Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

On the aqueous origins of the condensation polymers of life

Abstract

Water is essential for life as we know it, but it has paradoxically been considered inimical to the emergence of life. Proteins and nucleic acids have sustained evolution and life for billions of years, but both are condensation polymers, suggesting that their formation requires the elimination of water. This presents intrinsic challenges at the origins of life, including how condensation polymer synthesis can overcome the thermodynamic pressure of hydrolysis in water and how nucleophiles can kinetically outcompete water to yield condensation products. The answers to these questions lie in balancing thermodynamic activation and kinetic stability. For peptides, an effective strategy is to directly harness the energy trapped in prebiotic molecules, such as nitriles, and avoid the formation of fully hydrolysed monomers. In this Review, we discuss how chemical energy can be built into precursors, retained, and released selectively for polymer synthesis. Looking to the future, the outstanding goals include how nucleic acids can be synthesized, avoiding the formation of fully hydrolysed monomers and what caused information to flow from nucleic acids to proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Prebiotic monomer syntheses exploit the intrinsic energy of prebiotic nitriles.
Fig. 2: Biochemical strategies for condensation polymer growth and their spontaneous fragmentation.
Fig. 3: Challenges in the synthesis of α-peptides from α-amino acids.
Fig. 4: Formation of α-peptides from α-aminonitriles without the α-amino acid intermediaries.
Fig. 5: Spontaneous differentiation of the Strecker pathway to α-peptides and the non-proteinogenic peptide bonds in coenzyme A by the intrinsic reactivity of prebiotic nitriles.
Fig. 6: Nucleic acid-templated polymerization of nucleic acids.
Fig. 7: Electrophilic activation of nucleoside-5′-phosphates.
Fig. 8: Aqueous phosphorylation of nucleosides.
Fig. 9: Selective phosphorylation reactions.

Similar content being viewed by others

References

  1. Barge, L. M. Considering planetary environments in origin of life studies. Nat. Commun. 9, 5170 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Sasselov, D. D., Grotzinger, J. P. & Sutherland, J. D. The origin of life as a planetary phenomenon. Sci. Adv. 6, eaax3419 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Rimmer, P. B. in Conflicting Models for the Origin of Life (eds Smoukov, S. K. et al.) 407–424 (Scrivener Publishing LLC, 2023).

  4. Kosikova, T. & Philp, D. Exploring the emergence of complexity using synthetic replicators. Chem. Soc. Rev. 46, 7274–7305 (2017).

    Article  PubMed  CAS  Google Scholar 

  5. Kauffman, S. A. A World Beyond Physics Oxford and New Yok (Oxford Univ. Press, 2019).

  6. Muchowska, K. B., Varma, S. J. & Moran, J. Nonenzymatic metabolic reactions and life’s origins. Chem. Rev. 120, 7708–7744 (2020).

    Article  PubMed  CAS  Google Scholar 

  7. Otto, S. An approach to the de novo synthesis of life. Acc. Chem. Res. 55, 145–155 (2022).

    Article  PubMed  CAS  Google Scholar 

  8. Naraoka, H. et al. Soluble organic molecules in samples of the carbonaceous asteroid (162173) Ryugu. Science 379, eabn9033 (2023).

    Article  PubMed  CAS  Google Scholar 

  9. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Faber, K., Fessner, W. & Turner, N. J. Biocatalysis: ready to master increasing complexity. Adv. Synth. Catal. 361, 2373–2376 (2019).

    Article  CAS  Google Scholar 

  11. Doudna, J. A. & Cech, T. R. The chemical repertoire of natural ribozymes. Nature 418, 222–228 (2002).

    Article  PubMed  CAS  Google Scholar 

  12. Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater. 3, 17068 (2017).

    Article  Google Scholar 

  13. Garenne, D. et al. Cell-free gene expression. Nat. Rev. Methods Primers 1, 49 (2021).

    Article  CAS  Google Scholar 

  14. Benner, S. A., Kim, H.-J. & Carrigan, M. A. Asphalt, water, and the prebiotic synthesis of ribose, ribonucleosides, and RNA. Acc. Chem. Res. 45, 2025–2034 (2012).

    Article  PubMed  CAS  Google Scholar 

  15. Shapiro, R. Prebiotic ribose synthesis: a critical analysis. Orig. Life Evol. Biosph. 18, 71–85 (1988).

    Article  PubMed  CAS  Google Scholar 

  16. Shapiro, R. Prebiotic cytosine synthesis: a critical analysis and implications for the origin of life. Proc. Natl Acad. Sci. USA 96, 4396–4401 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Bregestovski, P. D. “RNA World”, a highly improbable scenario of the origin and early evolution of life on earth. J. Evol. Biochem. Phys. 51, 72–84 (2015).

    Article  CAS  Google Scholar 

  18. Kehila, D., Wong, K. T. C. & Tokuriki, N. Evolution of new metabolic pathways and microbial communities. Curr. Opin. Syst. Biol. 36, 100472 (2023).

    Article  CAS  Google Scholar 

  19. Smit, S. J. & Lichman, B. R. Plant biosynthetic gene clusters in the context of metabolic evolution. Nat. Prod. Rep. 39, 1465–1482 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Orgel, L. E. Prebiotic chemistry and the origin of the RNA world. Crit. Rev. Biochem. Mol. Biol. 39, 99–123 (2004).

    Article  PubMed  CAS  Google Scholar 

  21. Frenkel-Pinter, M., Samanta, M., Ashkenasy, G. & Leman, L. J. Prebiotic peptides: molecular hubs in the origin of life. Chem. Rev. 120, 4707–4765 (2020).

    Article  PubMed  CAS  Google Scholar 

  22. Yadav, M., Kumar, R. & Krishnamurthy, R. Chemistry of abiotic nucleotide synthesis. Chem. Rev. 120, 4766–4805 (2020).

    Article  PubMed  CAS  Google Scholar 

  23. Powner, M. W., Gerland, B. & Sutherland, J. D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459, 239–242 (2009).

    Article  PubMed  CAS  Google Scholar 

  24. Moger-Reischer, R. Z. et al. Evolution of a minimal cell. Nature 620, 122–127 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Lipmann, F. in Advances in Enzymology and Related Areas of Molecular Biology 99–162 (Wiley, 1941).

  26. Westheimer, F. H. Why nature chose phosphates. Science 235, 1173–1178 (1987).

    Article  PubMed  CAS  Google Scholar 

  27. Eschenmoser, A. The search for the chemistry of life’s origin. Tetrahedron 63, 12821–12844 (2007).

    Article  CAS  Google Scholar 

  28. Xiang, Y.-B., Drenkard, S., Baumann, K., Hickey, D. & Eschenmoser, A. Chemie von a-aminonitrilen. 12. Mitteilung. Sondierungen über thermische Umwandlungen von a-aminonitrilen. Helv. Chim. Acta 77, 2209–2250 (1994).

    Article  CAS  Google Scholar 

  29. Pitsch, S., Pombo-Villar, E. & Eschenmoser, A. Chemie von a-aminonitrilen. 13. Mitteilung. über die Bildung von 2-oxoethyl-phosphaten (‘Glycoladehyd-phosphaten’) ausrac-oxirancarbonitril und anorganischem phosphat und über (formale) Konstitutionelle Zusammenhänge zwischen 2-oxoethyl-phosphaten und oligo (hexo- und pentopyranosyl)nucleotid-Rückgraten. Helv. Chim. Acta 77, 2251–2285 (1994).

    Article  CAS  Google Scholar 

  30. Ksander, G. et al. Chemie der α‐aminonitrile 1. Mitteilung einleitung und wege zu uroporphyrinogen‐octanitrilen. Helv. Chim. Acta 70, 1115–1172 (1987).

    Article  CAS  Google Scholar 

  31. Wagner, E., Xiang, Y.-B., Baumann, K., Gück, J. & Eschenmoser, A. Chemie von α-aminonitrilen. Aziridin-2-carbonitril, ein vorläufer von rac-O3-phosphoserinnitril und glycolaldehyd-phosphat. Helv. Chim. Acta 73, 1391–1409 (1990).

    Article  CAS  Google Scholar 

  32. Foden, C. S. et al. Prebiotic synthesis of cysteine peptides that catalyze peptide ligation in neutral water. Science 370, 865–869 (2020).

    Article  PubMed  CAS  Google Scholar 

  33. Thoma, B. & Powner, M. W. Selective synthesis of lysine peptides and the prebiotically plausible synthesis of catalytically active diaminopropionic acid peptide nitriles in water. J. Am. Chem. Soc. 145, 3121–3130 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Wayne, S. I. & Fruton, J. S. Thermolysin-catalyzed peptide bond synthesis. Proc. Natl Acad. Sci. USA 80, 3241–3244 (1983).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Liu, R. & Orgel, L. E. Polymerization of β-amino acids in aqueous solution. Orig. Life Evol. Biosph. 28, 47–60 (1998).

    Article  PubMed  CAS  Google Scholar 

  36. Kawamura, K., Takeya, H. & Kushibe, T. Effect of condensation agents and minerals for oligopeptide formation under mild and hydrothermal conditions in related to chemical evolution of proteins. Adv. Space Res. 44, 267–275 (2009).

    Article  CAS  Google Scholar 

  37. Griesser, H. et al. Ribonucleotides and RNA promote peptide chain growth. Angew. Chem. Int. Ed. Engl. 56, 1219–1223 (2017).

    Article  PubMed  CAS  Google Scholar 

  38. Mariani, A., Russell, D. A., Javelle, T. & Sutherland, J. D. A light-releasable potentially prebiotic nucleotide activating agent. J. Am. Chem. Soc. 140, 8657–8661 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Wu, L.-F., Liu, Z. & Sutherland, J. D. pH-dependent peptide bond formation by the selective coupling of α-amino acids in water. Chem. Commun. 57, 73–76 (2021).

    Article  CAS  Google Scholar 

  40. Denkewalter, R. G. et al. The controlled synthesis of peptides in aqueous medium. I. The use of α-amino acid N-carboxyanhydrides. J. Am. Chem. Soc. 88, 3163–3164 (1966).

    Article  CAS  Google Scholar 

  41. Greenwald, J., Friedmann, M. P. & Riek, R. Amyloid aggregates arise from amino acid condensations under prebiotic conditions. Angew. Chem. Int. Ed. Engl. 55, 11609–11613 (2016).

    Article  PubMed  CAS  Google Scholar 

  42. Hirschmann, R. F. Controlled synthesis of peptides in aqueous medium. III. Use of Leuch’s anhydrides in the synthesis of di-peptides. Mechanism and control of side reactions. J. Org. Chem. 32, 3415–3425 (1967).

    Article  PubMed  CAS  Google Scholar 

  43. Hirschmann, R. et al. Synthesis of peptides in aqueous medium. VII. Preparation and use of 2,5-thiazolidinediones in peptide synthesis. J. Org. Chem. 36, 49–59 (1971).

    Article  PubMed  CAS  Google Scholar 

  44. Leman, L., Orgel, L. & Ghadiri, M. R. Carbonyl sulfide-mediated prebiotic formation of peptides. Science 306, 283–286 (2004).

    Article  PubMed  CAS  Google Scholar 

  45. Pascal, R., Taillades, J. & Commeyras, A. Systemes de strecker et apparentes — X. Tetrahedron 34, 2275–2281 (1978).

    Article  CAS  Google Scholar 

  46. Chadha, M. S., Replogle, L., Flores, J. & Ponnamperuma, C. Possible role of aminoacetonitrile in chemical evolution. Bioorg. Chem. 1, 269–274 (1971).

    Article  Google Scholar 

  47. Taylor, E. C. & Zoltewicz, J. A. A new synthesis of aliphatic and aromatic thioamides from nitriles. J. Am. Chem. Soc. 82, 2656–2657 (1960).

    Article  CAS  Google Scholar 

  48. Patel, B. H., Percivalle, C., Ritson, D. J., Duffy, C. D. & Sutherland, J. D. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat. Chem. 7, 301–307 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Butler, E. A., Peters, D. G. & Swift, E. H. Hydrolysis reactions of thioacetamide in aqueous solutions. Anal. Chem. 30, 1379–1383 (1958).

    Article  CAS  Google Scholar 

  50. Rosenthal, D. & Taylor, T. I. A study of the mechanism and kinetics of the thioacetamide hydrolysis reaction. J. Am. Chem. Soc. 79, 2684–2690 (1957).

    Article  Google Scholar 

  51. Canavelli, P., Islam, S. & Powner, M. W. Peptide ligation by chemoselective aminonitrile coupling in water. Nature 571, 546–549 (2019).

    Article  PubMed  CAS  Google Scholar 

  52. Sheehan, J. C. & Johnson, D. A. The synthesis and reactions of N-acyl thiol amino acids. J. Am. Chem. Soc. 74, 4726–4727 (1952).

    Article  CAS  Google Scholar 

  53. Liu, R. & Orgel, L. E. Oxidative acylation using thioacids. Nature 389, 52–54 (1997).

    Article  PubMed  CAS  Google Scholar 

  54. Chaturvedi, R. K., MacMahon, A. E. & Schmir, G. L. The hydrolysis of thioimidate esters. Tetrahedral intermediates and general acid catalysis. J. Am. Chem. Soc. 89, 6984–6993 (1967).

    Article  CAS  Google Scholar 

  55. Chaturvedi, R. K. & Schmir, G. L. Hydrolysis of thioimidate esters. II. Evidence for the formation of three species of the tetrahedral intermediate. J. Am. Chem. Soc. 91, 737–746 (1969).

    Article  CAS  Google Scholar 

  56. Moser, H. et al. Poly(dipeptamidinium)-salze: definition und methoden zur präparativen herstellung. Helv. Chim. Acta 69, 1224–1262 (1986).

    Article  CAS  Google Scholar 

  57. Baati, R., Gouverneur, V. & Mioskowski, C. An improved method for the preparation of amidines via thiophenylimidic esters. Synthesis 6, 927–929 (1998).

    Google Scholar 

  58. Challenger, S. in Comprehensive Organic Functional Group Transformations II (eds Katritzky, A. R. & Taylor, R. J. K.) 639–654 (Elsevier, 2005).

  59. Singh, J. et al. Prebiotic catalytic peptide ligation yields proteinogenic peptides by intramolecular amide catalyzed hydrolysis facilitating regioselective lysine ligation neutral water. J. Am. Chem. Soc. 144, 10151–10155 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Deng, M., Yu, J. & Blackmond, D. G. Symmetry breaking and chiral amplification in prebiotic ligation reactions. Nature 626, 1019–1024 (2024).

    Article  PubMed  CAS  Google Scholar 

  61. Clay, A. P. et al. A plausible prebiotic one‐pot synthesis of orotate and pyruvate suggestive of common protometabolic pathways. Angew. Chem. Int. Ed. Engl. 61, e202112572 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Stairs, S. et al. Divergent prebiotic synthesis of pyrimidine and 8-oxo-purine ribonucleotides. Nat. Commun. 8, 15270 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Powner, M. W. & Sutherland, J. D. Prebiotic chemistry: a new modus operandi. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 2870–2877 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Kirschning, A. Coenzymes and their role in the evolution of life. Angew. Chem. Int. Ed. Engl. 60, 6242–6269 (2021).

    Article  PubMed  CAS  Google Scholar 

  65. Goldman, A. D. & Kacar, B. Cofactors are remnants of life’s origin and early evolution. J. Mol. Evol. 89, 127–133 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Lipmann F. in The Origin of Prebiological Systems and of their Molecular Matrices (ed. Fox, S. W.) 259–280 (Academic, 1965).

  67. White, H. B. III Coenzymes as fossils of an earlier metabolic state. J. Mol. Evol. 7, 101–104 (1976).

    Article  PubMed  CAS  Google Scholar 

  68. De Duve, C. Blueprint for a Cell: The Nature and Origin of Life (Carolina Biological Supply, 1991).

  69. Leonardi, R., Zhang, Y.-M., Rock, C. O. & Jackowski, S. Coenzyme A: back in action. Prog. Lipid Res. 44, 125–153 (2005).

    Article  PubMed  CAS  Google Scholar 

  70. Walsh, C. T., Tu, B. P. & Tang, Y. Eight kinetically stable but thermodynamically activated molecules that power cell metabolism. Chem. Rev. 118, 1460–1494 (2018).

    Article  PubMed  CAS  Google Scholar 

  71. Begley, T. P., Kinsland, C. & Strauss, E. The biosynthesis of coenzyme A in bacteria. Vitam. Horm. 61, 157–171 (2001).

    Article  PubMed  CAS  Google Scholar 

  72. Islam, S., Bučar, D. K. & Powner, M. W. Prebiotic selection and assembly of proteinogenic amino acids and natural nucleotides from complex mixtures. Nat. Chem. 9, 584–589 (2017).

    Article  CAS  Google Scholar 

  73. Fairchild, J., Islam, S., Singh, J., Bučar, D. K. & Powner, M. W. Prebiotically plausible chemoselective pantetheine synthesis in water. Science 383, 911–918 (2024).

    Article  PubMed  CAS  Google Scholar 

  74. Miller, S. L. & Schlesinger, G. Prebiotic syntheses of vitamin coenzymes: II. Pantoic acid, pantothenic acid, and the composition of coenzyme A. J. Mol. Evol. 36, 308–314 (1993).

    Article  PubMed  CAS  Google Scholar 

  75. Keefe, A. D., Newton, G. L. & Miller, S. L. A possible prebiotic synthesis of pantetheine, a precursor to coenzyme A. Nature 373, 683–685 (1995).

    Article  PubMed  CAS  Google Scholar 

  76. Crick, F. On protein synthesis. Symp. Soc. Exp. Biol. 12, 138–163 (1958).

    PubMed  CAS  Google Scholar 

  77. Crick, F. Central dogma of molecular biology. Nature 227, 561–563 (1970).

    Article  PubMed  CAS  Google Scholar 

  78. Fischbach, M. A. & Walsh, C. T. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem. Rev. 106, 3468–3496 (2006).

    Article  PubMed  CAS  Google Scholar 

  79. Sarges, R. & Witkop, B. Gramicidin A. IV. Primary sequence of valine and isoleucine gramicidin A. J. Am. Chem. Soc. 86, 1862–1863 (1964).

    Article  CAS  Google Scholar 

  80. Fialho, D. M., Roche, T. P. & Hud, N. V. Prebiotic syntheses of noncanonical nucleosides and nucleotides. Chem. Rev. 120, 4806–4830 (2020).

    Article  PubMed  CAS  Google Scholar 

  81. Bhowmik, S. & Krishnamurthy, R. The role of sugar-backbone heterogeneity and chimeras in the simultaneous emergence of RNA and DNA. Nat. Chem. 11, 1009–1018 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Cairns-Smith, A. G. The origin of life and the nature of the primitive gene. J. Theor. Biol. 10, 53–88 (1966).

    Article  PubMed  CAS  Google Scholar 

  83. Eschenmoser, A. Etiology of potentially primordial biomolecular structures: from vitamin B12 to the nucleic acids and an inquiry into the chemistry of life’s origin: a retrospective. Angew. Chem. Int. Ed. Engl. 50, 12412–12472 (2011).

    Article  PubMed  CAS  Google Scholar 

  84. Tjivikua, T., Ballester, P. & Rebek, J. Jr. Self-replicating system. J. Am. Chem. Soc. 112, 1249–1250 (1990).

    Article  CAS  Google Scholar 

  85. Brack, A. & Orgel, L. E. Beta structures of alternating polypeptides and their possible prebiotic significance. Nature 256, 383–387 (1975).

    Article  PubMed  CAS  Google Scholar 

  86. Saghatelian, A. et al. A chiroselective peptide replicator. Nature 409, 797–801 (2001).

    Article  PubMed  CAS  Google Scholar 

  87. Carnall, J. M. A. et al. Mechanosensitive self-replication driven by self-organization. Science 327, 1502–1506 (2010).

    Article  PubMed  CAS  Google Scholar 

  88. Rout, S. K. et al. A prebiotic template-directed peptide synthesis based on amyloids. Nat. Commun. 9, 234 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Adamski, P. et al. From self-replication to replicator systems en route to de novo life. Nat. Rev. Chem. 4, 386–403 (2020).

    Article  PubMed  Google Scholar 

  90. von Kiedrowski, G. in Bioorganic Chemistry Frontiers Vol. 3 (eds Dugas, H. & Schmidtchen, F. P.) 113–146 (Springer, 1993).

  91. Motsch, S., Tremmel, P. & Richert, C. Regioselective formation of RNA strands in the absence of magnesium ions. Nucleic Acids Res. 48, 1097–1107 (2020).

    Article  PubMed  CAS  Google Scholar 

  92. Walton, T. & Szostak, J. W. A highly reactive imidazolium-bridged dinucleotide intermediate in nonenzymatic RNA primer extension. J. Am. Chem. Soc. 138, 11996–12002 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Walton, T., Zhang, W., Li, L., Tam, C. P. & Szostak, J. W. The mechanism of nonenzymatic template copying with imidazole-activated nucleotides. Angew. Chem. Int. Ed. Engl. 58, 10812–10819 (2019).

    Article  PubMed  CAS  Google Scholar 

  94. Sawai, H. & Orgel, L. E. Oligonucleotide synthesis catalyzed by the zinc2+ ion. J. Am. Chem. Soc. 97, 3532–3533 (1975).

    Article  PubMed  CAS  Google Scholar 

  95. Sawai, H. Catalysis of internucleotide bond formation by divalent metal ions. J. Am. Chem. Soc. 98, 7037–7039 (1976).

    Article  PubMed  CAS  Google Scholar 

  96. Sawai, H., Kuroda, K. & Hojo, T. Uranyl ion as a highly effective catalyst for internucleotide bond formation. Bull. Chem. Soc. Jpn 62, 2018–2023 (1989).

    Article  CAS  Google Scholar 

  97. Sawai, H. & Yamamoto, K. Lanthanide ion as a catalyst for internucleotide bond formation. Bull. Chem. Soc. Jpn 69, 1701–1704 (1996).

    Article  CAS  Google Scholar 

  98. Orgel, L. E. & Lohrmann, R. Prebiotic chemistry and nucleic acid replication. Acc. Chem. Res. 7, 368–377 (1974).

    Article  CAS  Google Scholar 

  99. Jia, X., Zhang, S. J., Zhou, L. & Szostak, J. W. Constraints on the emergence of RNA through non-templated primer extension with mixtures of potentially prebiotic nucleotides. Nucleic Acids Res. 52, 5451–5464 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Verlander, M. S., Lohrmann, R. & Orgel, L. E. Catalysts for the self-polymerization of adenosine cyclic 2′,3′-phosphate. J. Mol. Evol. 2, 303–316 (1973).

    Article  PubMed  CAS  Google Scholar 

  101. Dirscherl, C. F. et al. A heated rock crack captures and polymerizes primordial DNA and RNA. Phys. Chem. Chem. Phys. 25, 3375–3386 (2023).

    Article  PubMed  CAS  Google Scholar 

  102. Ibanez, J. D., Kimball, A. P. & Oró, J. Possible prebiotic condensation of mononucleotides by cyanamide. Science 173, 444–446 (1971).

    Article  PubMed  CAS  Google Scholar 

  103. Ferris, J. P., Hill, A. R., Liu, R. & Orgel, L. E. Synthesis of long prebiotic oligomers on mineral surfaces. Nature 381, 59–61 (1996).

    Article  PubMed  CAS  Google Scholar 

  104. Ferris, J. P. Montmorillonite-catalysed formation of RNA oligomers: the possible role of catalysis in the origins of life. Philos. Trans. R. Soc. B 361, 1777–1786 (2006).

    Article  CAS  Google Scholar 

  105. Lohrmann, R. & Orgel, L. E. Template-directed synthesis of high molecular weight polynucleotide analogues. Nature 261, 342–344 (1976).

    Article  PubMed  CAS  Google Scholar 

  106. Hill, A. R., Nord, L. D., Orgel, L. E. & Robins, R. K. Cyclization of nucleotide analogues as an obstacle to polymerization. J. Mol. Evol. 28, 170–171 (1988).

    Article  PubMed  CAS  Google Scholar 

  107. Zielinski, W. S. & Orgel, L. E. Oligoaminucleoside phosphoramidates. Oligomerization of dimers of 3′-amino-3′-deoxy-nucleotides (GC and CG) in aqueous solution. Nucleic Acids Res. 15, 1699–1715 (1987).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Beier, M., Reck, F., Wagner, T., Krishnamurthy, R. & Eschenmoser, A. Chemical etiology of nucleic acid structure: comparing pentopyranosyl-(2′→4′) oligonucleotides with RNA. Science 283, 699–703 (1999).

    Article  PubMed  CAS  Google Scholar 

  109. Wu, X., Guntha, S., Ferencic, M., Krishnamurthy, R. & Eschenmoser, A. Base-pairing systems related to TNA: α-threofuranosyl oligonucleotides containing phosphoramidate linkages. Org. Lett. 4, 1279–1282 (2002).

    Article  PubMed  CAS  Google Scholar 

  110. Colville, B. W. F. & Powner, M. W. Selective prebiotic synthesis of α‐threofuranosyl cytidine by photochemical anomerization. Angew. Chem. Int. Ed. Engl. 60, 10526–10530 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Whitaker, D. & Powner, M. W. Prebiotic synthesis and triphosphorylation of 3′-amino-TNA nucleosides. Nat. Chem. 14, 766–774 (2022).

    Article  PubMed  CAS  Google Scholar 

  112. von Kiedrowski, G. A self‐replicating hexadeoxynucleotide. Angew. Chem. Int. Ed. Engl. 25, 932–935 (1986).

    Article  Google Scholar 

  113. Sievers, D. & von Kiedrowski, G. Self-replication of complementary nucleotide-based oligomers. Nature 369, 221–224 (1994).

    Article  PubMed  CAS  Google Scholar 

  114. Serrão, A. C. et al. High-fidelity RNA copying via 2′,3′-cyclic phosphate ligation. J. Am. Chem. Soc. 146, 8887–8894 (2024).

    Article  Google Scholar 

  115. Szostak, J. W. The eightfold path to non-enzymatic RNA replication. J. Syst. Chem. 3, 2 (2012).

    Article  CAS  Google Scholar 

  116. Zhou, L., O’Flaherty, D. K. & Szostak, J. W. Template-directed copying of RNA by non-enzymatic ligation. Angew. Chem. Int. Ed. Engl. 59, 15682–15687 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Jauker, M., Griesser, H. & Richert, C. Copying of RNA sequences without pre-activation. Angew. Chem. Int. Ed. Engl. 54, 14559–14563 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Stütz, J. A. R., Kervio, E., Deck, C. & Richert, C. Chemical primer extension: individual steps of spontaneous replication. Chem. Biodivers. 4, 784–802 (2007).

    Article  PubMed  Google Scholar 

  119. Weimann, B. J., Lohrmann, R., Orgel, L. E., Schneider-Bernloehr, H. & Sulston, J. E. Template-directed synthesis with adenosine-5′-phosphorimidazolide. Science 161, 387 (1968).

    Article  PubMed  CAS  Google Scholar 

  120. Rohatgi, R., Bartel, D. P. & Szostak, J. W. Kinetic and mechanistic analysis of nonenzymatic, template-directed oligoribonucleotide ligation. J. Am. Chem. Soc. 118, 3332–3339 (1996).

    Article  PubMed  CAS  Google Scholar 

  121. Zhang, S. J., Duzdevich, D., Ding, D. & Szostak, J. W. Freeze-thaw cycles enable a prebiotically plausible and continuous pathway from nucleotide activation to nonenzymatic RNA copying. Proc. Natl Acad. Sci. USA 119, e2116429119 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Deck, C., Jauker, M. & Richert, C. Efficient enzyme-free copying of all four nucleobases templated by immobilized RNA. Nat. Chem. 3, 603–608 (2011).

    Article  PubMed  CAS  Google Scholar 

  123. Hiratsuka, T. New ribose-modified fluorescent analogs of adenine and guanine nucleotides available as substrates for various enzyme. Biochim. Biophys. Acta 742, 496–508 (1983).

    Article  PubMed  CAS  Google Scholar 

  124. McGinnis, J. L., Dunkle, J. A., Cate, J. H. D. & Weeks, K. M. The mechanisms of RNA SHAPE chemistry. J. Am. Chem. Soc. 134, 6617–6624 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Fernández-García, C., Grefenstette, N. M. & Powner, M. W. Selective aqueous acetylation controls the photoanomerization of α-cytidine-5′-phosphate. Chem. Commun. 54, 4850–4853 (2018).

    Article  Google Scholar 

  126. Lohrmann, R. & Orgel, L. E. Prebiotic synthesis: phosphorylation in aqueous solution. Science 161, 64–66 (1968).

    Article  PubMed  CAS  Google Scholar 

  127. Guo, X., Fu, S., Ying, J. & Zhao, Y. Prebiotic chemistry: a review of nucleoside phosphorylation and polymerization. Open Biol. 13, 220234 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Thilo, E. The structural chemistry of condensed inorganic phosphates. Angew. Chem. Int. Ed. Engl. 4, 1061–1071 (1965).

    Article  CAS  Google Scholar 

  129. Schwartz, A. W. Specific phosphorylation of the 2′- and 3′- positions in ribonucleosides. J. Chem. Soc. D 23, 3850 (1969).

    Google Scholar 

  130. Saffhill, R. Selective phosphorylation of the cis-2′,3′-diol of unprotected ribonucleosides with trimetaphosphate in aqueous solution. J. Org. Chem. 35, 2881–2883 (1970).

