Abstract
Compartmentalization is crucial for the evolution of life. Present-day phospholipid membranes exhibit a high level of complexity and species-dependent homochirality, the so-called lipid divide. It is possible that less stable, yet more dynamic systems, promoting out-of-equilibrium environments, facilitated the evolution of life at its early stages. The composition of the preceding primitive membranes and the evolutionary route towards complexity and homochirality remain unexplained. Organics-rich carbonaceous chondrites are evidence of the ample diversity of interstellar chemistry, which may have enriched the prebiotic milieu on early Earth. This Review evaluates the detections of simple amphiphiles — likely ancestors of membrane phospholipids — in extraterrestrial samples and analogues, along with potential pathways to form primitive compartments on primeval Earth. The chiroptical properties of the chiral backbones of phospholipids provide a guide for future investigations into the origins of phospholipid membrane homochirality. We highlight a plausible common pathway towards homochirality of lipids, amino acids, and sugars starting from enantioenriched monomers. Finally, given their high recalcitrance and resistance to degradation, lipids are among the best candidate biomarkers in exobiology.

This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Howlett, M. G. & Fletcher, S. P. From autocatalysis to survival of the fittest in self-reproducing lipid systems. Nat. Rev. Chem. 7, 673–691 (2023).
Schmitt-Kopplin, P. et al. High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc. Natl Acad. Sci. USA 107, 2763–2768 (2010).
Öberg, K. I. Photochemistry and astrochemistry: photochemical pathways to interstellar complex organic molecules. Chem. Rev. 116, 9631–9663 (2016).
van Dishoeck, E. F. Astrochemistry of dust, ice and gas: introduction and overview. Faraday Discuss. 168, 9–47 (2014).
Tielens, A. G. G. M. The molecular universe. Rev. Mod. Phys. 85, 1021–1081 (2013).
Burke, D. J. & Brown, W. A. Ice in space: surface science investigations of the thermal desorption of model interstellar ices on dust grain analogue surfaces. Phys. Chem. Chem. Phys. 12, 5947–5969 (2010).
Potapov, A., Jäger, C. & Henning, T. Ice coverage of dust grains in cold astrophysical environments. Phys. Rev. Lett. 124, 221103 (2020).
Rosu-Finsen, A. et al. Peeling the astronomical onion. Phys. Chem. Chem. Phys. 18, 31930–31935 (2016).
Cohen, Z. R. et al. Plausible sources of membrane-forming fatty acids on the early Earth: a review of the literature and an estimation of amounts. ACS Earth Space Chem. 7, 11–27 (2023).
Glavin, D. P., Burton, A. S., Elsila, J. E., Aponte, J. C. & Dworkin, J. P. The search for chiral asymmetry as a potential biosignature in our Solar System. Chem. Rev. 120, 4660–4689 (2020).
Wilhelm, M. B. et al. Extraction instruments to enable detection of origin-diagnostic lipids for life detection. In 52nd Lunar and Planetary Science Conference LPI contribution no. 2548, id.2634 (LPI, 2021).
Finkel, P. L., Carrizo, D., Parro, V. & Sánchez-García, L. An overview of lipid biomarkers in terrestrial extreme environments with relevance for Mars exploration. Astrobiology 23, 563–604 (2023).
Peretó, J., López-García, P. & Moreira, D. Ancestral lipid biosynthesis and early membrane evolution. Trends Biochem. Sci. 29, 469–477 (2004).
Chen, L. L., Pousada, M. & Haines, T. H. The flagellar membrane of Ochromonas danica. Lipid composition. J. Biol. Chem. 251, 1835–1842 (1976).
Moss, F. R. et al. Halogenation-dependent effects of the chlorosulfolipids of Ochromonas danica on lipid bilayers. ACS Chem. Biol. 15, 2986–2995 (2020).
Pohorille, A. & Deamer, D. Self-assembly and function of primitive cell membranes. Res. Microbiol. 160, 449–456 (2009).
Namani, T. et al. Novel chimeric amino acid-fatty alcohol ester amphiphiles self-assemble into stable primitive membranes in diverse geological settings. Astrobiology 23, 327–343 (2023).
Suzuki, N. & Itabashi, Y. Possible roles of amphiphilic molecules in the origin of biological homochirality. Symmetry 11, 966 (2019).
Azua-Bustos, A. et al. Dark microbiome and extremely low organics in Atacama fossil delta unveil Mars life detection limits. Nat. Commun. 14, 808 (2023).
Martin, H. S., Podolsky, K. A. & Devaraj, N. K. Probing the role of chirality in phospholipid membranes. ChemBioChem 22, 3148–3157 (2021).
Bilia, A. R. et al. Vesicles and micelles: two versatile vectors for the delivery of natural products. J. Drug Deliv. Sci. Technol. 32, 241–255 (2016).
Liu, P., Chen, G. & Zhang, J. A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules 27, 1372 (2022).
Liu, W., Ye, A., Han, F. & Han, J. Advances and challenges in liposome digestion: surface interaction, biological fate, and GIT modeling. Adv. Colloid Interface Sci. 263, 52–67 (2019).
Benvegnu, T., Lemiègre, L. & Cammas-Marion, S. New generation of liposomes called archaeosomes based on natural or synthetic archaeal lipids as innovative formulations for drug delivery. Recent Pat. Drug Deliv. Formul. 3, 206–220 (2009).
Paolucci, V., Leriche, G., Koyanagi, T. & Yang, J. Evaluation of tetraether lipid-based liposomal carriers for encapsulation and retention of nucleoside-based drugs. Bioorg. Med. Chem. Lett. 27, 4319–4322 (2017).
Penkauskas, T. & Preta, G. Biological applications of tethered bilayer lipid membranes. Biochimie 157, 131–141 (2019).
Jiang, Y., Thienpont, B., Sturgis, J. N., Dittman, J. & Scheuring, S. Membrane-mediated protein interactions drive membrane protein organization. Nat. Commun. 13, 7373 (2022).
Fiore, M. & Buchet, R. Symmetry breaking of phospholipids. Symmetry 12, 1488 (2020).
Gattinger, A., Schloter, M. & Munch, J. C. Phospholipid etherlipid and phospholipid fatty acid fingerprints in selected euryarchaeotal monocultures for taxonomic profiling. FEMS Microbiol. Lett. 213, 133–139 (2002).
Dibrova, D. V., Galperin, M. Y. & Mulkidjanian, A. Y. Phylogenomic reconstruction of archaeal fatty acid metabolism. Environ. Microbiol. 16, 907–918 (2014).
Damsté, J. S. et al. Structural characterization of diabolic acid-based tetraester, tetraether and mixed ether/ester, membrane-spanning lipids of bacteria from the order Thermotogales. Arch. Microbiol. 188, 629–641 (2007).
Weijers, J. W. H. et al. Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits. Environ. Microbiol. 8, 648–657 (2006).
Villanueva, L. et al. Bridging the membrane lipid divide: bacteria of the FCB group superphylum have the potential to synthesize archaeal ether lipids. ISME J. 15, 168–182 (2021).
Wächtershäuser, G. From pre-cells to Eukarya – a tale of two lipids. Mol. Microbiol. 47, 13–22 (2003).
Koga, Y. Early evolution of membrane lipids: how did the lipid divide occur? J. Mol. Evol. 72, 274–282 (2011).
Shimada, H. & Yamagishi, A. Stability of heterochiral hybrid membrane made of bacterial sn-G3P lipids and archaeal sn-G1P lipids. Biochemistry 50, 4114–4120 (2011).
Caforio, A. et al. Converting Escherichia coli into an archaebacterium with a hybrid heterochiral membrane. Proc. Natl Acad. Sci. USA 115, 3704–3709 (2018).
Kates, M., Joo, C. N., Palameta, B. & Shier, T. Absolute stereochemical configuration of phytanyl (dihydrophytyl) groups in lipids of Halobacterium cutirubrum. Biochemistry 6, 3329–3338 (1967).
Leseigneur, G., Filippi, J. J., Baldovini, N. & Meierhenrich, U. Absolute configuration of aliphatic hydrocarbon enantiomers identified by gas chromatography: theorized application for isoprenoid alkanes and the search of molecular biosignatures on Mars. Symmetry 14, 326 (2022).
Caforio, A. & Driessen, A. J. M. Archaeal phospholipids: structural properties and biosynthesis. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862, 1325–1339 (2017).
Fiore, M. et al. Synthesis of phospholipids under plausible prebiotic conditions and analogies with phospholipid biochemistry for origin of life studies. Astrobiology 22, 598–627 (2022).
Lang, C., Lago, J. & Pasek, M. A. in Handbook of Astrobiology 1st edn (ed. Kolb, V. M.) Ch. 5.8 (Taylor & Francis Group, 2019).
Hargreaves, W. R. & Deamer, D. W. Liposomes from ionic, single-chain amphiphiles. Biochemistry 17, 3759–3768 (1978).
Gebicki, J. M. & Hicks, M. Ufasomes are stable particles surrounded by unsaturated fatty acid membranes. Nature 243, 232–234 (1973).
Apel, C. L., Deamer, D. W. & Mautner, M. N. Self-assembled vesicles of monocarboxylic acids and alcohols: conditions for stability and for the encapsulation of biopolymers. Biochim. Biophys. Acta Biomembr. 1559, 1–9 (2002).
Namani, T. & Deamer, D. W. Stability of model membranes in extreme environments. Orig. Life Evol. Biosph. 38, 329–341 (2008).
Mansy, S. S. & Szostak, J. W. Thermostability of model protocell membranes. Proc. Natl Acad. Sci. USA 105, 13351–13355 (2008).
Mansy, S. S. Model protocells from single-chain lipids. Int. J. Mol. Sci. 10, 835–843 (2009).
Milshteyn, D., Damer, B., Havig, J. & Deamer, D. Amphiphilic compounds assemble into membranous vesicles in hydrothermal hot spring water but not in seawater. Life 8, 11 (2018).
Black, R. A. et al. Nucleobases bind to and stabilize aggregates of a prebiotic amphiphile, providing a viable mechanism for the emergence of protocells. Proc. Natl Acad. Sci. USA 110, 13272–13276 (2013).
Cornell, C. E. et al. Prebiotic amino acids bind to and stabilize prebiotic fatty acid membranes. Proc. Natl Acad. Sci. USA 116, 17239–17244 (2019).
Jordan, S. F., Nee, E. & Lane, N. Isoprenoids enhance the stability of fatty acid membranes at the emergence of life potentially leading to an early lipid divide. Interface Focus 9, 20190067 (2019).
Lin, Y., Jing, H., Liu, Z., Chen, J. & Liang, D. Dynamic behavior of complex coacervates with internal lipid vesicles under nonequilibrium conditions. Langmuir 36, 1709–1717 (2020).
Pir Cakmak, F., Grigas, A. T. & Keating, C. D. Lipid vesicle-coated complex coacervates. Langmuir 35, 7830–7840 (2019).
Dora Tang, T. Y. et al. Fatty acid membrane assembly on coacervate microdroplets as a step towards a hybrid protocell model. Nat. Chem. 6, 527–533 (2014).
Ianeselli, A. et al. Non-equilibrium conditions inside rock pores drive fission, maintenance and selection of coacervate protocells. Nat. Chem. 14, 32–39 (2022).
Jia, T. Z. et al. Membraneless polyester microdroplets as primordial compartments at the origins of life. Proc. Natl Acad. Sci. USA 116, 15830–15835 (2019).
Joshi, M. P., Sawant, A. A. & Rajamani, S. Spontaneous emergence of membrane-forming protoamphiphiles from a lipid–amino acid mixture under wet–dry cycles. Chem. Sci. 12, 2970–2978 (2021).
Joshi, M. P., Uday, A. & Rajamani, S. Elucidating N-acyl amino acids as a model protoamphiphilic system. Commun. Chem. 5, 147 (2022).
Forsythe, J. G. et al. Ester-mediated amide bond formation driven by wet–dry cycles: a possible path to polypeptides on the prebiotic Earth. Angew. Chem. Int. Ed. 54, 9871–9875 (2015).
Frenkel-Pinter, M. et al. Thioesters provide a plausible prebiotic path to proto-peptides. Nat. Commun. 13, 2569 (2022).
Schmitt-Kopplin, P. et al. Complex carbonaceous matter in Tissint martian meteorites give insights into the diversity of organic geochemistry on Mars. Sci. Adv. 9, eadd6439 (2023).
Oró, J. Comets and the formation of biochemical compounds on the primitive Earth. Nature 190, 389–390 (1961).
Miller, S. L. & Urey, H. C. Organic compound synthesis on the primitive Earth. Science 130, 245–251 (1959).
Oparin, A. I. The Origin of Life on the Earth (Academic Press, 1957).
Russell, M. J., Hall, A. J., Cairns-Smith, A. G. & Braterman, P. S. Submarine hot springs and the origin of life. Nature 336, 117 (1988).
Powner, M. W., Gerland, B. & Sutherland, J. D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459, 239–242 (2009).
Buckner, D. K. et al. Origin-diagnostic patterns in lipid distributions: strategies for life detection. In 53rd Lunar and Planetary Science Conference LPI contribution no. 2678, id.2571 (LPI, 2022).
Dworkin, J. P., Deamer, D. W., Sandford, S. A. & Allamandola, L. J. Self-assembling amphiphilic molecules: synthesis in simulated interstellar/precometary ices. Proc. Natl Acad. Sci. USA 98, 815–819 (2001).
Pierazzo, E. & Chyba, C. F. Amino acid survival in large cometary impacts. Meteorit. Planet. Sci. 34, 909–918 (1999).
Chyba, C. F., Thomas, P. J., Brookshaw, L. & Sagan, C. Cometary delivery of organic molecules to the early Earth. Science 249, 366–373 (1990).
Osinski, G. R., Cockell, C. S., Pontefract, A. & Sapers, H. M. The role of meteorite impacts in the origin of life. Astrobiology 20, 1121–1149 (2020).
Mehta, C., Perez, A., Thompson, G. & Pasek, M. A. Caveats to exogenous organic delivery from ablation, dilution, and thermal degradation. Life 8, 13 (2018).
Blackmond, D. G. The origin of biological homochirality. Cold Spring Harb. Perspect. Biol. 11, a032540 (2019).
Garcia, A. D. et al. The astrophysical formation of asymmetric molecules and the emergence of a chiral bias. Life 9, 29 (2019).
Nam, I., Lee, J. K., Nam, H. G. & Zare, R. N. Abiotic production of sugar phosphates and uridine ribonucleoside in aqueous microdroplets. Proc. Natl Acad. Sci. USA 114, 12396–12400 (2017).
Pasek, M. A., Gull, M. & Herschy, B. Phosphorylation on the early earth. Chem. Geol. 475, 149–170 (2017).
Pasek, M. A. Schreibersite on the early Earth: scenarios for prebiotic phosphorylation. Geosci. Front. 8, 329–335 (2017).
Hess, B. L., Piazolo, S. & Harvey, J. Lightning strikes as a major facilitator of prebiotic phosphorus reduction on early Earth. Nat. Commun. 12, 1535 (2021).
Pasek, M. A. Thermodynamics of prebiotic phosphorylation. Chem. Rev. 120, 4690–4706 (2020).
Pasek, M. A., Harnmeijer, J. P., Buick, R., Gull, M. & Atlas, Z. Evidence for reactive reduced phosphorus species in the early Archean ocean. Proc. Natl Acad. Sci. USA 110, 10089–10094 (2013).
Gibard, C., Bhowmik, S., Karki, M., Kim, E. K. & Krishnamurthy, R. Phosphorylation, oligomerization and self-assembly in water under potential prebiotic conditions. Nat. Chem. 10, 212–217 (2018).
Agúndez, M., Cernicharo, J., Decin, L., Encrenaz, P. & Teyssier, D. Confirmation of circumstellar phosphine. Astrophys. J. Lett. 790, L27 (2014).
Ridgway, S. T., Wallace, L. & Smith, G. R. The 800-1200 inverse centimeter absorption spectrum of Jupiter. Astrophys. J. 207, 1002–1006 (1976).
Larson, H. P., Fink, U., Smith, H. A. & Davis, D. S. The middle-infrared spectrum of Saturn - evidence for phosphine and upper limits to other trace atmospheric constituents. Astrophys. J. 240, 327–337 (1980).
Rivilla, V. M. et al. ALMA and ROSINA detections of phosphorus-bearing molecules: the interstellar thread between star-forming regions and comets. Mon. Not. R. Astron. Soc. 492, 1180–1198 (2020).
Rivilla, V. M. et al. Phosphorus-bearing molecules in the Galactic Center. Mon. Not. R. Astron. Soc. Lett. 475, L30–L34 (2018).
Zhu, C. et al. An interstellar synthesis of glycerol phosphates. Astrophys. J. Lett. 899, L3 (2020).
Aleksandrova, M., Rahmatova, F., Russell, D. A. & Bonfio, C. Ring opening of glycerol cyclic phosphates leads to a diverse array of potentially prebiotic phospholipids. J. Am. Chem. Soc. 145, 25614–25620 (2023).
Rivilla, V. M. et al. Discovery in space of ethanolamine, the simplest phospholipid head group. Proc. Natl Acad. Sci. USA 118, e2101314118 (2021).
Glavin, D. P. et al. Extraterrestrial amino acids in the Almahata Sitta meteorite. Meteorit. Planet. Sci. 45, 1695–1709 (2010).
Bernstein, M. P., Dworkin, J. P., Sandford, S. A., Cooper, G. W. & Allamandola, L. J. Racemic amino acids from the ultraviolet photolysis of interstellar ice analogues. Nature 416, 401–403 (2002).
Bocková, J., Garcia, A. D., Jones, N. C., Hoffmann, S. V. & Meinert, C. Chiroptical properties of membrane glycerophospholipids and their chiral backbones. Chirality 36, e23654 (2024).
Meinert, C. et al. Anisotropy spectra of amino acids. Angew. Chem. Int. Ed. 51, 4484–4487 (2012).
De Marcellus, P. et al. Aldehydes and sugars from evolved precometary ice analogs: importance of ices in astrochemical and prebiotic evolution. Proc. Natl Acad. Sci. USA 112, 956–970 (2015).
Meinert, C. et al. Ribose and related sugars from ultraviolet irradiation of interstellar ice analogs. Science 352, 208–212 (2016).
Pizzarello, S., Schrader, D. L., Monroe, A. A. & Lauretta, D. S. Large enantiomeric excesses in primitive meteorites and the diverse effects of water in cosmochemical evolution. Proc. Natl Acad. Sci. USA 109, 11949–11954 (2012).
Ishigami, T., Suga, K. & Umakoshi, H. Chiral recognition of l-amino acids on liposomes prepared with l-phospholipid. ACS Appl. Mater. Interfaces 7, 21065–21072 (2015).
Ishigami, T., Kaneko, Y., Suga, K., Okamoto, Y. & Umakoshi, H. Homochiral oligomerization of L-histidine in the presence of liposome membranes. Colloid Polym. Sci. 293, 3649–3653 (2015).
Bocková, J., Jones, N. C., Meierhenrich, U. J., Hoffmann, S. V. & Meinert, C. Chiroptical activity of hydroxycarboxylic acids with implications for the origin of biological homochirality. Commun. Chem. 4, 86 (2021).
Pizzarello, S., Wang, Y. & Chaban, G. M. A comparative study of the hydroxy acids from the Murchison, GRA 95229 and LAP 02342 meteorites. Geochim. Cosmochim. Acta 74, 6206–6217 (2010).
Burton, A. S. & Berger, E. L. Insights into abiotically-generated amino acid enantiomeric excesses found in meteorites. Life 8, 14 (2018).
Glavin, D. P., Callahan, M. P., Dworkin, J. P. & Elsila, J. E. The effects of parent body processes on amino acids in carbonaceous chondrites. Meteorit. Planet. Sci. 45, 1948–1972 (2010).
Mamajanov, I. et al. Ester formation and hydrolysis during wet-dry cycles: generation of far-from-equilibrium polymers in a model prebiotic reaction. Macromolecules 47, 1334–1343 (2014).
Frenkel-Pinter, M. et al. Selective incorporation of proteinaceous over nonproteinaceous cationic amino acids in model prebiotic oligomerization reactions. Proc. Natl Acad. Sci. USA 116, 16338–16346 (2019).
Blocher, M., Hitz, T. & Luisi, P. L. Stereoselectivity in the oligomerization of racemic tryptophan N-carboxyanhydride (NCA-Trp) as determined by isotope labeling and mass spectrometry. Helv. Chim. Acta 84, 842–848 (2001).
Blair, N. E. & Bonner, W. A. A model for the enantiomeric enrichment of polypeptides on the primitive Earth. Orig. Life 11, 331–335 (1981).
Deng, M., Yu, J. & Blackmond, D. G. Symmetry breaking and chiral amplification in prebiotic ligation reactions. Nature 626, 1019–1024 (2024).
Canavelli, P., Islam, S. & Powner, M. W. Peptide ligation by chemoselective aminonitrile coupling in water. Nature 571, 546–549 (2019).
Schneider, H.-J. Limitations and extensions of the lock-and-key principle: differences between gas state, solution and solid state structures. Int. J. Mol. Sci. 16, 6694–6717 (2015).
Sheng, X., Kazemi, M., Planas, F. & Himo, F. Modeling enzymatic enantioselectivity using quantum chemical methodology. ACS Catal. 10, 6430–6449 (2020).
Reetz, M. T. Controlling the enantioselectivity of enzymes by directed evolution: practical and theoretical ramifications. Proc. Natl Acad. Sci. USA 101, 5716–5722 (2004).
Kapon, Y. et al. Evidence for new enantiospecific interaction force in chiral biomolecules. Chem 7, 2787–2799 (2021).
Weissbuch, I. & Lahav, M. Crystalline architectures as templates of relevance to the origins of homochirality. Chem. Rev. 111, 3236–3267 (2011).
Hu, J., Cochrane, W. G., Jones, A. X., Blackmond, D. G. & Paegel, B. M. Chiral lipid bilayers are enantioselectively permeable. Nat. Chem. 13, 786–791 (2021).
Han, J., Kitagawa, O., Wzorek, A., Klika, K. D. & Soloshonok, V. A. The self-disproportionation of enantiomers (SDE): a menace or an opportunity? Chem. Sci. 9, 1718–1739 (2018).
Islam, S. & Powner, M. W. Prebiotic systems chemistry: complexity overcoming clutter. Chem 2, 470–501 (2017).
Sacerdote, M. G. & Szostak, J. W. Semipermeable lipid bilayers exhibit diastereoselectivity favoring ribose. Proc. Natl Acad. Sci. USA 102, 6004–6008 (2005).
Pizzarello, S. & Weber, A. L. Prebiotic amino acids as asymmetric catalysts. Science 303, 1151 (2004).
Breslow, R. & Cheng, Z. L. L-amino acids catalyze the formation of an excess of D-glyceraldehyde, and thus of other D sugars, under credible prebiotic conditions. Proc. Natl Acad. Sci. USA 107, 5723–5725 (2010).
Yu, J., Jones, A. X., Legnani, L. & Blackmond, D. G. Prebiotic access to enantioenriched glyceraldehyde mediated by peptides. Chem. Sci. 12, 6350–6354 (2021).
Wu, L. F., Su, M., Liu, Z., Bjork, S. J. & Sutherland, J. D. Interstrand aminoacyl transfer in a tRNA acceptor stem-overhang mimic. J. Am. Chem. Soc. 143, 11836–11842 (2021).
Ozturk, S. F., Sasselov, D. D. & Sutherland, J. D. The central dogma of biological homochirality: how does chiral information propagate in a prebiotic network? J. Chem. Phys. 159, 061102 (2023).
Hein, J. E., Tse, E. & Blackmond, D. G. A route to enantiopure RNA precursors from nearly racemic starting materials. Nat. Chem. 3, 704–706 (2011).
Georgiou, C. D. & Deamer, D. W. Lipids as universal biomarkers of extraterrestrial life. Astrobiology 14, 541–549 (2014).
Vago, J. L. et al. Habitability on early Mars and the search for biosignatures with the ExoMars rover. Astrobiology 17, 471–510 (2017).
Summons, R. E., Albrecht, P., McDonald, G. & Moldowan, J. M. Molecular biosignatures. Space Sci. Rev. 135, 133–159 (2008).
Meierhenrich, U. J., Thiemann, W. H.-P., Barbier, B., Schubert, C. J. & Brack, A. in Geochemistry and the Origin of Life (eds Nakashima, S. et al.) 269–284 (Universal Academy Press, 2001).
Boeren, N. J. et al. Detecting lipids on planetary surfaces with laser desorption ionization mass spectrometry. Planet. Sci. J. 3, 241 (2022).
Dannenmann, M. et al. Toward detecting biosignatures of DNA, lipids, and metabolic intermediates from bacteria in ice grains emitted by Enceladus and Europa. Astrobiology 23, 60–75 (2023).
Klenner, F. et al. Analog experiments for the identification of trace biosignatures in ice grains from extraterrestrial ocean worlds. Astrobiology 20, 179–189 (2020).
Klenner, F. et al. Discriminating abiotic and biotic fingerprints of amino acids and fatty acids in ice grains relevant to ocean worlds. Astrobiology 20, 1168–1184 (2020).
Kissin, Y. V. Hydrocarbon components in carbonaceous meteorites. Geochim. Cosmochim. Acta 67, 1723–1735 (2003).
Greenberg, J. M. in Cosmic Rays, Supernovae and the Interstellar Medium NATO ASI Series, Vol. 337 (eds Shapiro, M. M. et al.) 57–68 (Springer, 1991).
Arumainayagam, C. R. et al. Extraterrestrial prebiotic molecules: photochemistry vs. radiation chemistry of interstellar ices. Chem. Soc. Rev. 48, 2293–2314 (2019).
Naraoka, H. et al. Soluble organic molecules in samples of the carbonaceous asteroid (162173) Ryugu. Science 379, eabn9033 (2023).
Parker, E. T. et al. Extraterrestrial amino acids and amines identified in asteroid Ryugu samples returned by the Hayabusa2 mission. Geochim. Cosmochim. Acta 347, 42–57 (2023).
Bottke, W. F. & Norman, M. D. The late heavy bombardment. Annu. Rev. Earth Planet. Sci. 45, 619–647 (2017).
Bailey, J. et al. Circular polarization in star-formation regions: implications for biomolecular homochirality. Science 281, 672–674 (1998).
Kwon, J. et al. Near-infrared circular polarization images of NGC 6334-V. Astrophys. J. Lett. 765, L6 (2013).
Modica, P. et al. Enantiomeric excesses induced in amino acids by ultraviolet circularly polarized light irradiation of extraterrestrial ice analogs: a possible source of asymmetry for prebiotic chemistry. Astrophys. J. 788, 79 (2014).
Gledhill, T. M. & McCall, A. Circular polarization by scattering from spheroidal dust grains. Mon. Not. R. Astron. Soc. 314, 123–137 (2000).
Buschermöhle, M. et al. An extended search for circularly polarized infrared radiation from the OMC‐1 region of Orion. Astrophys. J. 624, 821–826 (2005).
Miller, G. E. & Scalo, J. M. On the birthplaces of stars. Publ. Astron. Soc. Pac. 90, 506–513 (1978).
Hillenbrand, L. A. On the stellar population and star-forming history of the Orion Nebula Cluster. Astron. J. 113, 1733–1768 (1997).
Garcia, A. D. et al. Chiroptical activity of gas phase propylene oxide predicting the handedness of interstellar circular polarization in the presolar nebulae. Sci. Adv. 8, eadd4614 (2022).
de Marcellus, P. et al. Non-racemic amino acid production by ultraviolet irradiation of achiral interstellar ice analogs with circularly polarized light. Astrophys. J. Lett. 727, L27 (2011).
Flores, J. J., Bonner, W. A. & Massey, G. A. Asymmetric photolysis of (RS)-leucine with circularly polarized ultraviolet light. J. Am. Chem. Soc. 99, 3622–3625 (1977).
Meierhenrich, U. J. et al. Photolysis of rac-leucine with circularly polarized synchrotron radiation. Chem. Biodivers. 7, 1651–1659 (2010).
Meierhenrich, U. J. et al. Asymmetric vacuum UV photolysis of the amino acid leucine in the solid state. Angew. Chem. Int. Ed. 44, 5630–5634 (2005).
Meinert, C. et al. Photonenergy-controlled symmetry breaking with circularly polarized light. Angew. Chem. Int. Ed. 53, 210–214 (2014).
Bocková, J., Jones, N. C., Topin, J., Hoffmann, S. V. & Meinert, C. Uncovering the chiral bias of meteoritic isovaline through asymmetric photochemistry. Nat. Commun. 14, 3381 (2023).
Acknowledgements
This project received financial support from the National Centre for Scientific Research (CNRS) through the Mission for Transversal and Interdisciplinary Initiatives (MITI), the Simone and Cino Del Duca Foundation and the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement 804144). Further funding was provided by the European Union’s Horizon 2020 research and innovation programme under grant agreement numbers 101004806 (MOSBRI) and 730872 (CALIPSOplus). J.B. is supported by a postdoctoral fellowship from the National Centre for Space Studies (CNES).
Author information
Authors and Affiliations
Contributions
All authors contributed to all aspects of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Chemistry thanks David Deamer, Matthew Pasek, and Dimitar Sasselov for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Bocková, J., Jones, N.C., Hoffmann, S.V. et al. The astrochemical evolutionary traits of phospholipid membrane homochirality. Nat Rev Chem 8, 652–664 (2024). https://doi.org/10.1038/s41570-024-00627-w
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41570-024-00627-w
This article is cited by
-
Photochemistry of interstellar ice forming complex organic molecules
Nature Reviews Chemistry (2025)