Abstract
With the advent of photoredox catalysis, new synthetic paradigms have been established with many novel transformations being achieved. Nevertheless, modern photoredox chemistry has several drawbacks, namely, deficiencies in reaction efficiency and scalability. Furthermore, wavelengths of light in excess of the energy required for a chemical reaction are often used. In this Review, we document recent developments of low-energy light-absorbing catalysts and their cognate photochemical methods, advantageously mitigating off-cycle photochemical reactivity of excited-state species in the reaction mixture and improving batch scalability of photochemical reactions. Finally, developments in red-light photoredox catalysis are leading the next-generation applications to polymer science and biochemistry–chemical biology, enabling catalytic reactions within media composites — including mammalian tissue — that are historically recalcitrant with blue-light photoredox catalysis.

This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Noble, A. & MacMillan, D. W. C. Photoredox α-vinylation of α-amino acids and N-aryl amines. J. Am. Chem. Soc. 136, 11602–11605 (2014).
Zuo, Z. & MacMillan, D. W. C. Decarboxylative arylation of α-amino acids via photoredox catalysis: a one-step conversion of biomass to drug pharmacophore. J. Am. Chem. Soc. 136, 5257–5260 (2014).
Ventre, S., Petronijevic, F. R. & MacMillan, D. W. C. Decarboxylative fluorination of aliphatic carboxylic acids via photoredox catalysis. J. Am. Chem. Soc. 137, 5654–5657 (2015).
Candish, L., Teders, M. & Glorius, F. Transition-metal-free, visible-light-enabled decarboxylative borylation of aryl N-hydroxyphthalimide esters. J. Am. Chem. Soc. 139, 7440–7443 (2017).
Zlotorzynska, M. & Sammis, G. M. Photoinduced electron-transfer-promoted redox fragmentation of N-alkoxyphthalimides. Org. Lett. 13, 6264–6267 (2011).
Pratsch, G., Lackner, G. L. & Overman, L. E. Constructing quaternary carbons from N-(acyloxy)phthalimide precursors of tertiary radicals using visible-light photocatalysis. J. Org. Chem. 80, 6025–6036 (2015).
Webb, E. W. et al. Nucleophilic (radio)fluorination of redox-active esters via radical-polar crossover enabled by photoredox catalysis. J. Am. Chem. Soc. 142, 9493–9500 (2020).
Rackl, D., Kais, V., Kreitmeier, P. & Reiser, O. Visible light photoredox-catalyzed deoxygenation of alcohols. Beilstein J. Org. Chem. 10, 2157–2165 (2014).
Stache, E. E., Ertel, A. B., Rovis, T. & Doyle, A. G. Generation of phosphoranyl radicals via photoredox catalysis enables voltage-independent activation of strong C–O bonds. ACS Catal. 8, 11134–11139 (2018).
Rossi-Ashton, J. A., Clarke, A. K., Unsworth, W. P. & Taylor, R. J. K. Phosphoranyl radical fragmentation reactions driven by photoredox catalysis. ACS Catal. 10, 7250–7261 (2020).
Wang, J. Z., Sakai, H. A. & MacMillan, D. W. C. Alcohols as alkylating agents: photoredox-catalyzed conjugate alkylation via in situ deoxygenation. Angew. Chem. Int. Ed. 134, e202207150 (2022).
Klauck, F. J. R., James, M. J. & Glorius, F. Deaminative strategy for the visible-light-mediated generation of alkyl radicals. Angew. Chem. Int. Ed. 56, 12336–12339 (2017).
Ashley, M. A. & Rovis, T. Photoredox-catalyzed deaminative alkylation via C–N bond activation of primary amines. J. Am. Chem. Soc. 142, 18310–18316 (2020).
Dorsheimer, J. R. & Rovis, T. Late-stage isotopic exchange of primary amines. J. Am. Chem. Soc. 145, 24367–24374 (2023).
Marchese, A. D., Dorsheimer, J. R. & Rovis, T. Photoredox-catalyzed generation of tertiary anions from primary amines via a radical polar crossover. Angew. Chem. Int. Ed. 63, e202317563 (2024).
Narayanam, J. M. R., Tucker, J. W. & Stephenson, C. R. J. Electron-transfer photoredox catalysis: development of a tin-free reductive dehalogenation reaction. J. Am. Chem. Soc. 131, 8756–8757 (2009).
Maji, T., Karmakar, A. & Reiser, O. Visible-light photoredox catalysis: dehalogenation of vicinal dibromo-, α-halo-, and α,α-dibromocarbonyl compounds. J. Org. Chem. 76, 736–739 (2011).
Dorsheimer, J. R., Ashley, M. A. & Rovis, T. Dual nickel/photoredox-catalyzed deaminative cross-coupling of sterically hindered primary amines. J. Am. Chem. Soc. 143, 19294–19299 (2021).
Liao, J. et al. Deaminative reductive cross-electrophile couplings of alkylpyridinium salts and aryl bromides. Org. Lett. 21, 2941–2946 (2019).
Dong, Z. & MacMillan, D. W. C. Metallaphotoredox-enabled deoxygenative arylation of alcohols. Nature 598, 451–456 (2021).
Sakai, H. A. & MacMillan, D. W. C. Nontraditional fragment couplings of alcohols and carboxylic acids: C(sp3)–C(sp3) cross-coupling via radical sorting. J. Am. Chem. Soc. 144, 6185–6192 (2022).
Dongbang, S. & Doyle, A. G. Ni/photoredox-catalyzed C(sp3)–C(sp3) coupling between aziridines and acetals as alcohol-derived alkyl radical precursors. J. Am. Chem. Soc. 144, 20067–20077 (2022).
Lau, S. H. et al. Ni/photoredox-catalyzed enantioselective cross-electrophile coupling of styrene oxides with aryl iodides. J. Am. Chem. Soc. 143, 15873–15881 (2021).
Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 1–19 (2017).
Cox, A. J., DeWeerd, A. J. & Linden, J. An experiment to measure Mie and Rayleigh total scattering cross sections. Am. J. Phys. 70, 620–625 (2002).
Cagan, D. A. et al. Elucidating the mechanism of excited-state bond homolysis in nickel–bipyridine photoredox catalysts. J. Am. Chem. Soc. 144, 6516–6531 (2022).
Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).
Lowry, M. S. et al. Single-layer electroluminescent devices and photoinduced hydrogen production from an ionic iridium(III) complex. Chem. Mater. 17, 5712–5719 (2005).
Chan, A. Y. et al. Exploiting the Marcus inverted region for first-row transition metal-based photoredox catalysis. Science 382, 191–197 (2023).
de Groot, L. H. M., Ilic, A., Schwarz, J. & Wärnmark, K. Iron photoredox catalysis — past, present, and future. J. Am. Chem. Soc. 145, 9369–9388 (2023).
Huang, X. & Meggers, E. Asymmetric photocatalysis with bis-cyclometalated rhodium complexes. Acc. Chem. Res. 52, 833–847 (2019).
Mei, L., Veleta, J. M. & Gianetti, T. L. Helical carbenium ion: a versatile organic photoredox catalyst for red-light-mediated reactions. J. Am. Chem. Soc. 142, 12056–12061 (2020). This study details uses of the organic photocatalyst DMQA+.
Rybicka-Jasińska, K. et al. Porphyrins as promising photocatalysts for red-light-induced functionalizations of biomolecules. ACS Org. Inorg. Au 2, 422–426 (2022).
Kosso, A. R. O., Sellet, N., Baralle, A., Cormier, M. & Goddard, J.-P. Cyanine-based near infra-red organic photoredox catalysis. Chem. Sci. 12, 6964–6968 (2021).
Niu, K.-K. et al. Red-light-based effective photocatalysis of a photosensitive covalent organic framework triggered singlet oxygen. ACS Catal. 14, 2631–2641 (2024).
Sheng, W., Wang, X., Wang, Y., Chen, S. & Lang, X. Integrating TEMPO into a metal–organic framework for cooperative photocatalysis: selective aerobic oxidation of sulfides. ACS Catal. 12, 11078–11088 (2022).
Shi, J.-L., Chen, R., Hao, H., Wang, C. & Lang, X. 2D sp2 carbon-conjugated porphyrin covalent organic framework for cooperative photocatalysis with TEMPO. Angew. Chem. Int. Ed. 59, 9088–9093 (2020).
Wu, S., Zhang, Y.-F., Ding, H., Li, X. & Lang, X. Hydrazone-linked 2D porphyrinic covalent organic framework photocatalysis for visible light-driven aerobic oxidation of amines to imines. J. Colloid Interface Sci. 610, 446–454 (2022).
Shi, J.-L. et al. 2D sp2 carbon-conjugated covalent organic framework with pyrene-tethered TEMPO intercalation for photocatalytic aerobic oxidation of sulfides into sulfoxides. Sol. RRL 6, 2100608 (2022).
Li, P., Dong, X., Zhang, Y., Lang, X. & Wang, C. An azine-linked 2D porphyrinic covalent organic framework for red light photocatalytic oxidative coupling of amines. Mater. Today Chem. 25, 100953 (2022).
Cocquet, G., Ferroud, C. & Guy, A. A mild and efficient procedure for ring-opening reactions of piperidine and pyrrolidine derivatives by single electron transfer photooxidation. Tetrahedron 56, 2975–2984 (2000).
Watanabe, K. et al. Indolizines enabling rapid uncaging of alcohols and carboxylic acids by red light-induced photooxidation. Org. Lett. 22, 5434–5438 (2020).
Lee, J., Papatzimas, J. W., Bromby, A. D., Gorobets, E. & Derksen, D. J. Thiaporphyrin-mediated photocatalysis using red light. RSC Adv. 6, 59269–59272 (2016).
Orłowska, K. et al. Unlocking the reactivity of diazo compounds in red light with the use of photochemical tools. Chem. Commun. 59, 14649–14652 (2023).
Kalyani, D., McMurtrey, K. B., Neufeldt, S. R. & Sanford, M. S. Room-temperature C–H arylation: merger of Pd-catalyzed C–H functionalization and visible-light photocatalysis. J. Am. Chem. Soc. 133, 18566–18569 (2011).
Tlahuext-Aca, A., Hopkinson, M. N., Sahoo, B. & Glorius, F. Dual gold/photoredox-catalyzed C(sp)–H arylation of terminal alkynes with diazonium salts. Chem. Sci. 7, 89–93 (2015).
Teruo, U. & Sumi, I. Power-variable trifluoromethylating agents, (trifluoromethyl)dibenzothio- and -selenophenium salt system. Tetrahedron Lett. 31, 3579–3582 (1990).
Yasu, Y., Arai, Y., Tomita, R., Koike, T. & Akita, M. Highly regio- and diastereoselective synthesis of CF3-substituted lactones via photoredox-catalyzed carbolactonization of alkenoic acids. Org. Lett. 16, 780–783 (2014).
Noto, N., Miyazawa, K., Koike, T. & Akita, M. Anti-diastereoselective synthesis of CF3-containing spirooxazolines and spirooxazines via regiospecific trifluoromethylative spirocyclization by photoredox catalysis. Org. Lett. 17, 3710–3713 (2015).
Koike, T. & Akita, M. Fine design of photoredox systems for catalytic fluoromethylation of carbon–carbon multiple bonds. Acc. Chem. Res. 49, 1937–1945 (2016).
Mei, L., Moutet, J., Stull, S. M. & Gianetti, T. L. Synthesis of CF3-containing spirocyclic indolines via a red-light-mediated trifluoromethylation/dearomatization cascade. J. Org. Chem. 86, 10640–10653 (2021).
Stull, S. M., Mei, L. & Gianetti, T. L. Red-light-induced N,N′-dipropyl-1,13-dimethoxyquinacridinium-catalyzed [3+2] cycloaddition of cyclopropylamines with alkenes or alkynes. Synlett 33, 1194–1198 (2022).
Calogero, F. et al. Diastereoselective and enantioselective photoredox pinacol coupling promoted by titanium complexes with a red-absorbing organic dye. Chem. Sci. 13, 5973–5981 (2022).
Hossain, M. M., Shaikh, A. C., Kaur, R. & Gianetti, T. L. Red light–blue light chromoselective C(sp2)–X bond activation by organic helicenium-based photocatalysis. J. Am. Chem. Soc. 146, 7922–7930 (2024). This study details wavelength-dependent, chemoselective aryl(halide) activation.
Creutz, C., Chou, M., Netzel, T. L., Okumura, M. & Sutin, N. Lifetimes, spectra, and quenching of the excited states of polypyridine complexes of iron(II), ruthenium(II), and osmium(II). J. Am. Chem. Soc. 102, 1309–1319 (1980).
Matsuzaki, K., Hiromura, T., Tokunaga, E. & Shibata, N. Trifluoroethoxy-coated subphthalocyanine affects trifluoromethylation of alkenes and alkynes even under low-energy red-light irradiation. ChemistryOpen 6, 226–230 (2017).
Yerien, D. E., Cooke, M. V., Vior, M. C. G., Barata-Vallejo, S. & Postigo, A. Radical fluoroalkylation reactions of (hetero)arenes and sulfides under red light photocatalysis. Org. Biomol. Chem. 17, 3741–3746 (2019).
Ogura, A., Ichii, N., Shibata, K. & Takao, K. Red-light-mediated Barton–McCombie reaction. Bull. Chem. Soc. Jpn. 93, 936–941 (2020).
Yamamoto, H. et al. Red-light-mediated Barton decarboxylation reaction and one-pot wavelength-selective transformations. Chem. Sci. 14, 11243–11250 (2023).
Bilger, J. B., Kerzig, C., Larsen, C. B. & Wenger, O. S. A photorobust Mo(0) complex mimicking [Os(2,2′-bipyridine)3]2+ and its application in red-to-blue upconversion. J. Am. Chem. Soc. 143, 1651–1663 (2021).
Herr, P., Schwab, A., Kupfer, S. & Wenger, O. S. Deep-red luminescent molybdenum(0) complexes with bi- and tridentate isocyanide chelate ligands. ChemPhotoChem 6, e202200052 (2022).
Jin, T., Wagner, D. & Wenger, O. S. Luminescent and photoredox-active molybdenum(0) complexes competitive with isoelectronic ruthenium(II) polypyridines. Angew. Chem. Int. Ed. 63, e202314475 (2024).
Sinha, N., Wegeberg, C., Häussinger, D., Prescimone, A. & Wenger, O. S. Photoredox-active Cr(0) luminophores featuring photophysical properties competitive with Ru(II) and Os(II) complexes. Nat. Chem. 15, 1730–1736 (2023).
Glaser, F. & Wenger, O. S. Red light-based dual photoredox strategy resembling the Z-scheme of natural photosynthesis. JACS Au 2, 1488–1503 (2022).
Han, G. et al. Two-photon-absorbing ruthenium complexes enable near infrared light-driven photocatalysis. Nat. Commun. 13, 2288 (2022).
Moon, H. W. & Cornella, J. Bismuth redox catalysis: an emerging main-group platform for organic synthesis. ACS Catal. 12, 1382–1393 (2022).
Mato, M. et al. Bismuth radical catalysis in the activation and coupling of redox-active electrophiles. Nat. Chem. 15, 1138–1145 (2023).
Mato, M. et al. Oxidative addition of aryl electrophiles into a red-light-active bismuthinidene. J. Am. Chem. Soc. 145, 18742–18747 (2023).
L. Lohr, L. Spin-forbidden electronic excitations in transition metal complexes. Coord. Chem. Rev. 8, 241–259 (1972).
Kianfar, E., Apaydin, D. H. & Knör, G. Spin-forbidden excitation: a new approach for triggering photopharmacological processes with low-intensity NIR light. ChemPhotoChem 1, 378–382 (2017).
Nakajima, M. et al. A direct S0→Tn transition in the photoreaction of heavy-atom-containing molecules. Angew. Chem. Int. Ed. 59, 6847–6852 (2020).
Bejoymohandas, K. S. et al. Cationic iridium(III) complexes with benzothiophene-quinoline ligands for deep-red light-emitting electrochemical cells. Inorg. Chem. 62, 43–55 (2023).
Maurer, A. B. & Meyer, G. J. Stark spectroscopic evidence that a spin change accompanies light absorption in transition metal polypyridyl complexes. J. Am. Chem. Soc. 142, 6847–6851 (2020).
Ravetz, B. D. et al. Development of a platform for near-infrared photoredox catalysis. ACS Cent. Sci. 6, 2053–2059 (2020). This study provides a report on the use of Os(II) polypyridyl complexes for batch-scalable red-light photoredox catalysis.
Beatty, J. W., Douglas, J. J., Cole, K. P. & Stephenson, C. R. J. A scalable and operationally simple radical trifluoromethylation. Nat. Commun. 6, 7919 (2015).
Beatty, J. W. et al. Photochemical perfluoroalkylation with pyridine N-oxides: mechanistic insights and performance on a kilogram scale. Chem 1, 456–472 (2016).
Goldschmid, S. L. et al. Tuning the electrochemical and photophysical properties of osmium-based photoredox catalysts. Synlett 33, 247–258 (2022).
Cabanero, D. C., Nguyen, J. A., Cazin, C. S. J., Nolan, S. P. & Rovis, T. Deep red to near-infrared light-controlled ruthenium-catalyzed olefin metathesis. ACS Catal. 13, 4384–4390 (2023).
Gisbertz, S., Reischauer, S. & Pieber, B. Overcoming limitations in dual photoredox/nickel-catalysed C–N cross-couplings due to catalyst deactivation. Nat. Catal. 3, 611–620 (2020).
Park, B. Y., Pirnot, M. T. & Buchwald, S. L. Visible light-mediated (hetero)aryl amination using Ni(II) salts and photoredox catalysis in flow: a synthesis of tetracaine. J. Org. Chem. 85, 3234–3244 (2020).
Ting, S. I. et al. 3d-d excited states of Ni(II) complexes relevant to photoredox catalysis: spectroscopic identification and mechanistic implications. J. Am. Chem. Soc. 142, 5800–5810 (2020).
Goldschmid, S. L. et al. Overcoming photochemical limitations in metallaphotoredox catalysis: red-light-driven C–N cross-coupling. J. Am. Chem. Soc. 144, 22409–22415 (2022).
Zhang, T., Rabeah, J. & Das, S. Red-light-mediated copper-catalyzed photoredox catalysis promotes regioselectivity switch in the difunctionalization of alkenes. Nat. Commun. 15, 5208 (2024).
Yasu, Y., Koike, T. & Akita, M. Visible light-induced selective generation of radicals from organoborates by photoredox catalysis. Adv. Synth. Catal. 354, 3414–3420 (2012).
Cannes, C., Labbé, E., Durandetti, M., Devaud, M. & Nédélec, J. Y. Nickel-catalyzed electrochemical homocoupling of alkenyl halides: rates and mechanisms. J. Electroanal. Chem. 412, 85–93 (1996).
Xie, K. A. et al. Orange light-driven C(sp2)–C(sp3) cross-coupling via spin-forbidden Ir(III) metallaphotoredox catalysis. J. Am. Chem. Soc. 145, 19925–19931 (2023).
Obara, S. et al. Highly phosphorescent iridium complexes containing both tridentate bis(benzimidazolyl)-benzene or -pyridine and bidentate phenylpyridine: synthesis, photophysical properties, and theoretical study of Ir-bis(benzimidazolyl)benzene complex. Inorg. Chem. 45, 8907–8921 (2006).
Basch, C. H., Liao, J., Xu, J., Piane, J. J. & Watson, M. P. Harnessing alkyl amines as electrophiles for nickel-catalyzed cross couplings via C–N bond activation. J. Am. Chem. Soc. 139, 5313–5316 (2017).
Molander, G. A. & Sandrock, D. L. Potassium trifluoroborate salts as convenient, stable reagents for difficult alkyl transfers. Curr. Opin. Drug Discov. Dev. 12, 811–823 (2009).
Xie, K. A. et al. A unified method for oxidative and reductive decarboxylative arylation with orange light-driven Ir/Ni metallaphotoredox catalysis. J. Am. Chem. Soc. 146, 25780–25787 (2024).
Ravetz, B. D. et al. Photoredox catalysis using infrared light via triplet fusion upconversion. Nature 565, 343–346 (2019). This study provides a seminal report on the use of triplet fusion upconversion for photoredox catalysis.
Farney, E. P. & Yoon, T. P. Visible-light sensitization of vinyl azides by transition-metal photocatalysis. Angew. Chem. Int. Ed. 53, 793–797 (2014).
Ischay, M. A., Anzovino, M. E., Du, J. & Yoon, T. P. Efficient visible light photocatalysis of [2+2] enone cycloadditions. J. Am. Chem. Soc. 130, 12886–12887 (2008).
Glaser, F. & Wenger, O. S. Sensitizer-controlled photochemical reactivity via upconversion of red light. Chem. Sci. 14, 149–161 (2023).
Zeng, L., Huang, L., Lin, W., Jiang, L.-H. & Han, G. Red light-driven electron sacrificial agents-free photoreduction of inert aryl halides via triplet-triplet annihilation. Nat. Commun. 14, 1102 (2023).
Wang, C., Wegeberg, C. & Wenger, O. S. First-row d6 metal complex enables photon upconversion and initiates blue light-dependent polymerization with red light. Angew. Chem. Int. Ed. 62, e202311470 (2023).
Liang, W. et al. Near-infrared photon upconversion and solar synthesis using lead-free nanocrystals. Nat. Photonics 17, 346–353 (2023).
Huang, L. & Han, G. Triplet–triplet annihilation photon upconversion-mediated photochemical reactions. Nat. Rev. Chem. 8, 238–255 (2024). This recent study provides a comprehensive review on developments in triplet fusion upconversion for photochemical reactions and its applications.
Hill-West, J. L., Chowdhury, S. M., Slepian, M. J. & Hubbell, J. A. Inhibition of thrombosis and intimal thickening by in situ photopolymerization of thin hydrogel barriers. Proc. Natl Acad. Sci. USA 91, 5967–5971 (1994).
Hill-West, J. L., Dunn, R. C. & Hubbell, J. A. Local release of fibrinolytic agents for adhesion prevention. J. Surg. Res. 59, 759–763 (1995).
Elisseeff, J. et al. Transdermal photopolymerization for minimally invasive implantation. Proc. Natl Acad. Sci. USA 96, 3104–3107 (1999).
Belfield, K. D. et al. Near-IR two-photon photoinitiated polymerization using a fluorone/amine initiating system. J. Am. Chem. Soc. 122, 1217–1218 (2000).
Xiao, P. et al. Panchromatic photopolymerizable cationic films using indoline and squaraine dye based photoinitiating systems. ACS Macro Lett. 2, 736–740 (2013).
Xiao, P. et al. Cationic and thiol–ene photopolymerization upon red lights using anthraquinone derivatives as photoinitiators. Macromolecules 46, 6744–6750 (2013).
Shanmugam, S., Xu, J. & Boyer, C. Light-regulated polymerization under near-infrared/far-red irradiation catalyzed by bacteriochlorophyll a. Angew. Chem. Int. Ed. 55, 1036–1040 (2016).
Cao, H. et al. Far-red light-induced reversible addition–fragmentation chain transfer polymerization using a man-made bacteriochlorin. ACS Macro Lett. 8, 616–622 (2019).
Wu, Z., Jung, K. & Boyer, C. Effective utilization of NIR wavelengths for photo-controlled polymerization: penetration through thick barriers and parallel solar syntheses. Angew. Chem. Int. Ed. 59, 2013–2017 (2020). This report details highly efficient and NIR-controlled polymerization and its applications in barrier penetration and parallel synthesis.
Wu, Z. et al. Photo-RAFT polymerization for hydrogel synthesis through barriers and development of light-regulated healable hydrogels under NIR irradiation. Angew. Chem. Int. Ed. 62, e202302451 (2023).
Bielawski, C. W. & Grubbs, R. H. Living ring-opening metathesis polymerization. Prog. Polym. Sci. 32, 1–29 (2007).
Schanz, H.-J. Stimuli-responsive olefin metathesis catalysts. Curr. Org. Chem. 17, 2575–2591 (2013).
Ahumada, G., Ryu, Y. & Bielawski, C. W. Potentiostatically controlled olefin metathesis. Organometallics 39, 1744–1750 (2020).
Nguyen, J. A., Cabanero, D. C. & Rovis, T. Electrochemically controlled ruthenium-catalyzed olefin metathesis. Synlett 34, 1477–1481 (2023).
Theunissen, C., Ashley, M. A. & Rovis, T. Visible-light-controlled ruthenium-catalyzed olefin metathesis. J. Am. Chem. Soc. 141, 6791–6796 (2019).
Eivgi, O., Phatake, R. S., Nechmad, N. B. & Lemcoff, N. G. Light-activated olefin metathesis: catalyst development, synthesis, and applications. Acc. Chem. Res. 53, 2456–2471 (2020).
Stafford, A. et al. Catalyst halogenation enables rapid and efficient polymerizations with visible to far-red light. J. Am. Chem. Soc. 142, 14733–14742 (2020).
Dadashi-Silab, S. et al. Conjugated cross-linked phenothiazines as green or red light heterogeneous photocatalysts for copper-catalyzed atom transfer radical polymerization. J. Am. Chem. Soc. 143, 9630–9638 (2021).
Dadashi-Silab, S. et al. Red-light-induced, copper-catalyzed atom transfer radical polymerization. ACS Macro Lett. 11, 376–381 (2022).
Hu, X. et al. Red-light-driven atom transfer radical polymerization for high-throughput polymer synthesis in open air. J. Am. Chem. Soc. 145, 24315–24327 (2023). This study details a highly efficient, air-tolerant, water-tolerant and biocompatible NIR-ATRP with applications in synthesizing DNA–polymer conjugates.
Toh, K. et al. Chemoproteomic identification of blue-light-damaged proteins. J. Am. Chem. Soc. 144, 20171–20176 (2022).
Liu, L.-H. et al. A red light activatable multifunctional prodrug for image-guided photodynamic therapy and cascaded chemotherapy. Adv. Funct. Mater. 26, 6257–6269 (2016).
He, G. et al. Red-light-responsive Ru complex photosensitizer for lysosome localization photodynamic therapy. ACS Appl. Mater. Interfaces 13, 19572–19580 (2021).
Ma, H. et al. New Cy5 photosensitizers for cancer phototherapy: a low singlet–triplet gap provides high quantum yield of singlet oxygen. Chem. Sci. 12, 13809–13816 (2021).
Wang, R. et al. A glutathione activatable photosensitizer for combined photodynamic and gas therapy under red light irradiation. Adv. Healthc. Mater. 11, 2102017 (2022).
Agostinis, P. et al. Photodynamic therapy of cancer: an update. CA Cancer J. Clin. 61, 250–281 (2011).
Raza, M. K., Noor, A. & Samantaray, P. K. Ir(III) and Ru(II) complexes in photoredox catalysis and photodynamic therapy: a new paradigm towards anticancer applications. ChemBioChem 22, 3270–3272 (2021).
Koh, E. & Fluhr, R. Singlet oxygen detection in biological systems: uses and limitations. Plant Signal. Behav. 11, e1192742 (2016).
Baugh, S. D. P., Yang, Z., Leung, D. K., Wilson, D. M. & Breslow, R. Cyclodextrin dimers as cleavable carriers of photodynamic sensitizers. J. Am. Chem. Soc. 123, 12488–12494 (2001).
Jiang, M. Y. & Dolphin, D. Site-specific prodrug release using visible light. J. Am. Chem. Soc. 130, 4236–4237 (2008).
Sato, S. & Nakamura, H. Ligand-directed selective protein modification based on local single-electron-transfer catalysis. Angew. Chem. Int. Ed. 52, 8681–8684 (2013).
Tsushima, M., Sato, S., Niwa, T., Taguchi, H. & Nakamura, H. Catalyst-proximity protein chemical labelling on affinity beads targeting endogenous lectins. Chem. Commun. 55, 13275–13278 (2019).
Choi-Rhee, E., Schulman, H. & Cronan, J. E. Promiscuous protein biotinylation by Escherichia coli biotin protein ligase. Protein Sci. 13, 3043–3050 (2004).
Branon, T. C. et al. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol. 36, 880–887 (2018).
Sears, R. M., May, D. G. & Roux, K. J. in Enzyme-Mediated Ligation Methods (eds Nuijens, T. & Schmidt, M.) 299–313 (Springer, 2019).
Nguyen, T. M. T., Kim, J., Doan, T. T., Lee, M.-W. & Lee, M. APEX proximity labeling as a versatile tool for biological research. Biochemistry 59, 260–269 (2020).
Ryu, K. A., Kaszuba, C. M., Bissonnette, N. B., Oslund, R. C. & Fadeyi, O. O. Interrogating biological systems using visible-light-powered catalysis. Nat. Rev. Chem. 5, 322–337 (2021).
Oslund, R. C. et al. Detection of cell–cell interactions via photocatalytic cell tagging. Nat. Chem. Biol. 18, 850–858 (2022).
Knutson, S. D., Buksh, B. F., Huth, S. W., Morgan, D. C. & MacMillan, D. W. C. Current advances in photocatalytic proximity labeling. Cell Chem. Biol. 31, 1145–1161 (2024).
Geri, J. B. et al. Microenvironment mapping via Dexter energy transfer on immune cells. Science 367, 1091–1097 (2020). This study provides a seminal report on photoproximity labelling using Ir(III) photocatalysis.
Buksh, B. F. et al. μMap-red: proximity labeling by red light photocatalysis. J. Am. Chem. Soc. 144, 6154–6162 (2022).
Tay, N. E. S. et al. Targeted activation in localized protein environments via deep red photoredox catalysis. Nat. Chem. 15, 101–109 (2023).
Trowbridge, A. D. et al. Small molecule photocatalysis enables drug target identification via energy transfer. Proc. Natl Acad. Sci. USA 119, e2208077119 (2022).
Huth, S. W. et al. μMap photoproximity labeling enables small molecule binding site mapping. J. Am. Chem. Soc. 145, 16289–16296 (2023). This study provides a report on mapping small molecule–protein interactions through photoproximity labelling.
Kawatani, M. & Osada, H. Affinity-based target identification for bioactive small molecules. MedChemComm 5, 277–287 (2014).
Hill, J. R. & Robertson, A. A. B. Fishing for drug targets: a focus on diazirine photoaffinity probe synthesis. J. Med. Chem. 61, 6945–6963 (2018).
Cabanero, D. C. et al. Photocatalytic activation of aryl(trifluoromethyl) diazos to carbenes for high-resolution protein labeling with red light. J. Am. Chem. Soc. 146, 1337–1345 (2024). This study demonstrates the use of red light for high-resolution protein labelling.
Ryu, K. A. et al. Near-infrared photoredox catalyzed fluoroalkylation strategy for protein labeling in complex tissue environments. ACS Catal. 14, 3482–3491 (2024).
Jemas, A. et al. Catalytic activation of bioorthogonal chemistry with light (CABL) enables rapid, spatiotemporally controlled labeling and no-wash, subcellular 3D-patterning in live cells using long wavelength light. J. Am. Chem. Soc. 144, 1647–1662 (2022).
Zhao, Z. et al. Nature-inspired photocatalytic azo bond cleavage with red light. J. Am. Chem. Soc. 146, 1364–1373 (2024).
Rosenberger, J. E. et al. Ligand-directed photocatalysts and far-red light enable catalytic bioorthogonal uncaging inside live cells. J. Am. Chem. Soc. 145, 6067–6078 (2023).
Wang, L. et al. Potent, orally active heterocycle-based combretastatin A-4 analogues: synthesis, structure−activity relationship, pharmacokinetics, and in vivo antitumor activity evaluation. J. Med. Chem. 45, 1697–1711 (2002).
Holmlin, R. E. & Barton, J. K. Os(phen)2(dppz)2+: a red-emitting DNA probe. Inorg. Chem. 34, 7–8 (1995).
Moucheron, C., Kirsch-De Mesmaeker, A. & Kelly, J. M. Photoreactions of ruthenium (II) and osmium (II) complexes with deoxyribonucleic acid (DNA). J. Photochem. Photobiol. B 40, 91–106 (1997).
Chouai, A. et al. Ruthenium(II) complexes of 1,12-diazaperylene and their interactions with DNA. Inorg. Chem. 44, 5996–6003 (2005).
Bruijnincx, P. C. A. & Sadler, P. J. in Advances in Inorganic Chemistry Vol. 61 (eds van Eldik, R. & Hubbard, C. D.) 1–62 (Academic, 2009).
Monro, S. et al. Photobiological activity of Ru(II) dyads based on (pyren-1-yl)ethynyl derivatives of 1,10-phenanthroline. Inorg. Chem. 49, 2889–2900 (2010).
Mardanya, S., Karmakar, S., Maity, D. & Baitalik, S. Ruthenium(II) and osmium(II) mixed chelates based on pyrenyl–pyridylimidazole and 2,2′-bipyridine ligands as efficient DNA intercalators and anion sensors. Inorg. Chem. 54, 513–526 (2015).
Liang, X. et al. Near infrared light-triggered photocatalytic decaging for remote-controlled spatiotemporal activation in living mice. Angew. Chem. Int. Ed. 62, e202310920 (2023).
Gan, X. et al. Carbon quaternization of redox active esters and olefins by decarboxylative coupling. Science 384, 113–118 (2024).
Laudadio, G. et al. Nickel-electrocatalytic decarboxylative arylation to access quaternary centers. Angew. Chem. Int. Ed. 136, e202314617 (2024).
Tay, N. E. S., Lehnherr, D. & Rovis, T. Photons or electrons? A critical comparison of electrochemistry and photoredox catalysis for organic synthesis. Chem. Rev. 122, 2487–2649 (2022).
Kawamata, Y. et al. An electroaffinity labelling platform for chemoproteomic-based target identification. Nat. Chem. 15, 1267–1275 (2023).
Plamper, F. A. Polymerizations under electrochemical control. Colloid Polym. Sci. 292, 777–783 (2014).
Novaes, T. et al. Electrocatalysis as an enabling technology for organic synthesis. Chem. Soc. Rev. 50, 7941–8002 (2021).
Do, J.-L. & Friščić, T. Mechanochemistry: a force of synthesis. ACS Cent. Sci. 3, 13–19 (2017).
France, S. P., Lewis, R. D. & Martinez, C. A. The evolving nature of biocatalysis in pharmaceutical research and development. JACS Au 3, 715–735 (2023).
Acknowledgements
The authors thank N. Tay for the helpful discussions.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Chemistry thanks Xianjun Lang, Aleksandr Savateev and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Dexter EnT
-
An energy transfer mechanism through which electrons are exchanged between an excited-state donor and an acceptor molecule. This exchange requires overlap of the wavefunctions of the donor and acceptor and, thus, occurs at short distances.
- Förster EnT
-
An energy transfer mechanism through which a non-radiative relaxation of an excited-state electron from the donor results in the excitation of the electron of an acceptor molecule. The distance between the molecules exceeds that of the sum of their van der Waals radii, and the efficiency of quenching is characteristically sensitive to changes in the distance between the two molecules.
- Streptavidin
-
A tetrameric protein with an extremely strong affinity for biotin. This pair is typically used in biotechnology for purification and detection of biomolecules.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Cabanero, D.C., Rovis, T. Low-energy photoredox catalysis. Nat Rev Chem 9, 28–45 (2025). https://doi.org/10.1038/s41570-024-00663-6
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41570-024-00663-6
This article is cited by
-
An NAD⁺ analogue enables assembly of structurally diverse artificial photoenzymes for enantiodivergent [2 + 2] cycloadditions
Nature Catalysis (2025)
-
Graphitic carbon nitride/titanium dioxide heterojunction for photocatalytic dyes degradation: performance enhancement and mechanism investigation
Research on Chemical Intermediates (2025)