    Article  PubMed  CAS  Google Scholar 

  131. Tsuhako, M., Fujimoto, M., Ohashi, S., Nariai, H. & Motooka, I. Phosphorylation of nucleosides with sodium cyclo-triphosphate. Bull. Chem. Soc. Jpn 57, 3274–3280 (1984).

    Article  CAS  Google Scholar 

  132. Tsuhako, M., Kunitomi, R., Baba, Y. & Miyajima, T. Phosphorylation of nucleotides with inorganic cyclo-triphosphate. Bull. Chem. Soc. Jpn 64, 490–497 (1991).

    Article  CAS  Google Scholar 

  133. Velikyan, I., Acharya, S., Trifonova, A., Földesi, A. & Chattopadhyaya, J. The pKa ’s of 2′-hydroxyl group in nucleosides and nucleotides. J. Am. Chem. Soc. 123, 2893–2894 (2001).

    Article  PubMed  CAS  Google Scholar 

  134. Yamagata, Y., Inoue, H. & Inomata, K. Specific effect of magnesium ion on 2′,3′-cyclic AMP synthesis from adenosine and trimeta phosphate in aqueous solution. Orig. Life Evol. Biosph. 25, 47–52 (1995).

    Article  PubMed  CAS  Google Scholar 

  135. Feldmann, W. & Thilo, E. Zur chemie der kondensierten phosphate und arsenate. XXXVIII. Amidotriphosphat. Z. Anorg. Allg. Chem. 328, 113–126 (1964).

    Article  CAS  Google Scholar 

  136. Gibard, C., Bhowmik, S., Karki, M., Kim, E. K. & Krishnamurthy, R. Phosphorylation, oligomerization and self-assembly in water under potential prebiotic conditions. Nat. Chem. 10, 212–217 (2018).

    Article  PubMed  CAS  Google Scholar 

  137. Lin, H., Jiménez, E. I., Arriola, J. T., Müller, U. F. & Krishnamurthy, R. Concurrent prebiotic formation of nucleoside‐amidophosphates and nucleoside‐triphosphates potentiates transition from abiotic to biotic polymerization. Angew. Chem. Int. Ed. Engl. 61, e202113625 (2022).

    Article  PubMed  CAS  Google Scholar 

  138. Taylor, T. W. J. CCXLVIII. — The action of nitrous acid on amino-compounds. Part II. Aliphatic amino-acids. J. Chem. Soc. https://doi.org/10.1039/JR9280001897 (1928).

  139. Steinberg, R. A. & Thom, C. Mutations and reversions in reproductivity of aspergilli with nitrite, colchicine and d-lysine. Proc. Natl Acad. Sci. USA 26, 363–366 (1940).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Fu, S.-C. J., Birnbaum, S. M. & Greenstein, J. P. Influence of optically active acyl groups on the enzymatic hydrolysis of N-acylated-l-amino acids. J. Am. Chem. Soc. 76, 6054–6058 (1954).

    Article  CAS  Google Scholar 

  141. Nagyvary, J. Arabinonucleotides. II. Synthesis of O2,2′-anhydrocytidine 3′-phosphate, a precursor of 1-β-d-arabinosylcytosine. J. Am. Chem. Soc. 91, 5409–5410 (1969).

    Article  CAS  Google Scholar 

  142. Ingar, A. A., Luke, R. W. A., Hayter, B. R. & Sutherland, J. D. Synthesis of cytidine ribonucleotides by stepwise assembly of the heterocycle on a sugar phosphate. Chem. Biol. Chem. 4, 504–507 (2003).

    Article  CAS  Google Scholar 

  143. Mohr, S. C. & Thach, R. E. Application of ribonuclease T1 to the synthesis of oligoribonucleotides of defined base sequence. J. Biol. Chem. 244, 6566–6576 (1969).

    Article  PubMed  CAS  Google Scholar 

  144. Renz, M., Lohrmann, R. & Orgel, L. E. Catalysts for the polymerization of adenosine cyclic 2′,3′-phosphate on a poly (U) template. Biochim. Biophys. Acta Nucleic Acids Protein Synth. 240, 463–471 (1971).

    Article  CAS  Google Scholar 

  145. Verlander, M. S. & Orgel, L. E. Analysis of high molecular weight material from the polymerization of adenosine cyclic 2′,3′-phosphate. J. Mol. Evol. 3, 115–120 (1974).

    Article  PubMed  CAS  Google Scholar 

  146. Mutschler, H. & Holliger, P. Non-canonical 3′-5′ extension of RNA with prebiotically plausible ribonucleoside 2′,3′-cyclic phosphates. J. Am. Chem. Soc. 136, 5193–5196 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Krishnamurthy, R., Guntha, S. & Eschenmoser, A. Regioselective α-phosphorylation of aldoses in aqueous solution. Angew. Chem. Int. Ed. Engl. 39, 2281–2285 (2000).

    Article  PubMed  CAS  Google Scholar 

  148. Tsuhako, M. et al. The reaction of cyclo-triphosphate with ethanolamines. Bull. Chem. Soc. Jpn 59, 3091–3095 (1986).

    Article  CAS  Google Scholar 

  149. Mullen, L. B. & Sutherland, J. D. Formation of potentially prebiotic amphiphiles by reaction of β-hydroxy-n-alkylamines with cyclotriphosphate. Angew. Chem. Int. Ed. Engl. 46, 4166–4168 (2007).

    Article  PubMed  CAS  Google Scholar 

  150. Müller, D. et al. Chemie von α-aminonitrilen. Aldomerisierung von glycolaldehyd-phosphat zu racemischen hexose-2,4,6-triphosphaten und (in Gegenwart von formaldehyd) racemischen pentose-2,4-diphosphaten: rac-allose-2,4,6-triphosphat und rac-ribose-2,4-diphosphat sind die Reaktionshauptprodukte. Helv. Chim. Acta 73, 1410–1468 (1990).

    Article  Google Scholar 

  151. Coggins, A. J. & Powner, M. W. Prebiotic synthesis of phosphoenol pyruvate by α-phosphorylation-controlled triose glycolysis. Nat. Chem. 9, 310–317 (2017).

    Article  PubMed  CAS  Google Scholar 

  152. Magalhães, Á. F. & Powner, M. W. Prebiotic triose glycolysis promoted by co-catalytic proline and phosphate in neutral water. Chem. Commun. 58, 13519–13522 (2022).

    Article  Google Scholar 

  153. Fernández-García, C., Grefenstette, N. M. & Powner, M. W. Prebiotic synthesis of aminooxazoline-5′-phosphates in water by oxidative phosphorylation. Chem. Commun. 53, 4919–4921 (2017).

    Article  Google Scholar 

  154. Powner, M. W. & Sutherland, J. D. Phosphate-mediated interconversion of ribo- and arabino-configured prebiotic nucleotide intermediates. Angew. Chem. Int. Ed. Engl. 49, 4641–4643 (2010).

    Article  PubMed  CAS  Google Scholar 

  155. Anastasi, C., Crowe, M. A. & Sutherland, J. D. Two-step potentially prebiotic synthesis of α-D-cytidine-5′-phosphate from D-glyceraldehyde-3-phosphate. J. Am. Chem. Soc. 129, 24–25 (2007).

    Article  PubMed  CAS  Google Scholar 

  156. Bartel, D. P. & Szostak, J. W. Isolation of new ribozymes from a large pool of random sequences. Science 261, 1411–1418 (1993).

    Article  PubMed  CAS  Google Scholar 

  157. Purtha, W. E., Coppins, R. L., Smalley, M. K. & Silverman, S. K. General deoxyribozyme-catalyzed synthesis of native 3′–5′ RNA linkages. J. Am. Chem. Soc. 127, 13124–13125 (2005).

    Article  PubMed  CAS  Google Scholar 

  158. Ekland, E. H., Szostak, J. W. & Bartel, D. P. Structurally complex and highly-active RNA ligases derived from random RNA sequences. Science 269, 364–370 (1995).

    Article  PubMed  CAS  Google Scholar 

  159. Seelig, B. & Szostak, J. Selection and evolution of enzymes from a partially randomized non-catalytic scaffold. Nature 448, 828–831 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Attwater, J., Raguram, A., Morgunov, A. S., Gianni, E. & Holliger, P. Ribozyme-catalysed RNA synthesis using triplet building blocks. eLife 7, e35255 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Papastavrou, N., Horning, D. P. & Joyce, G. F. RNA-catalyzed evolution of catalytic RNA. Proc. Natl Acad. Sci. USA 121, e2321592121 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Berg, J. M., Gatto, G. J., Hines, J., Tymoczko, J. L. & Stryer, L. Biochemistry 10th edn (W. H. Freeman, 2023).

  163. Gartner, Z. J., Kanan, M. W. & Liu, D. R. Expanding the reaction scope of DNA-templated synthesis. Angew. Chem. Int. Ed. Engl. 41, 1796–1800 (2002).

    Article  PubMed  CAS  Google Scholar 

  164. Lewandowski, B. et al. Sequence-specific peptide synthesis by an artificial small-molecule machine. Science 339, 189–193 (2013).

    Article  PubMed  CAS  Google Scholar 

  165. Jash, B., Tremmel, P., Jovanovic, D. & Richert, C. Single nucleotide translation without ribosomes. Nat. Chem. 13, 751–757 (2021).

    Article  PubMed  CAS  Google Scholar 

  166. Müller, F. et al. A prebiotically plausible scenario of an RNA–peptide world. Nature 605, 279–284 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.W.P. discloses support for the research of this work from Engineering and Physical Sciences Research Council (EPSRC) grant EP/X011755/1 and Simons Foundation grant 1154101. D.W. discloses support for the research of this work from Royal Society fellowship URF\R1\231450.

Author information

Authors and Affiliations

Authors

Contributions

D.W. and M.W.P. wrote the manuscript.

Corresponding authors

Correspondence to Daniel Whitaker or Matthew W. Powner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whitaker, D., Powner, M.W. On the aqueous origins of the condensation polymers of life. Nat Rev Chem 8, 817–832 (2024). https://doi.org/10.1038/s41570-024-00648-5

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41570-024-00648-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing