://cen.acs.org/environment/recycling/Eastman-build-250-million-plastics/99/web/2021/02 (2021).

  183. Zhou, H. et al. Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel. Nat. Commun. 12, 4679 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Arturi, K. R. et al. Recovery of value-added chemicals by solvolysis of unsaturated polyester resin. J. Clean. Prod. 170, 131–136 (2018).

    Article  CAS  Google Scholar 

  185. Kubičková, I., Snåre, M., Eränen, K., Mäki-Arvela, P. & Murzin, D. Y. Hydrocarbons for diesel fuel via decarboxylation of vegetable oils. Catal. Today 106, 197–200 (2005).

    Article  CAS  Google Scholar 

  186. Peng, B., Yuan, X., Zhao, C. & Lercher, J. A. Stabilizing catalytic pathways via redundancy: selective reduction of microalgae oil to alkanes. J. Am. Chem. Soc. 134, 9400–9405 (2012).

    Article  CAS  PubMed  Google Scholar 

  187. Kratish, Y., Li, J., Liu, S., Gao, Y. & Marks, T. J. Polyethylene terephthalate deconstruction catalyzed by a carbon-supported single-site molybdenum-dioxo complex. Angew. Chem. Int. Ed. 59, 19857–19861 (2020).

    Article  CAS  Google Scholar 

  188. Krall, E. M. et al. Controlled hydrogenative depolymerization of polyesters and polycarbonates catalyzed by ruthenium(II) PNN pincer complexes. Chem. Commun. 50, 4884–4887 (2014).

    Article  CAS  Google Scholar 

  189. Westhues, S., Idel, J. & Klankermayer, J. Molecular catalyst systems as key enablers for tailored polyesters and polycarbonate recycling concepts. Sci. Adv. 4, eaat9669 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Kreutzer, U. R. Manufacture of fatty alcohols based on natural fats and oils. J. Am. Oil Chem. Soc. 61, 343–348 (1984).

    Article  CAS  Google Scholar 

  191. Ikeda, M. & Takeno, S. in Corynebacterium glutamicum: Biology and Biotechnology (eds Inui, M. & Toyoda, K.) 175–226 (Springer, 2012).

  192. Global Industry Analysts, Inc. Nylon — global market trajectory & analytics. Research and Markets http://www.researchandmarkets.com/reports/1227800/nylon_global_market_trajectory_and_analytics (2021).

  193. Fernández, L. Global polyurethane market volume 2015–2021. Statista https://www.statista.com/statistics/720341/global-polyurethane-market-size-forecast/ (2021).

  194. Chen, X. & Yan, N. in Chemical Catalysts for Biomass Upgrading (eds Crocker, M. & Santillan-Jimenez E.) 569–590 (Wiley-VCH, 2020).

  195. Ma, X. et al. Upcycling chitin-containing waste into organonitrogen chemicals via an integrated process. Proc. Natl Acad. Sci. USA 117, 7719–7728 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Cabrero-Antonino, J. R., Adam, R., Papa, V. & Beller, M. Homogeneous and heterogeneous catalytic reduction of amides and related compounds using molecular hydrogen. Nat. Commun. 11, 3893 (2020).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  197. Kim, K. J., Dhevi, D. M., Lee, J. S., Cho, Y. D. & Choe, E. K. Mechanism of glycolysis of nylon 6,6 and its model compound by ethylene glycol. Polym. Degrad. Stab. 91, 1545–1555 (2006).

    Article  CAS  Google Scholar 

  198. Klun, U. & Kržan, A. Rapid microwave induced depolymerization of polyamide-6. Polymer 41, 4361–4365 (2000).

    Article  CAS  Google Scholar 

  199. Shukla, S. R., Harad, A. M. & Mahato, D. Depolymerization of nylon 6 waste fibers. J. Appl. Polym. Sci. 100, 186–190 (2006).

    Article  CAS  Google Scholar 

  200. Cesarek, U., Pahovnik, D. & Zagar, E. Chemical recycling of aliphatic polyamides by microwave-assisted hydrolysis for efficient monomer recovery. ACS Sustain. Chem. Eng. 8, 16274–16282 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Kamimura, A. & Yamamoto, S. An efficient method to depolymerize polyamide plastics: a new use of ionic liquids. Org. Lett. 9, 2533–2535 (2007).

    Article  CAS  PubMed  Google Scholar 

  202. Kamimura, A., Oishi, Y., Kaiso, K., Sugimoto, T. & Kashiwagi, K. Supercritical secondary alcohols as useful media to convert polyamide into monomeric lactams. ChemSusChem 1, 82–84 (2008).

    Article  CAS  PubMed  Google Scholar 

  203. Sari, Y. W., Alting, A. C., Floris, R., Sanders, J. P. M. & Bruins, M. E. Glutamic acid production from wheat by-products using enzymatic and acid hydrolysis. Biomass Bioenergy 67, 451–459 (2014).

    Article  CAS  Google Scholar 

  204. Fountoulakis, M. & Lahm, H.-W. Hydrolysis and amino acid composition analysis of proteins. J. Chromatogr. A 826, 109–134 (1998).

    Article  CAS  PubMed  Google Scholar 

  205. Ito, M. et al. Hydrogenation of N-acylcarbamates and N-acylsulfonamides catalyzed by a bifunctional [Cp*Ru(PN)] complex. Angew. Chem. Int. Ed. 48, 1324–1327 (2009).

    Article  CAS  Google Scholar 

  206. Balaraman, E., Gnanaprakasam, B., Shimon, L. J. W. & Milstein, D. Direct hydrogenation of amides to alcohols and amines under mild conditions. J. Am. Chem. Soc. 132, 16756–16758 (2010).

    Article  CAS  PubMed  Google Scholar 

  207. Cabrero-Antonino, J. R. et al. Efficient base-free hydrogenation of amides to alcohols and amines catalyzed by well-defined pincer imidazolyl–ruthenium complexes. ACS Catal. 6, 47–54 (2016).

    Article  CAS  Google Scholar 

  208. Garg, J. A., Chakraborty, S., Ben-David, Y. & Milstein, D. Unprecedented iron-catalyzed selective hydrogenation of activated amides to amines and alcohols. Chem. Commun. 52, 5285–5288 (2016).

    Article  CAS  Google Scholar 

  209. Papa, V. et al. Efficient and selective hydrogenation of amides to alcohols and amines using a well-defined manganese–PNN pincer complex. Chem. Sci. 8, 3576–3585 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Xie, Y., Hu, P., Bendikov, T. & Milstein, D. Heterogeneously catalyzed selective hydrogenation of amides to alcohols and amines. Catal. Sci. Technol. 8, 2784–2788 (2018).

    Article  CAS  Google Scholar 

  211. Tamura, M., Ishikawa, S., Betchaku, M., Nakagawa, Y. & Tomishige, K. Selective hydrogenation of amides to alcohols in water solvent over a heterogeneous CeO2-supported Ru catalyst. Chem. Commun. 54, 7503–7506 (2018).

    Article  CAS  Google Scholar 

  212. Sorribes, I. et al. Palladium doping of In2O3 towards a general and selective catalytic hydrogenation of amides to amines and alcohols. Catal. Sci. Technol. 9, 6965–6976 (2019).

    Article  CAS  Google Scholar 

  213. Kumar, A. et al. Hydrogenative depolymerization of nylons. J. Am. Chem. Soc. 142, 14267–14275 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Demirbas, A. & Arin, G. An overview of biomass pyrolysis. Energy Sources 24, 471–482 (2002).

    Article  CAS  Google Scholar 

  215. Williams, P. T. & Nugranad, N. Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks. Energy 25, 493–513 (2000).

    Article  CAS  Google Scholar 

  216. Kan, T., Strezov, V. & Evans, T. J. Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew. Sustain. Energy Rev. 57, 1126–1140 (2016).

    Article  CAS  Google Scholar 

  217. Kaminsky, W., Schlesselmann, B. & Simon, C. Olefins from polyolefins and mixed plastics by pyrolysis. J. Anal. Appl. Pyrolysis 32, 19–27 (1995).

    Article  CAS  Google Scholar 

  218. Lopez, A., de Marco, I., Caballero, B. M., Laresgoiti, M. F. & Adrados, A. Pyrolysis of municipal plastic wastes: influence of raw material composition. Waste Manag. 30, 620–627 (2010).

    Article  CAS  PubMed  Google Scholar 

  219. Chen, D., Yin, L., Wang, H. & He, P. Pyrolysis technologies for municipal solid waste: a review. Waste Manag. 34, 2466–2486 (2014).

    Article  CAS  PubMed  Google Scholar 

  220. Sutton, D., Kelleher, B. & Ross, J. R. H. Review of literature on catalysts for biomass gasification. Fuel Process. Technol. 73, 155–173 (2001).

    Article  CAS  Google Scholar 

  221. Lv, P. et al. Hydrogen-rich gas production from biomass air and oxygen/steam gasification in a downdraft gasifier. Renew. Energy 32, 2173–2185 (2007).

    Article  Google Scholar 

  222. Snehesh, A. S., Mukunda, H. S., Mahapatra, S. & Dasappa, S. Fischer-tropsch route for the conversion of biomass to liquid fuels — technical and economic analysis. Energy 130, 182–191 (2017).

    Article  CAS  Google Scholar 

  223. Ponzio, A., Kalisz, S. & Blasiak, W. Effect of operating conditions on tar and gas composition in high temperature air/steam gasification (HTAG) of plastic containing waste. Fuel Process. Technol. 87, 223–233 (2006).

    Article  CAS  Google Scholar 

  224. Wu, C. & Williams, P. T. Hydrogen production by steam gasification of polypropylene with various nickel catalysts. Appl. Catal. B Environ. 87, 152–161 (2009).

    Article  CAS  Google Scholar 

  225. Salaudeen, S., Arku, P. & Dutta, A. in Plastics to Energy (Ed. Al-Salem, S. M.) 269–293 (Elsevier, 2019).

  226. Zhuo, C. & Levendis, Y. A. Upcycling waste plastics into carbon nanomaterials: a review. J. Appl. Polym. Sci. 131, 39931 (2014).

    Article  CAS  Google Scholar 

  227. Wang, Z., Shen, D., Wu, C. & Gu, S. State-of-the-art on the production and application of carbon nanomaterials from biomass. Green Chem. 20, 5031–5057 (2018).

    Article  CAS  Google Scholar 

  228. Gao, Y., Chen, X., Zhang, J. & Yan, N. Chitin derived mesoporous, nitrogen-containing carbon for heavy metal removal and styrene epoxidation. ChemPlusChem 80, 1556–1564 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the National Research Foundation of Singapore NRF Investigatorship (award no.: NRF-NRFI07-2021-0006), National Research Foundation of Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) programme (CARES), Emerging Opportunities Fund-EOF2 (Chemical Farming, WBS R-279-000-604-592), the National Natural Science Foundation of China (no. 21832002), the Science and Technology Commission of Shanghai Municipality (2018SHZDZX03) and the project funded by China Postdoctoral Science Foundation (2021M691011 and 2021TQ0106).

Author information

Authors and Affiliations

Authors

Contributions

N.Y. conceived the Review. K.L. and Y.J. conducted the literature search and prepared the manuscript. Y.W. and N.Y. supervised the project and revised the manuscript. All authors participated in discussions.

Corresponding authors

Correspondence to Yanqin Wang or Ning Yan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Ye Wang and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, K., Jing, Y., Wang, Y. et al. A unified view on catalytic conversion of biomass and waste plastics. Nat Rev Chem 6, 635–652 (2022). https://doi.org/10.1038/s41570-022-00411-8

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41570-022-00411-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing