Abstract
Water is essential for life as we know it, but it has paradoxically been considered inimical to the emergence of life. Proteins and nucleic acids have sustained evolution and life for billions of years, but both are condensation polymers, suggesting that their formation requires the elimination of water. This presents intrinsic challenges at the origins of life, including how condensation polymer synthesis can overcome the thermodynamic pressure of hydrolysis in water and how nucleophiles can kinetically outcompete water to yield condensation products. The answers to these questions lie in balancing thermodynamic activation and kinetic stability. For peptides, an effective strategy is to directly harness the energy trapped in prebiotic molecules, such as nitriles, and avoid the formation of fully hydrolysed monomers. In this Review, we discuss how chemical energy can be built into precursors, retained, and released selectively for polymer synthesis. Looking to the future, the outstanding goals include how nucleic acids can be synthesized, avoiding the formation of fully hydrolysed monomers and what caused information to flow from nucleic acids to proteins.

This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout









Similar content being viewed by others
References
Barge, L. M. Considering planetary environments in origin of life studies. Nat. Commun. 9, 5170 (2018).
Sasselov, D. D., Grotzinger, J. P. & Sutherland, J. D. The origin of life as a planetary phenomenon. Sci. Adv. 6, eaax3419 (2020).
Rimmer, P. B. in Conflicting Models for the Origin of Life (eds Smoukov, S. K. et al.) 407–424 (Scrivener Publishing LLC, 2023).
Kosikova, T. & Philp, D. Exploring the emergence of complexity using synthetic replicators. Chem. Soc. Rev. 46, 7274–7305 (2017).
Kauffman, S. A. A World Beyond Physics Oxford and New Yok (Oxford Univ. Press, 2019).
Muchowska, K. B., Varma, S. J. & Moran, J. Nonenzymatic metabolic reactions and life’s origins. Chem. Rev. 120, 7708–7744 (2020).
Otto, S. An approach to the de novo synthesis of life. Acc. Chem. Res. 55, 145–155 (2022).
Naraoka, H. et al. Soluble organic molecules in samples of the carbonaceous asteroid (162173) Ryugu. Science 379, eabn9033 (2023).
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
Faber, K., Fessner, W. & Turner, N. J. Biocatalysis: ready to master increasing complexity. Adv. Synth. Catal. 361, 2373–2376 (2019).
Doudna, J. A. & Cech, T. R. The chemical repertoire of natural ribozymes. Nature 418, 222–228 (2002).
Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater. 3, 17068 (2017).
Garenne, D. et al. Cell-free gene expression. Nat. Rev. Methods Primers 1, 49 (2021).
Benner, S. A., Kim, H.-J. & Carrigan, M. A. Asphalt, water, and the prebiotic synthesis of ribose, ribonucleosides, and RNA. Acc. Chem. Res. 45, 2025–2034 (2012).
Shapiro, R. Prebiotic ribose synthesis: a critical analysis. Orig. Life Evol. Biosph. 18, 71–85 (1988).
Shapiro, R. Prebiotic cytosine synthesis: a critical analysis and implications for the origin of life. Proc. Natl Acad. Sci. USA 96, 4396–4401 (1999).
Bregestovski, P. D. “RNA World”, a highly improbable scenario of the origin and early evolution of life on earth. J. Evol. Biochem. Phys. 51, 72–84 (2015).
Kehila, D., Wong, K. T. C. & Tokuriki, N. Evolution of new metabolic pathways and microbial communities. Curr. Opin. Syst. Biol. 36, 100472 (2023).
Smit, S. J. & Lichman, B. R. Plant biosynthetic gene clusters in the context of metabolic evolution. Nat. Prod. Rep. 39, 1465–1482 (2022).
Orgel, L. E. Prebiotic chemistry and the origin of the RNA world. Crit. Rev. Biochem. Mol. Biol. 39, 99–123 (2004).
Frenkel-Pinter, M., Samanta, M., Ashkenasy, G. & Leman, L. J. Prebiotic peptides: molecular hubs in the origin of life. Chem. Rev. 120, 4707–4765 (2020).
Yadav, M., Kumar, R. & Krishnamurthy, R. Chemistry of abiotic nucleotide synthesis. Chem. Rev. 120, 4766–4805 (2020).
Powner, M. W., Gerland, B. & Sutherland, J. D. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459, 239–242 (2009).
Moger-Reischer, R. Z. et al. Evolution of a minimal cell. Nature 620, 122–127 (2023).
Lipmann, F. in Advances in Enzymology and Related Areas of Molecular Biology 99–162 (Wiley, 1941).
Westheimer, F. H. Why nature chose phosphates. Science 235, 1173–1178 (1987).
Eschenmoser, A. The search for the chemistry of life’s origin. Tetrahedron 63, 12821–12844 (2007).
Xiang, Y.-B., Drenkard, S., Baumann, K., Hickey, D. & Eschenmoser, A. Chemie von a-aminonitrilen. 12. Mitteilung. Sondierungen über thermische Umwandlungen von a-aminonitrilen. Helv. Chim. Acta 77, 2209–2250 (1994).
Pitsch, S., Pombo-Villar, E. & Eschenmoser, A. Chemie von a-aminonitrilen. 13. Mitteilung. über die Bildung von 2-oxoethyl-phosphaten (‘Glycoladehyd-phosphaten’) ausrac-oxirancarbonitril und anorganischem phosphat und über (formale) Konstitutionelle Zusammenhänge zwischen 2-oxoethyl-phosphaten und oligo (hexo- und pentopyranosyl)nucleotid-Rückgraten. Helv. Chim. Acta 77, 2251–2285 (1994).
Ksander, G. et al. Chemie der α‐aminonitrile 1. Mitteilung einleitung und wege zu uroporphyrinogen‐octanitrilen. Helv. Chim. Acta 70, 1115–1172 (1987).
Wagner, E., Xiang, Y.-B., Baumann, K., Gück, J. & Eschenmoser, A. Chemie von α-aminonitrilen. Aziridin-2-carbonitril, ein vorläufer von rac-O3-phosphoserinnitril und glycolaldehyd-phosphat. Helv. Chim. Acta 73, 1391–1409 (1990).
Foden, C. S. et al. Prebiotic synthesis of cysteine peptides that catalyze peptide ligation in neutral water. Science 370, 865–869 (2020).
Thoma, B. & Powner, M. W. Selective synthesis of lysine peptides and the prebiotically plausible synthesis of catalytically active diaminopropionic acid peptide nitriles in water. J. Am. Chem. Soc. 145, 3121–3130 (2023).
Wayne, S. I. & Fruton, J. S. Thermolysin-catalyzed peptide bond synthesis. Proc. Natl Acad. Sci. USA 80, 3241–3244 (1983).
Liu, R. & Orgel, L. E. Polymerization of β-amino acids in aqueous solution. Orig. Life Evol. Biosph. 28, 47–60 (1998).
Kawamura, K., Takeya, H. & Kushibe, T. Effect of condensation agents and minerals for oligopeptide formation under mild and hydrothermal conditions in related to chemical evolution of proteins. Adv. Space Res. 44, 267–275 (2009).
Griesser, H. et al. Ribonucleotides and RNA promote peptide chain growth. Angew. Chem. Int. Ed. Engl. 56, 1219–1223 (2017).
Mariani, A., Russell, D. A., Javelle, T. & Sutherland, J. D. A light-releasable potentially prebiotic nucleotide activating agent. J. Am. Chem. Soc. 140, 8657–8661 (2018).
Wu, L.-F., Liu, Z. & Sutherland, J. D. pH-dependent peptide bond formation by the selective coupling of α-amino acids in water. Chem. Commun. 57, 73–76 (2021).
Denkewalter, R. G. et al. The controlled synthesis of peptides in aqueous medium. I. The use of α-amino acid N-carboxyanhydrides. J. Am. Chem. Soc. 88, 3163–3164 (1966).
Greenwald, J., Friedmann, M. P. & Riek, R. Amyloid aggregates arise from amino acid condensations under prebiotic conditions. Angew. Chem. Int. Ed. Engl. 55, 11609–11613 (2016).
Hirschmann, R. F. Controlled synthesis of peptides in aqueous medium. III. Use of Leuch’s anhydrides in the synthesis of di-peptides. Mechanism and control of side reactions. J. Org. Chem. 32, 3415–3425 (1967).
Hirschmann, R. et al. Synthesis of peptides in aqueous medium. VII. Preparation and use of 2,5-thiazolidinediones in peptide synthesis. J. Org. Chem. 36, 49–59 (1971).
Leman, L., Orgel, L. & Ghadiri, M. R. Carbonyl sulfide-mediated prebiotic formation of peptides. Science 306, 283–286 (2004).
Pascal, R., Taillades, J. & Commeyras, A. Systemes de strecker et apparentes — X. Tetrahedron 34, 2275–2281 (1978).
Chadha, M. S., Replogle, L., Flores, J. & Ponnamperuma, C. Possible role of aminoacetonitrile in chemical evolution. Bioorg. Chem. 1, 269–274 (1971).
Taylor, E. C. & Zoltewicz, J. A. A new synthesis of aliphatic and aromatic thioamides from nitriles. J. Am. Chem. Soc. 82, 2656–2657 (1960).
Patel, B. H., Percivalle, C., Ritson, D. J., Duffy, C. D. & Sutherland, J. D. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat. Chem. 7, 301–307 (2015).
Butler, E. A., Peters, D. G. & Swift, E. H. Hydrolysis reactions of thioacetamide in aqueous solutions. Anal. Chem. 30, 1379–1383 (1958).
Rosenthal, D. & Taylor, T. I. A study of the mechanism and kinetics of the thioacetamide hydrolysis reaction. J. Am. Chem. Soc. 79, 2684–2690 (1957).
Canavelli, P., Islam, S. & Powner, M. W. Peptide ligation by chemoselective aminonitrile coupling in water. Nature 571, 546–549 (2019).
Sheehan, J. C. & Johnson, D. A. The synthesis and reactions of N-acyl thiol amino acids. J. Am. Chem. Soc. 74, 4726–4727 (1952).
Liu, R. & Orgel, L. E. Oxidative acylation using thioacids. Nature 389, 52–54 (1997).
Chaturvedi, R. K., MacMahon, A. E. & Schmir, G. L. The hydrolysis of thioimidate esters. Tetrahedral intermediates and general acid catalysis. J. Am. Chem. Soc. 89, 6984–6993 (1967).
Chaturvedi, R. K. & Schmir, G. L. Hydrolysis of thioimidate esters. II. Evidence for the formation of three species of the tetrahedral intermediate. J. Am. Chem. Soc. 91, 737–746 (1969).
Moser, H. et al. Poly(dipeptamidinium)-salze: definition und methoden zur präparativen herstellung. Helv. Chim. Acta 69, 1224–1262 (1986).
Baati, R., Gouverneur, V. & Mioskowski, C. An improved method for the preparation of amidines via thiophenylimidic esters. Synthesis 6, 927–929 (1998).
Challenger, S. in Comprehensive Organic Functional Group Transformations II (eds Katritzky, A. R. & Taylor, R. J. K.) 639–654 (Elsevier, 2005).
Singh, J. et al. Prebiotic catalytic peptide ligation yields proteinogenic peptides by intramolecular amide catalyzed hydrolysis facilitating regioselective lysine ligation neutral water. J. Am. Chem. Soc. 144, 10151–10155 (2022).
Deng, M., Yu, J. & Blackmond, D. G. Symmetry breaking and chiral amplification in prebiotic ligation reactions. Nature 626, 1019–1024 (2024).
Clay, A. P. et al. A plausible prebiotic one‐pot synthesis of orotate and pyruvate suggestive of common protometabolic pathways. Angew. Chem. Int. Ed. Engl. 61, e202112572 (2022).
Stairs, S. et al. Divergent prebiotic synthesis of pyrimidine and 8-oxo-purine ribonucleotides. Nat. Commun. 8, 15270 (2017).
Powner, M. W. & Sutherland, J. D. Prebiotic chemistry: a new modus operandi. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 2870–2877 (2011).
Kirschning, A. Coenzymes and their role in the evolution of life. Angew. Chem. Int. Ed. Engl. 60, 6242–6269 (2021).
Goldman, A. D. & Kacar, B. Cofactors are remnants of life’s origin and early evolution. J. Mol. Evol. 89, 127–133 (2021).
Lipmann F. in The Origin of Prebiological Systems and of their Molecular Matrices (ed. Fox, S. W.) 259–280 (Academic, 1965).
White, H. B. III Coenzymes as fossils of an earlier metabolic state. J. Mol. Evol. 7, 101–104 (1976).
De Duve, C. Blueprint for a Cell: The Nature and Origin of Life (Carolina Biological Supply, 1991).
Leonardi, R., Zhang, Y.-M., Rock, C. O. & Jackowski, S. Coenzyme A: back in action. Prog. Lipid Res. 44, 125–153 (2005).
Walsh, C. T., Tu, B. P. & Tang, Y. Eight kinetically stable but thermodynamically activated molecules that power cell metabolism. Chem. Rev. 118, 1460–1494 (2018).
Begley, T. P., Kinsland, C. & Strauss, E. The biosynthesis of coenzyme A in bacteria. Vitam. Horm. 61, 157–171 (2001).
Islam, S., Bučar, D. K. & Powner, M. W. Prebiotic selection and assembly of proteinogenic amino acids and natural nucleotides from complex mixtures. Nat. Chem. 9, 584–589 (2017).
Fairchild, J., Islam, S., Singh, J., Bučar, D. K. & Powner, M. W. Prebiotically plausible chemoselective pantetheine synthesis in water. Science 383, 911–918 (2024).
Miller, S. L. & Schlesinger, G. Prebiotic syntheses of vitamin coenzymes: II. Pantoic acid, pantothenic acid, and the composition of coenzyme A. J. Mol. Evol. 36, 308–314 (1993).
Keefe, A. D., Newton, G. L. & Miller, S. L. A possible prebiotic synthesis of pantetheine, a precursor to coenzyme A. Nature 373, 683–685 (1995).
Crick, F. On protein synthesis. Symp. Soc. Exp. Biol. 12, 138–163 (1958).
Crick, F. Central dogma of molecular biology. Nature 227, 561–563 (1970).
Fischbach, M. A. & Walsh, C. T. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem. Rev. 106, 3468–3496 (2006).
Sarges, R. & Witkop, B. Gramicidin A. IV. Primary sequence of valine and isoleucine gramicidin A. J. Am. Chem. Soc. 86, 1862–1863 (1964).
Fialho, D. M., Roche, T. P. & Hud, N. V. Prebiotic syntheses of noncanonical nucleosides and nucleotides. Chem. Rev. 120, 4806–4830 (2020).
Bhowmik, S. & Krishnamurthy, R. The role of sugar-backbone heterogeneity and chimeras in the simultaneous emergence of RNA and DNA. Nat. Chem. 11, 1009–1018 (2019).
Cairns-Smith, A. G. The origin of life and the nature of the primitive gene. J. Theor. Biol. 10, 53–88 (1966).
Eschenmoser, A. Etiology of potentially primordial biomolecular structures: from vitamin B12 to the nucleic acids and an inquiry into the chemistry of life’s origin: a retrospective. Angew. Chem. Int. Ed. Engl. 50, 12412–12472 (2011).
Tjivikua, T., Ballester, P. & Rebek, J. Jr. Self-replicating system. J. Am. Chem. Soc. 112, 1249–1250 (1990).
Brack, A. & Orgel, L. E. Beta structures of alternating polypeptides and their possible prebiotic significance. Nature 256, 383–387 (1975).
Saghatelian, A. et al. A chiroselective peptide replicator. Nature 409, 797–801 (2001).
Carnall, J. M. A. et al. Mechanosensitive self-replication driven by self-organization. Science 327, 1502–1506 (2010).
Rout, S. K. et al. A prebiotic template-directed peptide synthesis based on amyloids. Nat. Commun. 9, 234 (2018).
Adamski, P. et al. From self-replication to replicator systems en route to de novo life. Nat. Rev. Chem. 4, 386–403 (2020).
von Kiedrowski, G. in Bioorganic Chemistry Frontiers Vol. 3 (eds Dugas, H. & Schmidtchen, F. P.) 113–146 (Springer, 1993).
Motsch, S., Tremmel, P. & Richert, C. Regioselective formation of RNA strands in the absence of magnesium ions. Nucleic Acids Res. 48, 1097–1107 (2020).
Walton, T. & Szostak, J. W. A highly reactive imidazolium-bridged dinucleotide intermediate in nonenzymatic RNA primer extension. J. Am. Chem. Soc. 138, 11996–12002 (2016).
Walton, T., Zhang, W., Li, L., Tam, C. P. & Szostak, J. W. The mechanism of nonenzymatic template copying with imidazole-activated nucleotides. Angew. Chem. Int. Ed. Engl. 58, 10812–10819 (2019).
Sawai, H. & Orgel, L. E. Oligonucleotide synthesis catalyzed by the zinc2+ ion. J. Am. Chem. Soc. 97, 3532–3533 (1975).
Sawai, H. Catalysis of internucleotide bond formation by divalent metal ions. J. Am. Chem. Soc. 98, 7037–7039 (1976).
Sawai, H., Kuroda, K. & Hojo, T. Uranyl ion as a highly effective catalyst for internucleotide bond formation. Bull. Chem. Soc. Jpn 62, 2018–2023 (1989).
Sawai, H. & Yamamoto, K. Lanthanide ion as a catalyst for internucleotide bond formation. Bull. Chem. Soc. Jpn 69, 1701–1704 (1996).
Orgel, L. E. & Lohrmann, R. Prebiotic chemistry and nucleic acid replication. Acc. Chem. Res. 7, 368–377 (1974).
Jia, X., Zhang, S. J., Zhou, L. & Szostak, J. W. Constraints on the emergence of RNA through non-templated primer extension with mixtures of potentially prebiotic nucleotides. Nucleic Acids Res. 52, 5451–5464 (2024).
Verlander, M. S., Lohrmann, R. & Orgel, L. E. Catalysts for the self-polymerization of adenosine cyclic 2′,3′-phosphate. J. Mol. Evol. 2, 303–316 (1973).
Dirscherl, C. F. et al. A heated rock crack captures and polymerizes primordial DNA and RNA. Phys. Chem. Chem. Phys. 25, 3375–3386 (2023).
Ibanez, J. D., Kimball, A. P. & Oró, J. Possible prebiotic condensation of mononucleotides by cyanamide. Science 173, 444–446 (1971).
Ferris, J. P., Hill, A. R., Liu, R. & Orgel, L. E. Synthesis of long prebiotic oligomers on mineral surfaces. Nature 381, 59–61 (1996).
Ferris, J. P. Montmorillonite-catalysed formation of RNA oligomers: the possible role of catalysis in the origins of life. Philos. Trans. R. Soc. B 361, 1777–1786 (2006).
Lohrmann, R. & Orgel, L. E. Template-directed synthesis of high molecular weight polynucleotide analogues. Nature 261, 342–344 (1976).
Hill, A. R., Nord, L. D., Orgel, L. E. & Robins, R. K. Cyclization of nucleotide analogues as an obstacle to polymerization. J. Mol. Evol. 28, 170–171 (1988).
Zielinski, W. S. & Orgel, L. E. Oligoaminucleoside phosphoramidates. Oligomerization of dimers of 3′-amino-3′-deoxy-nucleotides (GC and CG) in aqueous solution. Nucleic Acids Res. 15, 1699–1715 (1987).
Beier, M., Reck, F., Wagner, T., Krishnamurthy, R. & Eschenmoser, A. Chemical etiology of nucleic acid structure: comparing pentopyranosyl-(2′→4′) oligonucleotides with RNA. Science 283, 699–703 (1999).
Wu, X., Guntha, S., Ferencic, M., Krishnamurthy, R. & Eschenmoser, A. Base-pairing systems related to TNA: α-threofuranosyl oligonucleotides containing phosphoramidate linkages. Org. Lett. 4, 1279–1282 (2002).
Colville, B. W. F. & Powner, M. W. Selective prebiotic synthesis of α‐threofuranosyl cytidine by photochemical anomerization. Angew. Chem. Int. Ed. Engl. 60, 10526–10530 (2021).
Whitaker, D. & Powner, M. W. Prebiotic synthesis and triphosphorylation of 3′-amino-TNA nucleosides. Nat. Chem. 14, 766–774 (2022).
von Kiedrowski, G. A self‐replicating hexadeoxynucleotide. Angew. Chem. Int. Ed. Engl. 25, 932–935 (1986).
Sievers, D. & von Kiedrowski, G. Self-replication of complementary nucleotide-based oligomers. Nature 369, 221–224 (1994).
Serrão, A. C. et al. High-fidelity RNA copying via 2′,3′-cyclic phosphate ligation. J. Am. Chem. Soc. 146, 8887–8894 (2024).
Szostak, J. W. The eightfold path to non-enzymatic RNA replication. J. Syst. Chem. 3, 2 (2012).
Zhou, L., O’Flaherty, D. K. & Szostak, J. W. Template-directed copying of RNA by non-enzymatic ligation. Angew. Chem. Int. Ed. Engl. 59, 15682–15687 (2020).
Jauker, M., Griesser, H. & Richert, C. Copying of RNA sequences without pre-activation. Angew. Chem. Int. Ed. Engl. 54, 14559–14563 (2015).
Stütz, J. A. R., Kervio, E., Deck, C. & Richert, C. Chemical primer extension: individual steps of spontaneous replication. Chem. Biodivers. 4, 784–802 (2007).
Weimann, B. J., Lohrmann, R., Orgel, L. E., Schneider-Bernloehr, H. & Sulston, J. E. Template-directed synthesis with adenosine-5′-phosphorimidazolide. Science 161, 387 (1968).
Rohatgi, R., Bartel, D. P. & Szostak, J. W. Kinetic and mechanistic analysis of nonenzymatic, template-directed oligoribonucleotide ligation. J. Am. Chem. Soc. 118, 3332–3339 (1996).
Zhang, S. J., Duzdevich, D., Ding, D. & Szostak, J. W. Freeze-thaw cycles enable a prebiotically plausible and continuous pathway from nucleotide activation to nonenzymatic RNA copying. Proc. Natl Acad. Sci. USA 119, e2116429119 (2022).
Deck, C., Jauker, M. & Richert, C. Efficient enzyme-free copying of all four nucleobases templated by immobilized RNA. Nat. Chem. 3, 603–608 (2011).
Hiratsuka, T. New ribose-modified fluorescent analogs of adenine and guanine nucleotides available as substrates for various enzyme. Biochim. Biophys. Acta 742, 496–508 (1983).
McGinnis, J. L., Dunkle, J. A., Cate, J. H. D. & Weeks, K. M. The mechanisms of RNA SHAPE chemistry. J. Am. Chem. Soc. 134, 6617–6624 (2012).
Fernández-García, C., Grefenstette, N. M. & Powner, M. W. Selective aqueous acetylation controls the photoanomerization of α-cytidine-5′-phosphate. Chem. Commun. 54, 4850–4853 (2018).
Lohrmann, R. & Orgel, L. E. Prebiotic synthesis: phosphorylation in aqueous solution. Science 161, 64–66 (1968).
Guo, X., Fu, S., Ying, J. & Zhao, Y. Prebiotic chemistry: a review of nucleoside phosphorylation and polymerization. Open Biol. 13, 220234 (2023).
Thilo, E. The structural chemistry of condensed inorganic phosphates. Angew. Chem. Int. Ed. Engl. 4, 1061–1071 (1965).
Schwartz, A. W. Specific phosphorylation of the 2′- and 3′- positions in ribonucleosides. J. Chem. Soc. D 23, 3850 (1969).
Saffhill, R. Selective phosphorylation of the cis-2′,3′-diol of unprotected ribonucleosides with trimetaphosphate in aqueous solution. J. Org. Chem. 35, 2881–2883 (1970).
Tsuhako, M., Fujimoto, M., Ohashi, S., Nariai, H. & Motooka, I. Phosphorylation of nucleosides with sodium cyclo-triphosphate. Bull. Chem. Soc. Jpn 57, 3274–3280 (1984).
Tsuhako, M., Kunitomi, R., Baba, Y. & Miyajima, T. Phosphorylation of nucleotides with inorganic cyclo-triphosphate. Bull. Chem. Soc. Jpn 64, 490–497 (1991).
Velikyan, I., Acharya, S., Trifonova, A., Földesi, A. & Chattopadhyaya, J. The pKa ’s of 2′-hydroxyl group in nucleosides and nucleotides. J. Am. Chem. Soc. 123, 2893–2894 (2001).
Yamagata, Y., Inoue, H. & Inomata, K. Specific effect of magnesium ion on 2′,3′-cyclic AMP synthesis from adenosine and trimeta phosphate in aqueous solution. Orig. Life Evol. Biosph. 25, 47–52 (1995).
Feldmann, W. & Thilo, E. Zur chemie der kondensierten phosphate und arsenate. XXXVIII. Amidotriphosphat. Z. Anorg. Allg. Chem. 328, 113–126 (1964).
Gibard, C., Bhowmik, S., Karki, M., Kim, E. K. & Krishnamurthy, R. Phosphorylation, oligomerization and self-assembly in water under potential prebiotic conditions. Nat. Chem. 10, 212–217 (2018).
Lin, H., Jiménez, E. I., Arriola, J. T., Müller, U. F. & Krishnamurthy, R. Concurrent prebiotic formation of nucleoside‐amidophosphates and nucleoside‐triphosphates potentiates transition from abiotic to biotic polymerization. Angew. Chem. Int. Ed. Engl. 61, e202113625 (2022).
Taylor, T. W. J. CCXLVIII. — The action of nitrous acid on amino-compounds. Part II. Aliphatic amino-acids. J. Chem. Soc. https://doi.org/10.1039/JR9280001897 (1928).
Steinberg, R. A. & Thom, C. Mutations and reversions in reproductivity of aspergilli with nitrite, colchicine and d-lysine. Proc. Natl Acad. Sci. USA 26, 363–366 (1940).
Fu, S.-C. J., Birnbaum, S. M. & Greenstein, J. P. Influence of optically active acyl groups on the enzymatic hydrolysis of N-acylated-l-amino acids. J. Am. Chem. Soc. 76, 6054–6058 (1954).
Nagyvary, J. Arabinonucleotides. II. Synthesis of O2,2′-anhydrocytidine 3′-phosphate, a precursor of 1-β-d-arabinosylcytosine. J. Am. Chem. Soc. 91, 5409–5410 (1969).
Ingar, A. A., Luke, R. W. A., Hayter, B. R. & Sutherland, J. D. Synthesis of cytidine ribonucleotides by stepwise assembly of the heterocycle on a sugar phosphate. Chem. Biol. Chem. 4, 504–507 (2003).
Mohr, S. C. & Thach, R. E. Application of ribonuclease T1 to the synthesis of oligoribonucleotides of defined base sequence. J. Biol. Chem. 244, 6566–6576 (1969).
Renz, M., Lohrmann, R. & Orgel, L. E. Catalysts for the polymerization of adenosine cyclic 2′,3′-phosphate on a poly (U) template. Biochim. Biophys. Acta Nucleic Acids Protein Synth. 240, 463–471 (1971).
Verlander, M. S. & Orgel, L. E. Analysis of high molecular weight material from the polymerization of adenosine cyclic 2′,3′-phosphate. J. Mol. Evol. 3, 115–120 (1974).
Mutschler, H. & Holliger, P. Non-canonical 3′-5′ extension of RNA with prebiotically plausible ribonucleoside 2′,3′-cyclic phosphates. J. Am. Chem. Soc. 136, 5193–5196 (2014).
Krishnamurthy, R., Guntha, S. & Eschenmoser, A. Regioselective α-phosphorylation of aldoses in aqueous solution. Angew. Chem. Int. Ed. Engl. 39, 2281–2285 (2000).
Tsuhako, M. et al. The reaction of cyclo-triphosphate with ethanolamines. Bull. Chem. Soc. Jpn 59, 3091–3095 (1986).
Mullen, L. B. & Sutherland, J. D. Formation of potentially prebiotic amphiphiles by reaction of β-hydroxy-n-alkylamines with cyclotriphosphate. Angew. Chem. Int. Ed. Engl. 46, 4166–4168 (2007).
Müller, D. et al. Chemie von α-aminonitrilen. Aldomerisierung von glycolaldehyd-phosphat zu racemischen hexose-2,4,6-triphosphaten und (in Gegenwart von formaldehyd) racemischen pentose-2,4-diphosphaten: rac-allose-2,4,6-triphosphat und rac-ribose-2,4-diphosphat sind die Reaktionshauptprodukte. Helv. Chim. Acta 73, 1410–1468 (1990).
Coggins, A. J. & Powner, M. W. Prebiotic synthesis of phosphoenol pyruvate by α-phosphorylation-controlled triose glycolysis. Nat. Chem. 9, 310–317 (2017).
Magalhães, Á. F. & Powner, M. W. Prebiotic triose glycolysis promoted by co-catalytic proline and phosphate in neutral water. Chem. Commun. 58, 13519–13522 (2022).
Fernández-García, C., Grefenstette, N. M. & Powner, M. W. Prebiotic synthesis of aminooxazoline-5′-phosphates in water by oxidative phosphorylation. Chem. Commun. 53, 4919–4921 (2017).
Powner, M. W. & Sutherland, J. D. Phosphate-mediated interconversion of ribo- and arabino-configured prebiotic nucleotide intermediates. Angew. Chem. Int. Ed. Engl. 49, 4641–4643 (2010).
Anastasi, C., Crowe, M. A. & Sutherland, J. D. Two-step potentially prebiotic synthesis of α-D-cytidine-5′-phosphate from D-glyceraldehyde-3-phosphate. J. Am. Chem. Soc. 129, 24–25 (2007).
Bartel, D. P. & Szostak, J. W. Isolation of new ribozymes from a large pool of random sequences. Science 261, 1411–1418 (1993).
Purtha, W. E., Coppins, R. L., Smalley, M. K. & Silverman, S. K. General deoxyribozyme-catalyzed synthesis of native 3′–5′ RNA linkages. J. Am. Chem. Soc. 127, 13124–13125 (2005).
Ekland, E. H., Szostak, J. W. & Bartel, D. P. Structurally complex and highly-active RNA ligases derived from random RNA sequences. Science 269, 364–370 (1995).
Seelig, B. & Szostak, J. Selection and evolution of enzymes from a partially randomized non-catalytic scaffold. Nature 448, 828–831 (2007).
Attwater, J., Raguram, A., Morgunov, A. S., Gianni, E. & Holliger, P. Ribozyme-catalysed RNA synthesis using triplet building blocks. eLife 7, e35255 (2018).
Papastavrou, N., Horning, D. P. & Joyce, G. F. RNA-catalyzed evolution of catalytic RNA. Proc. Natl Acad. Sci. USA 121, e2321592121 (2024).
Berg, J. M., Gatto, G. J., Hines, J., Tymoczko, J. L. & Stryer, L. Biochemistry 10th edn (W. H. Freeman, 2023).
Gartner, Z. J., Kanan, M. W. & Liu, D. R. Expanding the reaction scope of DNA-templated synthesis. Angew. Chem. Int. Ed. Engl. 41, 1796–1800 (2002).
Lewandowski, B. et al. Sequence-specific peptide synthesis by an artificial small-molecule machine. Science 339, 189–193 (2013).
Jash, B., Tremmel, P., Jovanovic, D. & Richert, C. Single nucleotide translation without ribosomes. Nat. Chem. 13, 751–757 (2021).
Müller, F. et al. A prebiotically plausible scenario of an RNA–peptide world. Nature 605, 279–284 (2022).
Acknowledgements
M.W.P. discloses support for the research of this work from Engineering and Physical Sciences Research Council (EPSRC) grant EP/X011755/1 and Simons Foundation grant 1154101. D.W. discloses support for the research of this work from Royal Society fellowship URF\R1\231450.
Author information
Authors and Affiliations
Contributions
D.W. and M.W.P. wrote the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Whitaker, D., Powner, M.W. On the aqueous origins of the condensation polymers of life. Nat Rev Chem 8, 817–832 (2024). https://doi.org/10.1038/s41570-024-00648-5
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41570-024-00648-5
This article is cited by
-
The power of triplets
Nature Reviews Chemistry (2025)