Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metals to combat antimicrobial resistance

Abstract

Bacteria, similar to most organisms, have a love–hate relationship with metals: a specific metal may be essential for survival yet toxic in certain forms and concentrations. Metal ions have a long history of antimicrobial activity and have received increasing attention in recent years owing to the rise of antimicrobial resistance. The search for antibacterial agents now encompasses metal ions, nanoparticles and metal complexes with antimicrobial activity (‘metalloantibiotics’). Although yet to be advanced to the clinic, metalloantibiotics are a vast and underexplored group of compounds that could lead to a much-needed new class of antibiotics. This Review summarizes recent developments in this growing field, focusing on advances in the development of metalloantibiotics, in particular, those for which the mechanism of action has been investigated. We also provide an overview of alternative uses of metal complexes to combat bacterial infections, including antimicrobial photodynamic therapy and radionuclide diagnosis of bacterial infections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemical structures of metallophores and metallophore–antibiotic conjugates.
Fig. 2: Trojan horse strategy.
Fig. 3: Diversity in metals and structures accessible to metal complexes that have antibacterial activity.
Fig. 4: Overview of the mechanisms of action of known antibiotics and metalloantibiotics.
Fig. 5: Mechanism of action of antimicrobial photodynamic therapy.
Fig. 6: Example structures of heterocyclic macrocycle metal photosensitizers.
Fig. 7: Structures of metal photosensitizers reported to have antibacterial activity.
Fig. 8: Metal complexes for imaging bacterial infections.

Similar content being viewed by others

References

  1. Murray, C. J. L. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022). Seminal paper reporting the burden of antimicrobial resistance and estimating the number of global deaths directly attributed, or related, to resistant infections.

    Article  CAS  Google Scholar 

  2. O’Neill, J. Tackling drug-resistant infections globally: final report and recommendations. (Government of the United Kingdom, 2016). Landmark report that analysed the impact of antimicrobial resistance from an economic perspective, which is the source of the highly quoted figure that antimicrobial resistance will cause 10 million deaths per year by 2050.

  3. Cong, W. et al. Antimicrobial use in COVID-19 patients in the first phase of the SARS-CoV-2 pandemic: a scoping review. Antibiotics 10, 745 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Butler, M. S. et al. Analysis of the clinical pipeline of treatments for drug-resistant bacterial infections: despite progress, more action is needed. Antimicrob. Agents Chemother. 66, e0199121 (2022). Survey of antibiotics in the clinical pipeline, highlighting how new scaffolds with novel mechanisms of action are needed.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Anthony, E. J. et al. Metallodrugs are unique: opportunities and challenges of discovery and development. Chem. Sci. 11, 12888–12917 (2020). Up-to-date overview of the current status of metal complexes as drugs, highlighting clinical developments and future directions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pandey, A. & Boros, E. Coordination complexes to combat bacterial infections: recent developments, current directions and future opportunities. Chem. Eur. J. 27, 7340–7350 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Centola, G., Xue, F. & Wilks, A. Metallotherapeutics development in the age of iron-clad bacteria. Metallomics 12, 1863–1877 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Nasiri Sovari, S. & Zobi, F. Recent studies on the antimicrobial activity of transition metal complexes of groups 6–12. Chemistry 2, 418–452 (2020).

    Article  Google Scholar 

  9. Frei, A. Metal complexes, an untapped source of antibiotic potential? Antibiotics 9, 90 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sierra, M. A., Casarrubios, L. & de la Torre, M. C. Bio-organometallic derivatives of antibacterial drugs. Chem. Eur. J. 25, 7232–7242 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Patra, M., Gasser, G. & Metzler-Nolte, N. Small organometallic compounds as antibacterial agents. Dalton Trans. 41, 6350–6358 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Liang, J. et al. Discovery of metal-based complexes as promising antimicrobial agents. Eur. J. Med. Chem. 224, 113696 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Evans, A. & Kavanagh, K. A. Evaluation of metal-based antimicrobial compounds for the treatment of bacterial pathogens. J. Med. Microbiol. 70, 001363 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schindler, K. & Zobi, F. Anticancer and antibiotic rhenium tri- and dicarbonyl complexes: current research and future perspectives. Molecules 27, 539 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Claudel, M., Schwarte, J. V. & Fromm, K. M. New antimicrobial strategies based on metal complexes. Chemistry 2, 849–899 (2020).

    Article  CAS  Google Scholar 

  16. Biegański, P., Szczupak, Ł., Arruebo, M. & Kowalski, K. D. Brief survey on organometalated antibacterial drugs and metal-based materials with antibacterial activity. RSC Chem. Biol. 2, 368–386 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Regiel-Futyra, A. et al. Bioinorganic antimicrobial strategies in the resistance era. Coord. Chem. Rev. 351, 76–117 (2017).

    Article  CAS  Google Scholar 

  18. Lemire, J. A., Harrison, J. J. & Turner, R. J. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 11, 371–384 (2013). One of the first systematic comprehensive examinations of the molecular and cellular targets of metal ions in bacteria.

    Article  CAS  PubMed  Google Scholar 

  19. Sánchez-López, E. et al. Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials 10, 292 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ndayishimiye, J., Kumeria, T., Popat, A., Falconer, J. R. & Blaskovich, M. A. T. Nanomaterials: the new antimicrobial magic bullet. ACS Infect. Dis. 8, 693–712 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Lin, Y., Betts, H., Keller, S., Cariou, K. & Gasser, G. Recent developments of metal-based compounds against fungal pathogens. Chem. Soc. Rev. 50, 10346–10402 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Chandrangsu, P., Rensing, C. & Helmann, J. D. Metal homeostasis and resistance in bacteria. Nat. Rev. Microbiol. 15, 338–350 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Palmer, L. D. & Skaar, E. P. Transition metals and virulence in bacteria. Annu. Rev. Genet. 50, 67–91 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rodionov, D. A., Hebbeln, P., Gelfand, M. S. & Eitinger, T. Comparative and functional genomic analysis of prokaryotic nickel and cobalt uptake transporters: evidence for a novel group of ATP-binding cassette transporters. J. Bacteriol. 188, 317–327 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cheng, J., Poduska, B., Morton, R. A. & Finan, T. M. An ABC-type cobalt transport system is essential for growth of Sinorhizobium melilotiat trace metal concentrations. J. Bacteriol. 193, 4405–4416 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stewart, L. J. et al. Handling of nutrient copper in the bacterial envelope. Metallomics 11, 50–63 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Zhong, Q., Kobe, B. & Kappler, U. Molybdenum enzymes and how they support virulence in pathogenic bacteria. Front. Microbiol. 11, 615860 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kehl-Fie, T. E. & Skaar, E. P. Nutritional immunity beyond iron: a role for manganese and zinc. Curr. Opin. Chem. Biol. 14, 218–224 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Djoko, K. Y., Ong, C.-l. Y., Walker, M. J. & McEwan, A. G. The role of copper and zinc toxicity in innate immune defense against bacterial pathogens. J. Biol. Chem. 290, 18954–18961 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. von Pein, J. B., Stocks, C. J., Schembri, M. A., Kapetanovic, R. & Sweet, M. J. An alloy of zinc and innate immunity: galvanising host defence against infection. Cell. Microbiol. 23, e13268 (2021).

    Google Scholar 

  31. Hood, M. I. & Skaar, E. P. Nutritional immunity: transition metals at the pathogen–host interface. Nat. Rev. Microbiol. 10, 525–537 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Flo, T. H. et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432, 917–921 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Corbin, B. D. et al. Metal chelation and inhibition of bacterial growth in tissue abscesses. Science 319, 962–965 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Planeta Kepp, K. Bioinorganic chemistry of zinc in relation to the immune system. ChemBioChem 23, e202100554 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Subramanian Vignesh, K., Landero Figueroa, J. A., Porollo, A., Caruso, J. A. & Deepe, G. S. Granulocyte macrophage-colony stimulating factor induced Zn sequestration enhances macrophage superoxide and limits intracellular pathogen survival. Immunity 39, 697–710 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Stocks, C. J. et al. Frontline science: LPS-inducible SLC30A1 drives human macrophage-mediated zinc toxicity against intracellular Escherichia coli. J. Leukoc. Biol. 109, 287–297 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Stocks, C. J., Schembri, M. A., Sweet, M. J. & Kapetanovic, R. For when bacterial infections persist: toll-like receptor-inducible direct antimicrobial pathways in macrophages. J. Leukoc. Biol. 103, 35–51 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Pederick, V. G. et al. ZnuA and zinc homeostasis in Pseudomonas aeruginosa. Sci. Rep. 5, 13139 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stocks, C. J. et al. Uropathogenic Escherichia coli employs both evasion and resistance to subvert innate immune-mediated zinc toxicity for dissemination. Proc. Natl Acad. Sci. USA 116, 6341–6350 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ong, C.-L., Gillen, C. M., Barnett, T. C., Walker, M. J. & McEwan, A. G. An antimicrobial role for zinc in innate immune defense against group A streptococcus. J. Infect. Dis. 209, 1500–1508 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Janiszewski, L. N., Minson, M., Allen, M. A., Dowell, R. D. & Palmer, A. E. Characterization of global gene expression, regulation of metal ions, and infection outcomes in immune-competent 129S6 mouse macrophages. Infect. Immun. 89, e0027321 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Eijkelkamp, B. A. et al. Extracellular zinc competitively inhibits manganese uptake and compromises oxidative stress management in Streptococcus pneumoniae. PLoS ONE 9, e89427 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Couñago, R. M. et al. Imperfect coordination chemistry facilitates metal ion release in the Psa permease. Nat. Chem. Biol. 10, 35–41 (2014).

    Article  PubMed  Google Scholar 

  44. Bahr, G., González, L. J. & Vila, A. J. Metallo-β-lactamases and a tug-of-war for the available zinc at the host–pathogen interface. Curr. Opin. Chem. Biol. 66, 102103 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Andrews, S. C., Robinson, A. K. & Rodríguez-Quiñones, F. Bacterial iron homeostasis. FEMS Microbiol. Rev. 27, 215–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Puig, S., Ramos-Alonso, L., Romero, A. M. & Martínez-Pastor, M. T. The elemental role of iron in DNA synthesis and repair. Metallomics 9, 1483–1500 (2017).

    Article  PubMed  Google Scholar 

  47. Drakesmith, H. & Prentice, A. Viral infection and iron metabolism. Nat. Rev. Microbiol. 6, 541–552 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Raymond Kenneth, N., Dertz Emily, A. & Kim Sanggoo, S. Enterobactin: an archetype for microbial iron transport. Proc. Natl Acad. Sci. USA 100, 3584–3588 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stintzi, A., Barnes, C., Xu, J. & Raymond Kenneth, N. Microbial iron transport via a siderophore shuttle: a membrane ion transport paradigm. Proc. Natl Acad. Sci. USA 97, 10691–10696 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hider, R. C. & Kong, X. Chemistry and biology of siderophores. Nat. Prod. Rep. 27, 637–657 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Lyman, L. R., Schaeffer, J., Ruppitsch, W. & Schmitt, M. P. Analysis of the HbpA protein from Corynebacterium diphtheriae clinical isolates and identification of a putative hemoglobin-binding site on HbpA. J. Bacteriol. 204, e0034922 (2022).

    Article  PubMed  Google Scholar 

  52. Kramer, J., Özkaya, Ö. & Kümmerli, R. Bacterial siderophores in community and host interactions. Nat. Rev. Microbiol. 18, 152–163 (2020). Highlights the importance of bacterial siderophores for iron transport and their role in bacterium–host interactions.

    Article  CAS  PubMed  Google Scholar 

  53. Khan, A., Singh, P. & Srivastava, A. Synthesis, nature and utility of universal iron chelator — siderophore: a review. Microbiol. Res. 212–213, 103–111 (2018).

    Article  PubMed  Google Scholar 

  54. Holbein, B. E., Ang, M. T. C., Allan, D. S., Chen, W. & Lehmann, C. in Sustainable Agriculture Reviews 49: Mitigation of Antimicrobial Resistance, Vol 2. Natural and Synthetic Approaches (eds Panwar, H. et al.) 251–311 (Springer International Publishing, 2021).

  55. Diarra, M. S. et al. Species selectivity of new siderophore–drug conjugates that use specific iron uptake for entry into bacteria. Antimicrob. Agents Chemother. 40, 2610–2617 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Boukhalfa, H. & Crumbliss, A. L. Chemical aspects of siderophore mediated iron transport. BioMetals 15, 325–339 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Spasojević, I., Boukhalfa, H., Stevens, R. D. & Crumbliss, A. L. Aqueous solution speciation of Fe(III) complexes with dihydroxamate siderophores alcaligin and rhodotorulic acid and synthetic analogues using electrospray ionization mass spectrometry. Inorg. Chem. 40, 49–58 (2001).

    Article  PubMed  Google Scholar 

  58. Albrecht-Gary, A. M. & Crumbliss, A. L. Coordination chemistry of siderophores: thermodynamics and kinetics of iron chelation and release. Met. Ions Biol. Syst. 35, 239–327 (1998).

    CAS  PubMed  Google Scholar 

  59. Helman, R. & Lawrence, G. D. The increase in ferrioxamine B reduction potential with increasing acidity of the medium. Bioelectrochem. Bioenerg. 22, 187–196 (1989).

    Article  CAS  Google Scholar 

  60. Johnstone, T. C. & Nolan, E. M. Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Trans. 44, 6320–6339 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chakraborty, R., Storey, E. & van der Helm, D. Molecular mechanism of ferricsiderophore passage through the outer membrane receptor proteins of Escherichia coli. BioMetals 20, 263–274 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. May Kerrie, L. & Grabowicz, M. The bacterial outer membrane is an evolving antibiotic barrier. Proc. Natl Acad. Sci. USA 115, 8852–8854 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Noinaj, N., Guillier, M., Barnard, T. J. & Buchanan, S. K. TonB-dependent transporters: regulation, structure, and function. Annu. Rev. Microbiol. 64, 43–60 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Moeck, G. S. & Coulton, J. W. TonB-dependent iron acquisition: mechanisms of siderophore-mediated active transport. Mol. Microbiol. 28, 675–681 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Reynolds, D. M., Schatz, A. & Waksman, S. A. Grisein, a new antibiotic produced by a strain of Streptomyces griseus. Proc. Soc. Exp. Biol. Med. 64, 50–54 (1947).

    Article  CAS  PubMed  Google Scholar 

  66. Vértesy, L., Aretz, W., Fehlhaber, H.-W. & Kogler, H. Salmycin A–D, Antibiotika aus Streptomyces violaceus, DSM 8286, mit Siderophor-Aminoglycosid-Struktur. Helv. Chim. Acta 78, 46–60 (1995).

    Article  Google Scholar 

  67. Schalk, I. J., Mislin, G. L. & Brillet, K. Structure, function and binding selectivity and stereoselectivity of siderophore-iron outer membrane transporters. Curr. Top. Membr. 69, 37–66 (2012).

    Article  PubMed  Google Scholar 

  68. Boyce, J. H. et al. Platform to discover protease-activated antibiotics and application to siderophore–antibiotic conjugates. J. Am. Chem. Soc. 142, 21310–21321 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. McCreary, E. K., Heil, E. L. & Tamma, P. D. New perspectives on antimicrobial agents: cefiderocol. Antimicrob. Agents Chemother. 65, e0217120 (2021).

    Article  PubMed  Google Scholar 

  70. Isler, B., Doi, Y., Bonomo, R. A. & Paterson, D. L. New treatment options against carbapenem-resistant Acinetobacter baumannii infections. Antimicrob. Agents Chemother. 63, e01110–e01118 (2018).

    PubMed  PubMed Central  Google Scholar 

  71. Tenero, D. et al. Pharmacokinetics, safety, and tolerability evaluation of single and multiple doses of GSK3342830 in healthy volunteers. Clin. Pharmacol. Drug Dev. 8, 754–764 (2019).

    CAS  PubMed  Google Scholar 

  72. Page, M. G. P., Dantier, C. & Desarbre, E. In vitro properties of BAL30072, a novel siderophore sulfactam with activity against multiresistant gram-negative bacilli. Antimicrob. Agents Chemother. 54, 2291–2302 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Paech, F. et al. Mechanisms of hepatotoxicity associated with the monocyclic β-lactam antibiotic BAL30072. Arch. Toxicol. 91, 3647–3662 (2017).

    Article  CAS  PubMed  Google Scholar 

  74. Flanagan, M. E. et al. Preparation, gram-negative antibacterial activity, and hydrolytic stability of novel siderophore-conjugated monocarbam diols. ACS Med. Chem. Lett. 2, 385–390 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Han, S. et al. Structural basis for effectiveness of siderophore-conjugated monocarbams against clinically relevant strains of Pseudomonas aeruginosa. Proc. Natl Acad. Sci. USA 107, 22002–22007 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. McPherson, C. J. et al. Clinically relevant Gram-negative resistance mechanisms have no effect on the efficacy of MC-1, a novel siderophore-conjugated monocarbam. Antimicrob. Agents Chemother. 56, 6334–6342 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tomaras, A. P. et al. Adaptation-based resistance to siderophore-conjugated antibacterial agents by Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 57, 4197–4207 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kong, H. et al. An overview of recent progress in siderophore–antibiotic conjugates. Eur. J. Med. Chem. 182, 111615 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Negash, K. H., Norris, J. K. S. & Hodgkinson, J. T. Siderophore–antibiotic conjugate design: new drugs for bad bugs? Molecules 24, 3314 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tonziello, G., Caraffa, E., Pinchera, B., Granata, G. & Petrosillo, N. Present and future of siderophore-based therapeutic and diagnostic approaches in infectious diseases. Infect. Dis. Rep. 11, 8208 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Miller, M. J. & Liu, R. Design and syntheses of new antibiotics inspired by nature’s quest for iron in an oxidative climate. Acc. Chem. Res. 54, 1646–1661 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wencewicz, T. A., Long, T. E., Möllmann, U. & Miller, M. J. Trihydroxamate siderophore–fluoroquinolone conjugates are selective sideromycin antibiotics that target Staphylococcus aureus. Bioconjug. Chem. 24, 473–486 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ghosh, M. et al. Targeted antibiotic delivery: selective siderophore conjugation with daptomycin confers potent activity against multidrug resistant Acinetobacter baumannii both in vitro and in vivo. J. Med. Chem. 60, 4577–4583 (2017).

    Article  CAS  PubMed  Google Scholar 

  84. Melander, R. J., Zurawski, D. V. & Melander, C. Narrow-spectrum antibacterial agents. MedChemComm 9, 12–21 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Kinzel, O. & Budzikiewicz, H. Synthesis and biological evaluation of a pyoverdin-β-lactam conjugate: a new type of arginine-specific cross-linking in aqueous solution. J. Pept. Res. 53, 618–625 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Kinzel, O., Tappe, R., Gerus, I. & Budzikiewicz, H. The synthesis and antibacterial activity of two pyoverdin-ampicillin conjugates, entering Pseudomonas aeruginosa via the pyoverdin-mediated iron uptake pathway. J. Antibiot. 51, 499–507 (1998).

    Article  CAS  Google Scholar 

  87. Neumann, W., Sassone-Corsi, M., Raffatellu, M. & Nolan, E. M. Esterase-catalyzed siderophore hydrolysis activates an enterobactin–ciprofloxacin conjugate and confers targeted antibacterial activity. J. Am. Chem. Soc. 140, 5193–5201 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ferreira, K. et al. Multivalent siderophore–DOTAM conjugates as theranostics for imaging and treatment of bacterial infections. Angew. Chem., Int. Ed. 56, 8272–8276 (2017).

    Article  CAS  Google Scholar 

  89. Pinkert, L. et al. Antibiotic conjugates with an artificial MECAM-based siderophore are potent agents against Gram-positive and Gram-negative bacterial pathogens. J. Med. Chem. 64, 15440–15460 (2021).

    Article  CAS  PubMed  Google Scholar 

  90. Pandey, A., Śmiłowicz, D. & Boros, E. Galbofloxacin: a xenometal-antibiotic with potent in vitro and in vivo efficacy against S. aureus. Chem. Sci. 12, 14546–14556 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pandey, A. et al. Theranostic gallium siderophore ciprofloxacin conjugate with broad spectrum antibiotic potency. J. Med. Chem. 62, 9947–9960 (2019). An insightful study that demonstrates two alternative uses for siderophore–antibiotic conjugates using the same construct for diagnosis and therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nguyen, M., Vendier, L., Stigliani, J.-L., Meunier, B. & Robert, A. Structures of the copper and zinc complexes of PBT2, a chelating agent evaluated as potential drug for neurodegenerative diseases. Eur. J. Inorg. Chem. 2017, 600–608 (2017).

    Article  CAS  Google Scholar 

  93. Angu, D. et al. Safety, tolerability, and efficacy of PBT2 in Huntington’s disease: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 14, 39–47 (2015).

    Article  Google Scholar 

  94. Bohlmann, L. et al. Chemical synergy between ionophore PBT2 and zinc reverses antibiotic resistance. mBio 9, e02391–02318 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Jen, F. E. C. et al. Neisseria gonorrhoeae becomes susceptible to polymyxin B and colistin in the presence of PBT2. ACS Infect. Dis. 6, 50–55 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. De Oliveira, D. M. P. et al. Repurposing a neurodegenerative disease drug to treat Gram-negative antibiotic-resistant bacterial sepsis. Sci. Transl. Med. 12, eabb3791 (2020).

    Article  PubMed  Google Scholar 

  97. Oliveri, V. Biomedical applications of copper ionophores. Coord. Chem. Rev. 422, 213474 (2020).

    Article  CAS  Google Scholar 

  98. Jackson, A. C. et al. Benzimidazole and benzoxazole zinc chelators as inhibitors of metallo-β-lactamase NDM-1. ChemMedChem 16, 654–661 (2021).

    Article  CAS  PubMed  Google Scholar 

  99. Jackson, A. C., Zaengle-Barone, J. M., Puccio, E. A. & Franz, K. J. A cephalosporin prochelator inhibits new delhi metallo-β-lactamase 1 without removing zinc. ACS Infect. Dis. 6, 1264–1272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zaengle-Barone, J. M. et al. Copper influences the antibacterial outcomes of a β-lactamase-activated prochelator against drug-resistant bacteria. ACS Infect. Dis. 4, 1019–1029 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yarlagadda, V., Sarkar, P., Samaddar, S. & Haldar, J. A vancomycin derivative with a pyrophosphate-binding group: a strategy to combat vancomycin-resistant bacteria. Angew. Chem. Int. Ed. 55, 7836–7840 (2016).

    Article  CAS  Google Scholar 

  102. Chen, J., Li, J., Zhang, H., Shi, W. & Liu, Y. Bacterial heavy-metal and antibiotic resistance genes in a copper tailing dam area in Northern China. Front. Microbiol. 10, 1916 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Bruins, M. R., Kapil, S. & Oehme, F. W. Microbial resistance to metals in the environment. Ecotoxicol. Environ. Saf. 45, 198–207 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Aljerf, L. & AlMasri, N. A gateway to metal resistance: bacterial response to heavy metal toxicity in the biological environment. Annu. Adv. Chem. 2, 32–44 (2018).

    Article  Google Scholar 

  105. González Henao, S. & Ghneim-Herrera, T. Heavy metals in soils and the remediation potential of bacteria associated with the plant microbiome. Front. Environ. Sci. 9, 604216 (2021).

    Article  Google Scholar 

  106. Abram, S.-L. & Fromm, K. M. Handling (nano)silver as antimicrobial agent: therapeutic window, dissolution dynamics, detection methods and molecular interactions. Chem. Eur. J. 26, 10948–10971 (2020).

    Article  CAS  PubMed  Google Scholar 

  107. Ciriminna, R., Albo, Y. & Pagliaro, M. New antivirals and antibacterials based on silver nanoparticles. ChemMedChem 15, 1619–1623 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sim, W., Barnard, R. T., Blaskovich, M. A. T. & Ziora, Z. M. Antimicrobial silver in medicinal and consumer applications: a patent review of the past decade (2007–2017). Antibiotics 7, 93 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Eckhardt, S. et al. Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine. Chem. Rev. 113, 4708–4754 (2013).

    Article  CAS  PubMed  Google Scholar 

  110. Atiyeh, B. S., Costagliola, M., Hayek, S. N. & Dibo, S. A. Effect of silver on burn wound infection control and healing: review of the literature. Burns 33, 139–148 (2007).

    Article  PubMed  Google Scholar 

  111. Moyer, C. A., Brentano, L., Gravens, D. L., Margraf, H. W. & Monafo, W. W. J. Treatment of large human burns with 0.5% silver nitrate solution. Arch. Surg. 90, 812–867 (1965).

    Article  CAS  PubMed  Google Scholar 

  112. Stanford, W., Rappole, B. W. & Fox, C. L. Jr Clinical experience with silver sulfadiazine, a new topical agent for control of pseudomonas infections in burns. J. Trauma 9, 377–388 (1969).

    Article  CAS  PubMed  Google Scholar 

  113. Xiu, Z.-M., Zhang, Q.-B, Puppala, H. L., Colvin, V. L. & Alvarez, P. J. J. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 12, 4271–4275 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Surwade, P. et al. Augmented antibacterial activity of ampicillin with silver nanoparticles against methicillin-resistant Staphylococcus aureus (MRSA). J. Antibiot. 72, 50–53 (2019).

    Article  CAS  Google Scholar 

  115. Morones-Ramirez, J. R., Winkler, J. A., Spina, C. S. & Collins, J. J. Silver enhances antibiotic activity against Gram-negative bacteria. Sci. Transl. Med. 5, 190ra181 (2013).

    Article  Google Scholar 

  116. Habash, M. B. et al. Potentiation of tobramycin by silver nanoparticles against Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 61, e00415–e00417 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Panáček, A. et al. Silver nanoparticles strongly enhance and restore bactericidal activity of inactive antibiotics against multiresistant Enterobacteriaceae. Colloids Surf. B. Biointerf. 142, 392–399 (2016).

    Article  Google Scholar 

  118. Khansa, I., Schoenbrunner, A. R., Kraft, C. T. & Janis, J. E. Silver in wound care — friend or foe?: a comprehensive review. Plast. Reconstr. Surg. Glob. Open 7, e2390 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Pormohammad, A., Monych, N. K., Ghosh, S., Turner, D. L. & Turner, R. J. Nanomaterials in wound healing and infection control. Antibiotics 10, 473 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Colloidal Silver. National Center for Complementary and Integrative Health https://www.nccih.nih.gov/health/colloidal-silver (updated April 2017).

  121. Colloidal Silver: Risk Without Benefit. Quackwatch https://quackwatch.org/related/PhonyAds/silverad/ (2021).

  122. Pulit-Prociak, J. & Banach, M. Silver nanoparticles – a material of the future…? Open Chem. J. 14, 76–91 (2016).

    Article  CAS  Google Scholar 

  123. Ferdous, Z. & Nemmar, A. Health impact of silver nanoparticles: a review of the biodistribution and toxicity following various routes of exposure. Int. J. Mol. Sci. 21, 2375 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Silver, S. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol. Rev. 27, 341–353 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Wang, H. et al. Characterization of silver resistance and coexistence of sil operon with antibiotic resistance genes among Gram-negative pathogens isolated from wound samples by using whole-genome sequencing. Infect. Drug Resist. 15, 1425–1437 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Elkrewi, E., Randall, C. P., Ooi, N., Cottell, J. L. & O’Neill, A. J. Cryptic silver resistance is prevalent and readily activated in certain Gram-negative pathogens. J. Antimicrob. Chemother. 72, 3043–3046 (2017).

    Article  CAS  PubMed  Google Scholar 

  127. Muller, M. & Merrett, N. D. Pyocyanin production by Pseudomonas aeruginosa confers resistance to ionic silver. Antimicrob. Agents Chemother. 58, 5492–5499 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Wu, K. et al. Mutagenesis and resistance development of bacteria challenged by silver nanoparticles. Antimicrob. Agents Chemother. 66, e0062822 (2022).

    Article  PubMed  Google Scholar 

  129. Durán, N. et al. Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomed. Nanotechnol. Biol. Med. 12, 789–799 (2016).

    Article  Google Scholar 

  130. Kohanski, M. A., Dwyer, D. J., Hayete, B., Lawrence, C. A. & Collins, J. J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130, 797–810 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Foti, J. J., Devadoss, B., Winkler, J. A., Collins, J. J. & Walker, G. C. Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics. Science 336, 315–319 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Liu, Y. & Imlay, J. A. Cell death from antibiotics without the involvement of reactive oxygen species. Science 339, 1210–1213 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Keren, I., Wu, Y., Inocencio, J., Mulcahy, L. R. & Lewis, K. Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science 339, 1213–1216 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Rasouly, A. & Nudler, E. The very hungry bactericidal antibiotics. Proc. Natl Acad. Sci. USA 119, e2208035119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Anuj, S. A., Gajera, H. P., Hirpara, D. G. & Golakiya, B. A. Interruption in membrane permeability of drug-resistant Staphylococcus aureus with cationic particles of nano-silver. Eur. J. Pharm. Sci. 127, 208–216 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Wang, H. et al. Deciphering molecular mechanism of silver by integrated omic approaches enables enhancing its antimicrobial efficacy in E. coli. PLoS Biol. 17, e3000292 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Wang, H. et al. Antimicrobial silver targets glyceraldehyde-3-phosphate dehydrogenase in glycolysis of E. coli. Chem. Sci. 10, 7193–7199 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wang, H. et al. Multi-target mode of action of silver against Staphylococcus aureus endows it with capability to combat antibiotic resistance. Nat. Commun. 12, 3331 (2021). Groundbreaking detailed mechanism-of-action study of antibacterial silver.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wang, H. et al. Atomic differentiation of silver binding preference in protein targets: Escherichia coli malate dehydrogenase as a paradigm. Chem. Sci. 11, 11714–11719 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Mazzei, L., Cianci, M., Gonzalez Vara, A. & Ciurli, S. The structure of urease inactivated by Ag(I): a new paradigm for enzyme inhibition by heavy metals. Dalton Trans. 47, 8240–8247 (2018).

    Article  CAS  PubMed  Google Scholar 

  141. Gugala, N. et al. Using a chemical genetic screen to enhance our understanding of the antibacterial properties of silver. Genes 9, 344 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Dollwet, H. H. A. & Sorenson, J. R. J. Historic uses of copper compounds in medicine. Trace Elem. Med. 2, 80–87 (1985).

    Google Scholar 

  143. Grass, G., Rensing, C. & Solioz, M. Metallic copper as an antimicrobial surface. Appl. Environ. Microbiol. 77, 1541–1547 (2011).

    Article  CAS  PubMed  Google Scholar 

  144. Arendsen, L. P., Thakar, R. & Sultan, A. H. The use of copper as an antimicrobial agent in health care, including obstetrics and gynecology. Clin. Microbiol. Rev. 32, e00125–18 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Shams, S. et al. Antifungal effect of gatifloxacin and copper ions combination. J. Antibiot. 67, 499–504 (2014).

    Article  CAS  Google Scholar 

  146. Manning, T. et al. The copper (II) ion as a carrier for the antibiotic capreomycin against Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett. 24, 976–982 (2014).

    Article  CAS  PubMed  Google Scholar 

  147. Dalecki, A. G. et al. Disulfiram and copper ions kill Mycobacterium tuberculosis in a synergistic manner. Antimicrob. Agents Chemother. 59, 4835–4844 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wiebelhaus, N., Zaengle-Barone, J. M., Hwang, K. K., Franz, K. J. & Fitzgerald, M. C. Protein folding stability changes across the proteome reveal targets of Cu toxicity in E. coli. ACS Chem. Biol. 16, 214–224 (2021).

    Article  CAS  PubMed  Google Scholar 

  149. Gugala, N., Salazar-Alemán, D. A., Chua, G. & Turner, R. J. Using a chemical genetic screen to enhance our understanding of the antimicrobial properties of copper. Metallomics 14, mfab071 (2021).

    Article  Google Scholar 

  150. Kaur, I. et al. Role of horizontally transferred copper resistance genes in Staphylococcus aureus and Listeria monocytogenes. Microbiology 168, 001162 (2022).

    Article  CAS  Google Scholar 

  151. Riduan, S. N. & Zhang, Y. Recent advances of zinc-based antimicrobial materials. Chem. Asian J. 16, 2588–2595 (2021).

    Article  CAS  PubMed  Google Scholar 

  152. Gudkov, S. V. et al. A mini review of antibacterial properties of ZnO nanoparticles. Front. Phys. 9, 641481 (2021).

    Article  Google Scholar 

  153. Pasquet, J. et al. The contribution of zinc ions to the antimicrobial activity of zinc oxide. Colloids Surf. Physicochem. Eng. Asp. 457, 263–274 (2014).

    Article  CAS  Google Scholar 

  154. Zhang, Y., Shareena Dasari, T. P., Deng, H. & Yu, H. Antimicrobial activity of gold nanoparticles and ionic gold. J. Environ. Sci. Health C. 33, 286–327 (2015).

    Article  CAS  Google Scholar 

  155. Tao, C. Antimicrobial activity and toxicity of gold nanoparticles: research progress, challenges and prospects. Lett. Appl. Microbiol. 67, 537–543 (2018).

    Article  CAS  PubMed  Google Scholar 

  156. Rajendran, S., Prabha, S. S., Rathish, R. J., Singh, G. & Al-Hashem, A. in Nanotoxicity (eds Rajendran, S., Mukherjee, A., Nguyen, T. A., Godugu, C., & Shukla, R. K.) 275–281 (Elsevier, 2020).

  157. Ayaz Ahmed, K. B., Raman, T. & Anbazhagan, V. Platinum nanoparticles inhibit bacteria proliferation and rescue zebrafish from bacterial infection. RSC Adv. 6, 44415–44424 (2016).

    Article  CAS  Google Scholar 

  158. Bresee, J., Maier, K. E., Melander, C. & Feldheim, D. L. Identification of antibiotics using small molecule variable ligand display on gold nanoparticles. Chem. Commun. 46, 7516–7518 (2010).

    Article  CAS  Google Scholar 

  159. Briand, G. G. & Burford, N. Bismuth compounds and preparations with biological or medicinal relevance. Chem. Rev. 99, 2601–2658 (1999).

    Article  CAS  PubMed  Google Scholar 

  160. Svensson Grape, E., Rooth, V., Nero, M., Willhammar, T. & Inge, A. K. Structure of the active pharmaceutical ingredient bismuth subsalicylate. Nat. Commun. 13, 1984 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Wang, R. et al. Bismuth antimicrobial drugs serve as broad-spectrum metallo-β-lactamase inhibitors. Nat. Commun. 9, 439 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Bonchi, C., Imperi, F., Minandri, F., Visca, P. & Frangipani, E. Repurposing of gallium-based drugs for antibacterial therapy. BioFactors 40, 303–312 (2014).

    Article  CAS  PubMed  Google Scholar 

  163. Li, F., Liu, F., Huang, K. & Yang, S. Advancement of gallium and gallium-based compounds as antimicrobial agents. Front. Bioeng. Biotechnol. 10, 827960 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Levaditi, C., Bardet, J., Tchakirian, A. & Vaisman, A. Therapeutic properties of gallium in syphilis and trypanosomiasis. Comptes Rendus Acad. Bulg. Sci. 192, 1142–1143 (1931).

    CAS  Google Scholar 

  165. Gugala, N., Chatfield-Reed, K., Turner, R. J. & Chua, G. Using a chemical genetic screen to enhance our understanding of the antimicrobial properties of gallium against Escherichia coli. Genes 10, 34 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Li, H.-R. et al. Cage-like Ta@Bqn complexes (n = 23–28, q = −1– + 3) in 18-electron configurations with the highest coordination number of twenty-eight. Nanoscale 10, 7451–7456 (2018).

    Article  CAS  PubMed  Google Scholar 

  167. Morrison, C. N. et al. Expanding medicinal chemistry into 3D space: metallofragments as 3D scaffolds for fragment-based drug discovery. Chem. Sci. 11, 1216–1225 (2020). Seminal study that systematically demonstrates the often mentioned but seldomly proven superior three-dimensional geometry of metal complexes.

    Article  CAS  Google Scholar 

  168. Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    Article  CAS  PubMed  Google Scholar 

  169. Lovering, F. Escape from flatland 2: complexity and promiscuity. MedChemComm 4, 515–519 (2013).

    Article  CAS  Google Scholar 

  170. Boros, E., Dyson, P. J. & Gasser, G. Classification of metal-based drugs according to their mechanisms of action. Chem 6, 41–60 (2020).

    Article  CAS  PubMed  Google Scholar 

  171. Dwyer, F. P., Gyarfas, E. C., Rogers, W. P. & Koch, J. H. Biological activity of complex ions. Nature 170, 190–191 (1952).

    Article  CAS  PubMed  Google Scholar 

  172. Rosenberg, B., Van Camp, L. & Krigas, T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 205, 698–699 (1965).

    Article  CAS  PubMed  Google Scholar 

  173. Smitten, K. L. et al. Mononuclear ruthenium(II) theranostic complexes that function as broad-spectrum antimicrobials in therapeutically resistant pathogens through interaction with DNA. Chem. Sci. 11, 8828–8838 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Sovari, S. N. et al. Design, synthesis and in vivo evaluation of 3-arylcoumarin derivatives of rhenium(I) tricarbonyl complexes as potent antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA). Eur. J. Med. Chem. 205, 112533 (2020).

    Article  CAS  PubMed  Google Scholar 

  175. Sovari, S. N. et al. Combatting AMR: a molecular approach to the discovery of potent and non-toxic rhenium complexes active against C. albicans-MRSA co-infection. Eur. J. Med. Chem. 226, 113858 (2021).

    Article  CAS  PubMed  Google Scholar 

  176. Güntzel, P. et al. Biological activity of manganese(I) tricarbonyl complexes on multidrug-resistant Gram-negative bacteria: from functional studies to in vivo activity in Galleria mellonella. Metallomics 11, 2033–2042 (2019).

    Article  PubMed  Google Scholar 

  177. Frei, A. et al. Metal complexes as a promising source for new antibiotics. Chem. Sci. 11, 2627–2639 (2020). Highlights the potential for metal complexes to have antimicrobial activity by analysing data obtained by the CO-ADD initiative, which has screened over 300,000 molecules for antimicrobial activity. One of the first studies to systematically demonstrate that metal compounds have a much higher ‘hit rate’ than traditional organic compounds, and without higher cytotoxicity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Trimble, M. J., Mlynárčik, P., Kolář, M. & Hancock, R. E. W. Polymyxin: alternative mechanisms of action and resistance. Cold Spring Harb. Perspect. Med. 6, a025288 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Wenzel, M. et al. Analysis of the mechanism of action of potent antibacterial hetero-tri-organometallic compounds: a structurally new class of antibiotics. ACS Chem. Biol. 8, 1442–1450 (2013). One of the first in-depth studies of the mechanism of action of an antimicrobial metal complex.

    Article  CAS  PubMed  Google Scholar 

  180. Patra, M. et al. Sequential insertion of three different organometallics into a versatile building block containing a PNA backbone. Dalton Trans. 39, 5617–5619 (2010).

    Article  CAS  PubMed  Google Scholar 

  181. Patra, M. et al. An organometallic structure–activity relationship study reveals the essential role of a Re(CO)3 moiety in the activity against Gram-positive pathogens including MRSA. Chem. Sci. 6, 214–224 (2015). Among the first structure–activity relationship studies of an antibacterial organometallic compound.

    Article  CAS  PubMed  Google Scholar 

  182. Dubar, F. et al. The ferroquine antimalarial conundrum: redox activation and reinvasion inhibition. Angew. Chem. Int. Ed. 52, 7690–7693 (2013).

    Article  CAS  Google Scholar 

  183. Nagel, C. et al. Introducing [Mn(CO)3(tpa-κ3N)] + as a novel photoactivatable CO-releasing molecule with well-defined iCORM intermediates — synthesis, spectroscopy, and antibacterial activity. Dalton Trans. 43, 9986–9997 (2014).

    Article  CAS  PubMed  Google Scholar 

  184. Tinajero-Trejo, M. et al. Antimicrobial activity of the manganese photoactivated carbon monoxide-releasing molecule [Mn(CO)3(tpa-κ3N)] + against a pathogenic Escherichia coli that causes urinary infections. Antioxid. Redox Signal. 24, 765–780 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Betts, J., Nagel, C., Schatzschneider, U., Poole, R. & La Ragione, R. M. Antimicrobial activity of carbon monoxide-releasing molecule [Mn(CO)3(tpa-κ3N)]Br versus multidrug-resistant isolates of Avian pathogenic Escherichia coli and its synergy with colistin. PLoS ONE 12, e0186359 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Betts, J. W. et al. Antibacterial activity of Mn(I) and Re(I) tricarbonyl complexes conjugated to a bile acid carrier molecule. Metallomics 12, 1563–1575 (2020).

    Article  CAS  PubMed  Google Scholar 

  187. Liakopoulos, A. et al. Manganese complex [Mn(CO)3(tpa-κ3N)]Br increases antibiotic sensitivity in multidrug resistant Streptococcus pneumoniae. J. Glob. Antimicrob. Resist. 22, 594–597 (2020).

    Article  PubMed  Google Scholar 

  188. Frei, A., Amado, M., Cooper, M. A. & Blaskovich, M. A. T. Light-activated rhenium complexes with dual mode of action against bacteria. Chem. Eur. J. 26, 2852–2858 (2020).

    Article  CAS  PubMed  Google Scholar 

  189. Siegmund, D. et al. Benzannulated Re(I)–NHC complexes: synthesis, photophysical properties and antimicrobial activity. Dalton Trans. 46, 15269–15279 (2017).

    Article  CAS  PubMed  Google Scholar 

  190. Hubick, S. et al. A potent synthetic inorganic antibiotic with activity against drug-resistant pathogens. Sci. Rep. 7, 41999 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Simpson, P. V., Nagel, C., Bruhn, H. & Schatzschneider, U. Antibacterial and antiparasitic activity of manganese(I) tricarbonyl complexes with ketoconazole, miconazole, and clotrimazole ligands. Organometallics 34, 3809–3815 (2015).

    Article  CAS  Google Scholar 

  192. Mendes, S. S. et al. Synergetic antimicrobial activity and mechanism of clotrimazole-linked CO-releasing molecules. ACS Bio. Med. Chem. Au 2, 419–436 (2022). An extensive study into the mechanism of action of novel rhenium-based antimicrobial metal complexes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Li, X. et al. RNA and DNA binding of inert oligonuclear ruthenium(II) complexes in live eukaryotic cells. Dalton Trans. 44, 3594–3603 (2015).

    Article  CAS  PubMed  Google Scholar 

  194. Li, F., Collins, J. G. & Keene, F. R. Ruthenium complexes as antimicrobial agents. Chem. Soc. Rev. 44, 2529–2542 (2015). This review summarizes the seminal work conducted by the groups of Collins and Keene on antibacterial polynuclear ruthenium complexes.

    Article  CAS  PubMed  Google Scholar 

  195. Gorle, A. K. et al. Tri- and tetra-nuclear polypyridyl ruthenium(II) complexes as antimicrobial agents. Dalton Trans. 43, 16713–16725 (2014).

    Article  CAS  PubMed  Google Scholar 

  196. Pandrala, M. et al. Chlorido-containing ruthenium(II) and iridium(III) complexes as antimicrobial agents. Dalton Trans. 42, 4686–4694 (2013).

    Article  CAS  PubMed  Google Scholar 

  197. Li, F. et al. The antimicrobial activity of inert oligonuclear polypyridylruthenium(II) complexes against pathogenic bacteria, including MRSA. Dalton Trans. 40, 5032–5038 (2011).

    Article  CAS  PubMed  Google Scholar 

  198. Li, F. et al. In vitro susceptibility and cellular uptake for a new class of antimicrobial agents: dinuclear ruthenium(II) complexes. J. Antimicrob. Chemother. 67, 2686–2695 (2012).

    Article  CAS  PubMed  Google Scholar 

  199. Erkkila, K. E., Odom, D. T. & Barton, J. K. Recognition and reaction of metallointercalators with DNA. Chem. Rev. 99, 2777–2796 (1999).

    Article  CAS  PubMed  Google Scholar 

  200. Zeglis, B. M., Pierre, V. C. & Barton, J. K. Metallo-intercalators and metallo-insertors. Chem. Commun. https://doi.org/10.1039/B710949K (2007).

    Article  Google Scholar 

  201. Li, F. et al. Dinuclear ruthenium(II) antimicrobial agents that selectively target polysomes in vivo. Chem. Sci. 5, 685–693 (2014).

    Article  CAS  Google Scholar 

  202. Weber, D. K. et al. Membrane insertion of a dinuclear polypyridylruthenium(II) complex revealed by solid-state NMR and molecular dynamics simulation: implications for selective antibacterial activity. J. Am. Chem. Soc. 138, 15267–15277 (2016).

    Article  CAS  PubMed  Google Scholar 

  203. Smitten, K. L. et al. Using nanoscopy to probe the biological activity of antimicrobial leads that display potent activity against pathogenic, multidrug resistant, gram-negative bacteria. ACS Nano 13, 5133–5146 (2019). In-depth study into a new type of dinuclear ruthenium complex with activity against Gram-negative and Gram-positive bacteria. This compound class is now in preclinical development as part of a start-up company (Metallbio).

    Article  CAS  PubMed  Google Scholar 

  204. Gill, M. R. et al. A ruthenium(II) polypyridyl complex for direct imaging of DNA structure in living cells. Nat. Chem. 1, 662–667 (2009).

    Article  CAS  PubMed  Google Scholar 

  205. Varney, A. M., Smitten, K. L., Thomas, J. A. & McLean, S. Transcriptomic analysis of the activity and mechanism of action of a ruthenium(II)-based antimicrobial that induces minimal evolution of pathogen resistance. ACS Pharmacol. Transl. Sci. 4, 168–178 (2021).

    Article  CAS  PubMed  Google Scholar 

  206. Smitten, K. L. et al. Ruthenium based antimicrobial theranostics — using nanoscopy to identify therapeutic targets and resistance mechanisms in Staphylococcus aureus. Chem. Sci. 11, 70–79 (2020).

    Article  CAS  PubMed  Google Scholar 

  207. Silver Lynn, L. Challenges of antibacterial discovery. Clin. Microbiol. Rev. 24, 71–109 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. McLean, S. et al. Analysis of the bacterial response to Ru(CO)3Cl(Glycinate) (CORM-3) and the inactivated compound identifies the role played by the ruthenium compound and reveals sulfur-containing species as a major target of CORM-3 action. Antioxid. Redox Signal. 19, 1999–2012 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Roder, C. & Thomson, M. J. Auranofin: repurposing an old drug for a golden new age. Drugs R. D. 15, 13–20 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Harbut, M. B. et al. Auranofin exerts broad-spectrum bactericidal activities by targeting thiol-redox homeostasis. Proc. Natl Acad. Sci. USA 112, 4453–4458 (2015). Important study on the antimicrobial potential of the FDA-approved drug auranofin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Wu, B., Yang, X. & Yan, M. Synthesis and structure–activity relationship study of antimicrobial auranofin against ESKAPE pathogens. J. Med. Chem. 62, 7751–7768 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Miyamoto, Y. et al. Gold(I) phosphine derivatives with improved selectivity as topically active drug leads to overcome 5-nitroheterocyclic drug resistance in Trichomonas vaginalis. J. Med. Chem. 64, 6608–6620 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Epstein, T. D., Wu, B., Moulton, K. D., Yan, M. & Dube, D. H. Sugar-modified analogs of auranofin are potent inhibitors of the gastric pathogen Helicobacter pylori. ACS Infect. Dis. 5, 1682–1687 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Liu, Y. et al. Repurposing of the gold drug auranofin and a review of its derivatives as antibacterial therapeutics. Drug Discov. Today 27, 1961–1973 (2022).

    Article  CAS  PubMed  Google Scholar 

  215. Tharmalingam, N. et al. Auranofin is an effective agent against clinical isolates of Staphylococcus aureus. Future Med. Chem. 11, 1417–1425 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Castano, A. P., Mroz, P. & Hamblin, M. R. Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer 6, 535–545 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Dolmans, D. E. J. G. J., Fukumura, D. & Jain, R. K. Photodynamic therapy for cancer. Nat. Rev. Cancer 3, 380–387 (2003).

    Article  CAS  PubMed  Google Scholar 

  218. McKenzie, L. K., Bryant, H. E. & Weinstein, J. A. Transition metal complexes as photosensitisers in one- and two-photon photodynamic therapy. Coord. Chem. Rev. 379, 2–29 (2019).

    Article  CAS  Google Scholar 

  219. Monro, S. et al. Transition metal complexes and photodynamic therapy from a tumor-centered approach: challenges, opportunities, and highlights from the development of TLD1433. Chem. Rev. 119, 797–828 (2019).

    Article  CAS  PubMed  Google Scholar 

  220. Rajesh, S., Koshi, E., Philip, K. & Mohan, A. Antimicrobial photodynamic therapy: an overview. J. Indian. Soc. Periodontol. 15, 323–327 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Cieplik, F. et al. Antimicrobial photodynamic therapy — what we know and what we don’t. Crit. Rev. Microbiol. 44, 571–589 (2018).

    Article  CAS  PubMed  Google Scholar 

  222. Gilaberte, Y., Rezusta, A., Juarranz, A. & Hamblin, M. R. Editorial: antimicrobial photodynamic therapy: a new paradigm in the fight against infections. Front. Med. 8, 788888 (2021).

    Article  Google Scholar 

  223. Maldonado-Carmona, N., Ouk, T.-S. & Leroy-Lhez, S. Latest trends on photodynamic disinfection of Gram-negative bacteria: photosensitizer’s structure and delivery systems. Photochem. Photobiol. Sci. 21, 113–145 (2022).

    Article  CAS  PubMed  Google Scholar 

  224. Hamblin, M. R. & Abrahamse, H. Can light-based approaches overcome antimicrobial resistance? Drug Dev. Res. 80, 48–67 (2019). Expert viewpoint on the potential of antimicrobial photodynamic therapy, highlighting the potential applications of the treatment modality as well as areas where more research and development is required.

    Article  CAS  PubMed  Google Scholar 

  225. Wainwright, M. Photodynamic antimicrobial chemotherapy (PACT). J. Antimicrob. Chemother. 42, 13–28 (1998).

    Article  CAS  PubMed  Google Scholar 

  226. Dąbrowski, J. M. et al. Engineering of relevant photodynamic processes through structural modifications of metallotetrapyrrolic photosensitizers. Coord. Chem. Rev. 325, 67–101 (2016).

    Article  Google Scholar 

  227. Josefsen, L. B. & Boyle, R. W. Photodynamic therapy and the development of metal-based photosensitisers. Met. Based Drugs 2008, 276109 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Jain, A., Garrett, N. T. & Malone, Z. P. Ruthenium-based photoactive metalloantibiotics. Photochem. Photobiol. 98, 6–16 (2022).

    Article  CAS  PubMed  Google Scholar 

  229. Parakh, P., Gokulakrishnan, S. & Prakash, H. Visible light water disinfection using [Ru(bpy)2(phendione)](PF6)2·2H2O and [Ru(phendione)3]Cl2·2H2O complexes and their effective adsorption onto activated carbon. Sep. Purif. Technol. 109, 9–17 (2013).

    Article  CAS  Google Scholar 

  230. Arenas, Y. et al. Photodynamic inactivation of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus with Ru(II)-based type I/type II photosensitizers. Photodiagn. Photodyn. Ther. 10, 615–625 (2013).

    Article  CAS  Google Scholar 

  231. Pierce, S., Jennings, M. P., Juliano, S. A. & Angeles-Boza, A. M. Peptide–ruthenium conjugate as an efficient photosensitizer for the inactivation of multidrug-resistant bacteria. Inorg. Chem. 59, 14866–14870 (2020).

    Article  CAS  PubMed  Google Scholar 

  232. Jian, Y. et al. An alkynyl-dangling Ru(II) polypyridine complex for targeted antimicrobial photodynamic therapy. Chem. Eur. J. 28, e202103359 (2022).

    Article  CAS  PubMed  Google Scholar 

  233. Le Gall, T. et al. Ruthenium(II) polypyridyl complexes as photosensitizers for antibacterial photodynamic therapy: a structure–activity study on clinical bacterial strains. ChemMedChem 13, 2229–2239 (2018).

    Article  PubMed  Google Scholar 

  234. Frei, A. et al. Synthesis, characterization, and biological evaluation of new Ru(II) polypyridyl photosensitizers for photodynamic therapy. J. Med. Chem. 57, 7280–7292 (2014).

    Article  CAS  PubMed  Google Scholar 

  235. Hohlfeld, B. F. et al. Dipyrrinato-iridium(III) complexes for application in photodynamic therapy and antimicrobial photodynamic inactivation. Chem. Eur. J. 27, 6440–6459 (2021).

    Article  CAS  PubMed  Google Scholar 

  236. Wang, L. et al. Heteroleptic Ir(III)N6 complexes with long-lived triplet excited states and in vitro photobiological activities. ACS Appl. Mater. Interfaces 11, 3629–3644 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Ho, P.-Y. et al. Fluorescence imaging and photodynamic inactivation of bacteria based on cationic cyclometalated iridium(III) complexes with aggregation-induced emission properties. Adv. Healthc. Mater. 10, 2100706 (2021).

    Article  CAS  Google Scholar 

  238. Hopkins, S. L. et al. Visible light induced antibacterial properties of a Ru(II)–Pt(II) bimetallic complex. Inorg. Chim. Acta 454, 229–233 (2017).

    Article  CAS  Google Scholar 

  239. Jain, A., Winkel, B. S. & Brewer, K. J. In vivo inhibition of E. coli growth by a Ru(II)/Pt(II) supramolecule [(tpy)RuCl(dpp)PtCl2](PF6). J. Inorg. Biochem. 101, 1525–1528 (2007).

    Article  CAS  PubMed  Google Scholar 

  240. Appleby, M. V. et al. Cu(I) diimine complexes as immobilised antibacterial photosensitisers operating in water under visible light. Mater. Adv. 1, 3417–3427 (2020).

    Article  CAS  Google Scholar 

  241. Sun, W. et al. Fluorination in enhancing photoactivated antibacterial activity of Ru(II) complexes with photo-labile ligands. RSC Adv. 10, 25364–25369 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  242. de Sousa, A. P. et al. An unusual bidentate methionine ruthenium(II) complex: photo-uncaging and antimicrobial activity. J. Biol. Inorg. Chem. 25, 419–428 (2020).

    Article  PubMed  Google Scholar 

  243. Smith, N. A. et al. Combatting AMR: photoactivatable ruthenium(II)-isoniazid complex exhibits rapid selective antimycobacterial activity. Chem. Sci. 8, 395–404 (2017).

    Article  CAS  PubMed  Google Scholar 

  244. Garner, R. N., Pierce, C. G., Reed, C. R. & Brennessel, W. W. Photoinitiated treatment of Mycobacterium using Ru(II) isoniazid complexes. Inorg. Chim. Acta 461, 261–266 (2017).

    Article  CAS  Google Scholar 

  245. Fairlamb, I. J. S. & Lynam, J. M. in Advances in Bioorganometallic Chemistry (eds Hirao, T. & Moriuchi, T.) 137–154 (Elsevier, 2019).

  246. Ward, J. S. in Comprehensive Organometallic Chemistry IV Vol. 15 (eds Parkin, G., Meyer, K. & O’Hare, D.) 314–330 (Elsevier, 2022).

  247. Flanagan, L. et al. The antimicrobial activity of a carbon monoxide releasing molecule (EBOR-CORM-1) is shaped by intraspecific variation within Pseudomonas aeruginosa populations. Front. Microbiol. 9, 00195 (2018).

    Article  Google Scholar 

  248. Ward, J. S., Morgan, R., Lynam, J. M., Fairlamb, I. J. S. & Moir, J. W. B. Toxicity of tryptophan manganese(I) carbonyl (Trypto-CORM), against Neisseria gonorrhoeae. MedChemComm 8, 346–352 (2017).

    Article  CAS  PubMed  Google Scholar 

  249. Desmard, M. et al. A carbon monoxide-releasing molecule (CORM-3) exerts bactericidal activity against Pseudomonas aeruginosa and improves survival in an animal model of bacteraemia. FASEB J. 23, 1023–1031 (2009).

    Article  CAS  PubMed  Google Scholar 

  250. Tavares, A. F. et al. The bactericidal activity of carbon monoxide-releasing molecules against Helicobacter pylori. PLoS ONE 8, e83157 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Murray, T. S. et al. The carbon monoxide releasing molecule CORM-2 attenuates Pseudomonas aeruginosa biofilm formation. PLoS ONE 7, e35499 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Cheng, J. et al. Red light-triggered intracellular carbon monoxide release enables selective eradication of MRSA infection. Angew. Chem. Int. Ed. 60, 13513–13520 (2021).

    Article  CAS  Google Scholar 

  253. Cheng, J. & Hu, J. Recent advances on carbon monoxide releasing molecules for antibacterial applications. ChemMedChem 16, 3628–3634 (2021).

    Article  CAS  PubMed  Google Scholar 

  254. Ordonez, A. A. et al. Molecular imaging of bacterial infections: overcoming the barriers to clinical translation. Sci. Transl. Med. 11, eaax8251 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  255. van Oosten, M. et al. Targeted imaging of bacterial infections: advances, hurdles and hopes. FEMS Microbiol. Rev. 39, 892–916 (2015).

    Article  PubMed  Google Scholar 

  256. Welling, M. M. et al. Fluorescent imaging of bacterial infections and recent advances made with multimodal radiopharmaceuticals. Clin. Transl. Imaging 7, 125–138 (2019).

    Article  Google Scholar 

  257. Sollini, M. et al. Current status of molecular imaging in infections. Curr. Pharm. Des. 24, 754–771 (2018).

    Article  CAS  PubMed  Google Scholar 

  258. Ballinger, J. R. & Gnanasegaran, G. Radiolabelled leukocytes for imaging inflammation: how radiochemistry affects clinical use. Q. J. Nucl. Med. Mol. Imaging 49, 308–318 (2005).

    CAS  PubMed  Google Scholar 

  259. Welling, M. M. et al. An update on radiotracer development for molecular imaging of bacterial infections. Clin. Transl. Imaging 7, 105–124 (2019).

    Article  Google Scholar 

  260. Eggleston, H. & Panizzi, P. Molecular imaging of bacterial infections in vivo: the discrimination between infection and inflammation. Informatics 1, 72–99 (2014).

    Article  PubMed  Google Scholar 

  261. Langer, O. et al. In vitro and in vivo evaluation of [18F]ciprofloxacin for the imaging of bacterial infections with PET. Eur. J. Nucl. Med. Mol. Imaging 32, 143–150 (2005).

    Article  CAS  PubMed  Google Scholar 

  262. Ferro-Flores, G., Avila-Rodríguez, M. A. & García-Pérez, F. O. Imaging of bacteria with radiolabeled ubiquicidin by SPECT and PET techniques. Clin. Transl. Imaging 4, 175–182 (2016).

    Article  Google Scholar 

  263. Roohi, S., Mushtaq, A. & Malik, S. A. Synthesis and biodistribution of 99mTc-vancomycin in a model of bacterial infection. Radiochim. Acta 93, 415–418 (2005).

    Article  CAS  Google Scholar 

  264. Liu, X. et al. Radiolabeled Zn-DPA as a potential infection imaging agent. Nucl. Med. Biol. 39, 709–714 (2012).

    Article  CAS  PubMed  Google Scholar 

  265. Rice, D. R. et al. Evaluation of [¹¹¹In]-labeled zinc-dipicolylamine tracers for SPECT imaging of bacterial infection. Mol. Imaging Biol. 17, 204–213 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Petrik, M. et al. 68Ga-triacetylfusarinine C and 68Ga-ferrioxamine E for Aspergillus infection imaging: uptake specificity in various microorganisms. Mol. Imaging Biol. 16, 102–108 (2014).

    Article  PubMed  Google Scholar 

  267. Petrik, M. et al. Imaging of Pseudomonas aeruginosa infection with Ga-68 labelled pyoverdine for positron emission tomography. Sci. Rep. 8, 15698 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Petrik, M. et al. (68)Ga-labelled desferrioxamine-B for bacterial infection imaging. Eur. J. Nucl. Med. Mol. Imaging 48, 372–382 (2021).

    Article  CAS  PubMed  Google Scholar 

  269. Peukert, C. et al. Optimization of artificial siderophores as 68Ga-complexed PET tracers for in vivo imaging of bacterial infections. J. Med. Chem. 64, 12359–12378 (2021). Promising use of a siderophore to specifically deliver 68Ga to bacteria as an imaging agent for positron-emission tomography.

    Article  CAS  PubMed  Google Scholar 

  270. Klug, D. et al. There is no market for new antibiotics: this allows an open approach to research and development. Wellcome Open Res. 6, 146 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  271. Brammer, J. C. et al. TUCAN: a molecular identifier and descriptor applicable to the whole periodic table from hydrogen to oganesson. J. Cheminform. 14, 66 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Krenn, M. et al. SELFIES and the future of molecular string representations. Patterns 3, 100588 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Medina-Franco, J. L. et al. Bridging informatics and medicinal inorganic chemistry: toward a database of metallodrugs and metallodrug candidates. Drug Discov. Today 27, 1420–1430 (2022).

    Article  CAS  PubMed  Google Scholar 

  274. Fu, C. et al. Discovery of polypyridyl iridium(III) complexes as potent agents against resistant Candida albicans. Eur. J. Med. Chem. 233, 114250 (2022).

    Article  CAS  PubMed  Google Scholar 

  275. Dougan, S. J., Habtemariam, A., McHale, S. E., Parsons, S. & Sadler, P. J. Catalytic organometallic anticancer complexes. Proc. Natl Acad. Sci. USA 105, 11628–11633 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Soldevila-Barreda, J. J. & Metzler-Nolte, N. Intracellular catalysis with selected metal complexes and metallic nanoparticles: advances toward the development of catalytic metallodrugs. Chem. Rev. 119, 829–869 (2019).

    Article  CAS  PubMed  Google Scholar 

  277. Weng, C., Shen, L. & Ang, W. H. Harnessing endogenous formate for antibacterial prodrug activation by in cellulo ruthenium-mediated transfer hydrogenation reaction. Angew. Chem. Int. Ed. 59, 9314–9318 (2020).

    Article  CAS  Google Scholar 

  278. Monitoring Global Progress on Addressing Antimicrobial Resistance: Analysis Report of the Second Round of Results of AMR Country Self-Assessment Survey (The Food and Agriculture Organization of the United Nations, the World Organisation for Animal Health and the World Health Organization. 2018).

  279. McKenna, M. The antibiotic paradox: why companies can’t afford to create life-saving drugs. Nature 584, 338–341 (2020).

    Article  CAS  PubMed  Google Scholar 

  280. Shlaes, D. M. The economic conundrum for antibacterial drugs. Antimicrob. Agents Chemother. 64, e02057-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  281. Patra, M. et al. Synthesis and biological evaluation of chromium bioorganometallics based on the antibiotic platensimycin lead structure. ChemMedChem 4, 1930–1938 (2009).

    Article  CAS  PubMed  Google Scholar 

  282. Edwards, E. I., Epton, R. & Marr, G. Organometallic derivatives of penicillins and cephalosporins a new class of semi-synthetic antibiotics. J. Organomet. Chem. 85, C23–C25 (1975).

    Article  CAS  Google Scholar 

  283. Frei, A. et al. Nontoxic cobalt(III) Schiff base complexes with broad-spectrum antifungal activity. Chem. Eur. J. 27, 2021–2029 (2021).

    Article  CAS  PubMed  Google Scholar 

  284. Low, M. L. et al. Conjugation of a new series of dithiocarbazate Schiff base copper(II) complexes with vectors selected to enhance antibacterial activity. Bioconjug. Chem. 25, 2269–2284 (2014).

    Article  CAS  PubMed  Google Scholar 

  285. Yang, X.-Y. et al. Dirhodium (II) complex interferes with iron-transport system to exert antibacterial action against Streptococcus pneumoniae. J. Proteom. 194, 160–167 (2019).

    Article  CAS  Google Scholar 

  286. Kalaivani, P. et al. Influence of terminal substitution on structural, DNA, protein binding, anticancer and antibacterial activities of palladium(II) complexes containing 3-methoxy salicylaldehyde-4(N) substituted thiosemicarbazones. Dalton Trans. 41, 2486–2499 (2012).

    Article  CAS  PubMed  Google Scholar 

  287. Mohamed, H. A., Lake, B. R. M., Laing, T., Phillips, R. M. & Willans, C. E. Synthesis and anticancer activity of silver(I)–N-heterocyclic carbene complexes derived from the natural xanthine products caffeine, theophylline and theobromine. Dalton Trans. 44, 7563–7569 (2015).

    Article  CAS  PubMed  Google Scholar 

  288. Chen, X.-B. et al. The first organometallic carbonyl tungsten complex of antibacterial drug norfloxacin. Inorg. Chem. Commun. 7, 1302–1305 (2004).

    Article  CAS  Google Scholar 

  289. Cooper, S. M. et al. Synthesis and anti-microbial activity of a new series of bis(diphosphine) rhenium(V) dioxo complex. Dalton Trans. 51, 12791–12795 (2022).

    Article  CAS  PubMed  Google Scholar 

  290. Smitten, K. L., Scattergood, P. A., Kiker, C., Thomas, J. A. & Elliott, P. I. P. Triazole-based osmium(II) complexes displaying red/near-IR luminescence: antimicrobial activity and super-resolution imaging. Chem. Sci. 11, 8928–8935 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Chen, F. et al. Biguanide iridium(III) complexes with potent antimicrobial activity. J. Med. Chem. 61, 7330–7344 (2018).

    Article  CAS  PubMed  Google Scholar 

  292. Frei, A. et al. Platinum cyclooctadiene complexes with activity against Gram-positive bacteria. ChemMedChem 16, 3165–3171 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Chakraborty, P. et al. An organogold compound as potential antimicrobial agent against drug-resistant bacteria: initial mechanistic insights. ChemMedChem 16, 3060–3070 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Sanseverino, I., Loos, R., Navarro Cuenca, A., Marinov, D. & Lettieri, T. State of the Art on the Contribution of Water to Antimicrobial Resistance, EUR 29592 EN (Publications Office of the European Commission, 2019).

  295. Tovmasyan, A., Batinic-Haberle, I. & Benov, L. Antibacterial activity of synthetic cationic iron porphyrins. Antioxidants 9, 972 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Mantareva, V., Kussovski, V., Durmuş, M., Borisova, E. & Angelov, I. Photodynamic inactivation of pathogenic species Pseudomonas aeruginosa and Candida albicans with lutetium (III) acetate phthalocyanines and specific light irradiation. Lasers Med. Sci. 31, 1591–1598 (2016).

    Article  PubMed  Google Scholar 

  297. Skwor, T. A. et al. Photodynamic inactivation of methicillin-resistant Staphylococcus aureus and Escherichia coli: a metalloporphyrin comparison. J. Photochem. Photobiol. B: Biol. 165, 51–57 (2016).

    Article  CAS  Google Scholar 

  298. Lourenço, L. M. O. et al. Photoinactivation of planktonic and biofilm forms of Escherichia coli through the action of cationic zinc(II) phthalocyanines. ChemPhotoChem 3, 251–260 (2019).

    Article  Google Scholar 

  299. Berezin, D. B., Makarov, V. V., Znoyko, S. A., Mayzlish, V. E. & Kustov, A. V. Aggregation of water soluble octaanionic phthalocyanines and their photoinactivation antimicrobial effect in vitro. Mendeleev Commun. 30, 621–623 (2020).

    Article  CAS  Google Scholar 

  300. Feng, Y., Sun, W.-Z., Wang, X.-S. & Zhou, Q.-X. Selective photoinactivation of methicillin-resistant Staphylococcus aureus by highly positively charged RuII complexes. Chem. Eur. J. 25, 13879–13884 (2019).

    Article  CAS  PubMed  Google Scholar 

  301. Performance Standards for Antimicrobial Susceptibility Testing. CLSI Supplement M100, 32nd edn. https://clsi.org/standards/products/microbiology/documents/m100/ (Clinical and Laboratory Standards Institute, 2022).

  302. Antimicrobial susceptibility testing (The European Committee on Antimicrobial Susceptibility Testing, 2023); http://www.eucast.org/ast_of_bacteria

Download references

Acknowledgements

The CO-ADD screening described in this Review, which led to our focus on metalloantibiotics, was supported by the Wellcome Trust (UK; Strategic Funding Award: 104797/Z/14/Z) and The University of Queensland (Australia; Strategic Funding), which included salary support for M.A.T.B., A.G.E. and J.Z. A.F. thanks the SNSF for an Early Postdoc Mobility Fellowship (P2ZHP2_177997) that supported his work at The University of Queensland. A.D.V. is currently supported by an Australian National Health and Medical Research Council Ideas Grant (2004367), and A.G.E. and J.Z. are supported by the Combating Antibiotic Resistant Bacteria Biopharmaceutical Accelerator (04CARB-X-X064).

Author information

Authors and Affiliations

Authors

Contributions

M.A.T.B. proposed the initial structure of the Review, with contributions from all authors. A.F. drafted the introduction, ‘Metalloantibiotics’ and ‘Photoactivated metal complexes’ sections, with J.Z. contributing to the ‘Photoactivated metal complexes’ section. M.A.T.B. drafted the ‘Metals and bacteria’, ‘Zinc ionophores’ and ‘Metal complexes for imaging infections’ sections. A.D.V. drafted the description of the strategies based on uptake (‘Metallophores’). A.G.E. contributed to the section ‘Metals and bacteria’. All authors edited the final manuscript.

Corresponding authors

Correspondence to Angelo Frei or Mark A. T. Blaskovich.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Raymond Turner, Grażyna Stochel, Sajjad Hussain Sumrra and Agnieszka Kyzioł for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Antimicrobial resistance

This arises when microorganisms are able to either intrinsically resist, or evolve to resist, the effects of antimicrobial agents.

Inorganic compounds

Despite the lack of an agreed-upon definition in the literature, this is probably most accurately defined as ‘any compounds that are not organic’.

Ionophore

A molecule that increases the permeability of lipid membranes to specific ions.

Metalloantibiotic

A metal complex with antimicrobial properties.

Metallophore or siderophore

Low-molecular-mass organic ligands that are produced by microorganisms such as bacteria and fungi, to supply metal-ion nutrients to the organism.

Metal complex

Metal complexes or coordination complexes consist of one (or multiple) central metal atoms or ions and surrounding bound molecules or ions referred to as ligands.

Minimum inhibitory concentration

The lowest concentration of a compound required to inhibit visible growth of a microorganism, following overnight incubation in the presence of the microorganism.

Organometallic compounds

Although officially defined as any compounds containing a covalent carbon–metal bond, this description is often mistakenly generalized to all metal complexes that have organic ligands.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frei, A., Verderosa, A.D., Elliott, A.G. et al. Metals to combat antimicrobial resistance. Nat Rev Chem 7, 202–224 (2023). https://doi.org/10.1038/s41570-023-00463-4

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41570-023-00463-4

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research