Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Low-energy photoredox catalysis

Abstract

With the advent of photoredox catalysis, new synthetic paradigms have been established with many novel transformations being achieved. Nevertheless, modern photoredox chemistry has several drawbacks, namely, deficiencies in reaction efficiency and scalability. Furthermore, wavelengths of light in excess of the energy required for a chemical reaction are often used. In this Review, we document recent developments of low-energy light-absorbing catalysts and their cognate photochemical methods, advantageously mitigating off-cycle photochemical reactivity of excited-state species in the reaction mixture and improving batch scalability of photochemical reactions. Finally, developments in red-light photoredox catalysis are leading the next-generation applications to polymer science and biochemistry–chemical biology, enabling catalytic reactions within media composites — including mammalian tissue — that are historically recalcitrant with blue-light photoredox catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Photoredox catalysis explanation and examples of red-light-absorbing photocatalysts.
Fig. 2: Red-light organophotoredox catalysis.
Fig. 3: Main group-based and transition metal-based red-light photoredox catalysts.
Fig. 4: Accessing higher-energy photoredox catalysis.
Fig. 5: Applications of red-light photoredox catalysis in polymer chemistry.
Fig. 6: Applications of red-light photocatalysis in biology.

Similar content being viewed by others

References

  1. Noble, A. & MacMillan, D. W. C. Photoredox α-vinylation of α-amino acids and N-aryl amines. J. Am. Chem. Soc. 136, 11602–11605 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zuo, Z. & MacMillan, D. W. C. Decarboxylative arylation of α-amino acids via photoredox catalysis: a one-step conversion of biomass to drug pharmacophore. J. Am. Chem. Soc. 136, 5257–5260 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ventre, S., Petronijevic, F. R. & MacMillan, D. W. C. Decarboxylative fluorination of aliphatic carboxylic acids via photoredox catalysis. J. Am. Chem. Soc. 137, 5654–5657 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Candish, L., Teders, M. & Glorius, F. Transition-metal-free, visible-light-enabled decarboxylative borylation of aryl N-hydroxyphthalimide esters. J. Am. Chem. Soc. 139, 7440–7443 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Zlotorzynska, M. & Sammis, G. M. Photoinduced electron-transfer-promoted redox fragmentation of N-alkoxyphthalimides. Org. Lett. 13, 6264–6267 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Pratsch, G., Lackner, G. L. & Overman, L. E. Constructing quaternary carbons from N-(acyloxy)phthalimide precursors of tertiary radicals using visible-light photocatalysis. J. Org. Chem. 80, 6025–6036 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Webb, E. W. et al. Nucleophilic (radio)fluorination of redox-active esters via radical-polar crossover enabled by photoredox catalysis. J. Am. Chem. Soc. 142, 9493–9500 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Rackl, D., Kais, V., Kreitmeier, P. & Reiser, O. Visible light photoredox-catalyzed deoxygenation of alcohols. Beilstein J. Org. Chem. 10, 2157–2165 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stache, E. E., Ertel, A. B., Rovis, T. & Doyle, A. G. Generation of phosphoranyl radicals via photoredox catalysis enables voltage-independent activation of strong C–O bonds. ACS Catal. 8, 11134–11139 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rossi-Ashton, J. A., Clarke, A. K., Unsworth, W. P. & Taylor, R. J. K. Phosphoranyl radical fragmentation reactions driven by photoredox catalysis. ACS Catal. 10, 7250–7261 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, J. Z., Sakai, H. A. & MacMillan, D. W. C. Alcohols as alkylating agents: photoredox-catalyzed conjugate alkylation via in situ deoxygenation. Angew. Chem. Int. Ed. 134, e202207150 (2022).

    Article  Google Scholar 

  12. Klauck, F. J. R., James, M. J. & Glorius, F. Deaminative strategy for the visible-light-mediated generation of alkyl radicals. Angew. Chem. Int. Ed. 56, 12336–12339 (2017).

    Article  CAS  Google Scholar 

  13. Ashley, M. A. & Rovis, T. Photoredox-catalyzed deaminative alkylation via C–N bond activation of primary amines. J. Am. Chem. Soc. 142, 18310–18316 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dorsheimer, J. R. & Rovis, T. Late-stage isotopic exchange of primary amines. J. Am. Chem. Soc. 145, 24367–24374 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marchese, A. D., Dorsheimer, J. R. & Rovis, T. Photoredox-catalyzed generation of tertiary anions from primary amines via a radical polar crossover. Angew. Chem. Int. Ed. 63, e202317563 (2024).

    Article  CAS  Google Scholar 

  16. Narayanam, J. M. R., Tucker, J. W. & Stephenson, C. R. J. Electron-transfer photoredox catalysis: development of a tin-free reductive dehalogenation reaction. J. Am. Chem. Soc. 131, 8756–8757 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Maji, T., Karmakar, A. & Reiser, O. Visible-light photoredox catalysis: dehalogenation of vicinal dibromo-, α-halo-, and α,α-dibromocarbonyl compounds. J. Org. Chem. 76, 736–739 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Dorsheimer, J. R., Ashley, M. A. & Rovis, T. Dual nickel/photoredox-catalyzed deaminative cross-coupling of sterically hindered primary amines. J. Am. Chem. Soc. 143, 19294–19299 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liao, J. et al. Deaminative reductive cross-electrophile couplings of alkylpyridinium salts and aryl bromides. Org. Lett. 21, 2941–2946 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dong, Z. & MacMillan, D. W. C. Metallaphotoredox-enabled deoxygenative arylation of alcohols. Nature 598, 451–456 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sakai, H. A. & MacMillan, D. W. C. Nontraditional fragment couplings of alcohols and carboxylic acids: C(sp3)–C(sp3) cross-coupling via radical sorting. J. Am. Chem. Soc. 144, 6185–6192 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dongbang, S. & Doyle, A. G. Ni/photoredox-catalyzed C(sp3)–C(sp3) coupling between aziridines and acetals as alcohol-derived alkyl radical precursors. J. Am. Chem. Soc. 144, 20067–20077 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lau, S. H. et al. Ni/photoredox-catalyzed enantioselective cross-electrophile coupling of styrene oxides with aryl iodides. J. Am. Chem. Soc. 143, 15873–15881 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 1–19 (2017).

    Article  Google Scholar 

  25. Cox, A. J., DeWeerd, A. J. & Linden, J. An experiment to measure Mie and Rayleigh total scattering cross sections. Am. J. Phys. 70, 620–625 (2002).

    Article  Google Scholar 

  26. Cagan, D. A. et al. Elucidating the mechanism of excited-state bond homolysis in nickel–bipyridine photoredox catalysts. J. Am. Chem. Soc. 144, 6516–6531 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lowry, M. S. et al. Single-layer electroluminescent devices and photoinduced hydrogen production from an ionic iridium(III) complex. Chem. Mater. 17, 5712–5719 (2005).

    Article  CAS  Google Scholar 

  29. Chan, A. Y. et al. Exploiting the Marcus inverted region for first-row transition metal-based photoredox catalysis. Science 382, 191–197 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. de Groot, L. H. M., Ilic, A., Schwarz, J. & Wärnmark, K. Iron photoredox catalysis — past, present, and future. J. Am. Chem. Soc. 145, 9369–9388 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Huang, X. & Meggers, E. Asymmetric photocatalysis with bis-cyclometalated rhodium complexes. Acc. Chem. Res. 52, 833–847 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Mei, L., Veleta, J. M. & Gianetti, T. L. Helical carbenium ion: a versatile organic photoredox catalyst for red-light-mediated reactions. J. Am. Chem. Soc. 142, 12056–12061 (2020). This study details uses of the organic photocatalyst DMQA+.

    Article  CAS  PubMed  Google Scholar 

  33. Rybicka-Jasińska, K. et al. Porphyrins as promising photocatalysts for red-light-induced functionalizations of biomolecules. ACS Org. Inorg. Au 2, 422–426 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kosso, A. R. O., Sellet, N., Baralle, A., Cormier, M. & Goddard, J.-P. Cyanine-based near infra-red organic photoredox catalysis. Chem. Sci. 12, 6964–6968 (2021).

    Article  Google Scholar 

  35. Niu, K.-K. et al. Red-light-based effective photocatalysis of a photosensitive covalent organic framework triggered singlet oxygen. ACS Catal. 14, 2631–2641 (2024).

    Article  CAS  Google Scholar 

  36. Sheng, W., Wang, X., Wang, Y., Chen, S. & Lang, X. Integrating TEMPO into a metal–organic framework for cooperative photocatalysis: selective aerobic oxidation of sulfides. ACS Catal. 12, 11078–11088 (2022).

    Article  CAS  Google Scholar 

  37. Shi, J.-L., Chen, R., Hao, H., Wang, C. & Lang, X. 2D sp2 carbon-conjugated porphyrin covalent organic framework for cooperative photocatalysis with TEMPO. Angew. Chem. Int. Ed. 59, 9088–9093 (2020).

    Article  CAS  Google Scholar 

  38. Wu, S., Zhang, Y.-F., Ding, H., Li, X. & Lang, X. Hydrazone-linked 2D porphyrinic covalent organic framework photocatalysis for visible light-driven aerobic oxidation of amines to imines. J. Colloid Interface Sci. 610, 446–454 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Shi, J.-L. et al. 2D sp2 carbon-conjugated covalent organic framework with pyrene-tethered TEMPO intercalation for photocatalytic aerobic oxidation of sulfides into sulfoxides. Sol. RRL 6, 2100608 (2022).

    Article  CAS  Google Scholar 

  40. Li, P., Dong, X., Zhang, Y., Lang, X. & Wang, C. An azine-linked 2D porphyrinic covalent organic framework for red light photocatalytic oxidative coupling of amines. Mater. Today Chem. 25, 100953 (2022).

    Article  CAS  Google Scholar 

  41. Cocquet, G., Ferroud, C. & Guy, A. A mild and efficient procedure for ring-opening reactions of piperidine and pyrrolidine derivatives by single electron transfer photooxidation. Tetrahedron 56, 2975–2984 (2000).

    Article  CAS  Google Scholar 

  42. Watanabe, K. et al. Indolizines enabling rapid uncaging of alcohols and carboxylic acids by red light-induced photooxidation. Org. Lett. 22, 5434–5438 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Lee, J., Papatzimas, J. W., Bromby, A. D., Gorobets, E. & Derksen, D. J. Thiaporphyrin-mediated photocatalysis using red light. RSC Adv. 6, 59269–59272 (2016).

    Article  CAS  Google Scholar 

  44. Orłowska, K. et al. Unlocking the reactivity of diazo compounds in red light with the use of photochemical tools. Chem. Commun. 59, 14649–14652 (2023).

    Article  Google Scholar 

  45. Kalyani, D., McMurtrey, K. B., Neufeldt, S. R. & Sanford, M. S. Room-temperature C–H arylation: merger of Pd-catalyzed C–H functionalization and visible-light photocatalysis. J. Am. Chem. Soc. 133, 18566–18569 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tlahuext-Aca, A., Hopkinson, M. N., Sahoo, B. & Glorius, F. Dual gold/photoredox-catalyzed C(sp)–H arylation of terminal alkynes with diazonium salts. Chem. Sci. 7, 89–93 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Teruo, U. & Sumi, I. Power-variable trifluoromethylating agents, (trifluoromethyl)dibenzothio- and -selenophenium salt system. Tetrahedron Lett. 31, 3579–3582 (1990).

    Article  Google Scholar 

  48. Yasu, Y., Arai, Y., Tomita, R., Koike, T. & Akita, M. Highly regio- and diastereoselective synthesis of CF3-substituted lactones via photoredox-catalyzed carbolactonization of alkenoic acids. Org. Lett. 16, 780–783 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Noto, N., Miyazawa, K., Koike, T. & Akita, M. Anti-diastereoselective synthesis of CF3-containing spirooxazolines and spirooxazines via regiospecific trifluoromethylative spirocyclization by photoredox catalysis. Org. Lett. 17, 3710–3713 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Koike, T. & Akita, M. Fine design of photoredox systems for catalytic fluoromethylation of carbon–carbon multiple bonds. Acc. Chem. Res. 49, 1937–1945 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Mei, L., Moutet, J., Stull, S. M. & Gianetti, T. L. Synthesis of CF3-containing spirocyclic indolines via a red-light-mediated trifluoromethylation/dearomatization cascade. J. Org. Chem. 86, 10640–10653 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Stull, S. M., Mei, L. & Gianetti, T. L. Red-light-induced N,N′-dipropyl-1,13-dimethoxyquinacridinium-catalyzed [3+2] cycloaddition of cyclopropylamines with alkenes or alkynes. Synlett 33, 1194–1198 (2022).

    Article  CAS  Google Scholar 

  53. Calogero, F. et al. Diastereoselective and enantioselective photoredox pinacol coupling promoted by titanium complexes with a red-absorbing organic dye. Chem. Sci. 13, 5973–5981 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hossain, M. M., Shaikh, A. C., Kaur, R. & Gianetti, T. L. Red light–blue light chromoselective C(sp2)–X bond activation by organic helicenium-based photocatalysis. J. Am. Chem. Soc. 146, 7922–7930 (2024). This study details wavelength-dependent, chemoselective aryl(halide) activation.

    Article  CAS  PubMed  Google Scholar 

  55. Creutz, C., Chou, M., Netzel, T. L., Okumura, M. & Sutin, N. Lifetimes, spectra, and quenching of the excited states of polypyridine complexes of iron(II), ruthenium(II), and osmium(II). J. Am. Chem. Soc. 102, 1309–1319 (1980).

    Article  CAS  Google Scholar 

  56. Matsuzaki, K., Hiromura, T., Tokunaga, E. & Shibata, N. Trifluoroethoxy-coated subphthalocyanine affects trifluoromethylation of alkenes and alkynes even under low-energy red-light irradiation. ChemistryOpen 6, 226–230 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yerien, D. E., Cooke, M. V., Vior, M. C. G., Barata-Vallejo, S. & Postigo, A. Radical fluoroalkylation reactions of (hetero)arenes and sulfides under red light photocatalysis. Org. Biomol. Chem. 17, 3741–3746 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Ogura, A., Ichii, N., Shibata, K. & Takao, K. Red-light-mediated Barton–McCombie reaction. Bull. Chem. Soc. Jpn. 93, 936–941 (2020).

    Article  CAS  Google Scholar 

  59. Yamamoto, H. et al. Red-light-mediated Barton decarboxylation reaction and one-pot wavelength-selective transformations. Chem. Sci. 14, 11243–11250 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bilger, J. B., Kerzig, C., Larsen, C. B. & Wenger, O. S. A photorobust Mo(0) complex mimicking [Os(2,2′-bipyridine)3]2+ and its application in red-to-blue upconversion. J. Am. Chem. Soc. 143, 1651–1663 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Herr, P., Schwab, A., Kupfer, S. & Wenger, O. S. Deep-red luminescent molybdenum(0) complexes with bi- and tridentate isocyanide chelate ligands. ChemPhotoChem 6, e202200052 (2022).

    Article  CAS  Google Scholar 

  62. Jin, T., Wagner, D. & Wenger, O. S. Luminescent and photoredox-active molybdenum(0) complexes competitive with isoelectronic ruthenium(II) polypyridines. Angew. Chem. Int. Ed. 63, e202314475 (2024).

    Article  CAS  Google Scholar 

  63. Sinha, N., Wegeberg, C., Häussinger, D., Prescimone, A. & Wenger, O. S. Photoredox-active Cr(0) luminophores featuring photophysical properties competitive with Ru(II) and Os(II) complexes. Nat. Chem. 15, 1730–1736 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Glaser, F. & Wenger, O. S. Red light-based dual photoredox strategy resembling the Z-scheme of natural photosynthesis. JACS Au 2, 1488–1503 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Han, G. et al. Two-photon-absorbing ruthenium complexes enable near infrared light-driven photocatalysis. Nat. Commun. 13, 2288 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Moon, H. W. & Cornella, J. Bismuth redox catalysis: an emerging main-group platform for organic synthesis. ACS Catal. 12, 1382–1393 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mato, M. et al. Bismuth radical catalysis in the activation and coupling of redox-active electrophiles. Nat. Chem. 15, 1138–1145 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mato, M. et al. Oxidative addition of aryl electrophiles into a red-light-active bismuthinidene. J. Am. Chem. Soc. 145, 18742–18747 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. L. Lohr, L. Spin-forbidden electronic excitations in transition metal complexes. Coord. Chem. Rev. 8, 241–259 (1972).

    Article  Google Scholar 

  70. Kianfar, E., Apaydin, D. H. & Knör, G. Spin-forbidden excitation: a new approach for triggering photopharmacological processes with low-intensity NIR light. ChemPhotoChem 1, 378–382 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nakajima, M. et al. A direct S0→Tn transition in the photoreaction of heavy-atom-containing molecules. Angew. Chem. Int. Ed. 59, 6847–6852 (2020).

    Article  CAS  Google Scholar 

  72. Bejoymohandas, K. S. et al. Cationic iridium(III) complexes with benzothiophene-quinoline ligands for deep-red light-emitting electrochemical cells. Inorg. Chem. 62, 43–55 (2023).

    Article  CAS  PubMed  Google Scholar 

  73. Maurer, A. B. & Meyer, G. J. Stark spectroscopic evidence that a spin change accompanies light absorption in transition metal polypyridyl complexes. J. Am. Chem. Soc. 142, 6847–6851 (2020).

    Article  CAS  PubMed  Google Scholar 

  74. Ravetz, B. D. et al. Development of a platform for near-infrared photoredox catalysis. ACS Cent. Sci. 6, 2053–2059 (2020). This study provides a report on the use of Os(II) polypyridyl complexes for batch-scalable red-light photoredox catalysis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Beatty, J. W., Douglas, J. J., Cole, K. P. & Stephenson, C. R. J. A scalable and operationally simple radical trifluoromethylation. Nat. Commun. 6, 7919 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Beatty, J. W. et al. Photochemical perfluoroalkylation with pyridine N-oxides: mechanistic insights and performance on a kilogram scale. Chem 1, 456–472 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Goldschmid, S. L. et al. Tuning the electrochemical and photophysical properties of osmium-based photoredox catalysts. Synlett 33, 247–258 (2022).

    Article  CAS  Google Scholar 

  78. Cabanero, D. C., Nguyen, J. A., Cazin, C. S. J., Nolan, S. P. & Rovis, T. Deep red to near-infrared light-controlled ruthenium-catalyzed olefin metathesis. ACS Catal. 13, 4384–4390 (2023).

    Article  CAS  Google Scholar 

  79. Gisbertz, S., Reischauer, S. & Pieber, B. Overcoming limitations in dual photoredox/nickel-catalysed C–N cross-couplings due to catalyst deactivation. Nat. Catal. 3, 611–620 (2020).

    Article  CAS  Google Scholar 

  80. Park, B. Y., Pirnot, M. T. & Buchwald, S. L. Visible light-mediated (hetero)aryl amination using Ni(II) salts and photoredox catalysis in flow: a synthesis of tetracaine. J. Org. Chem. 85, 3234–3244 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Ting, S. I. et al. 3d-d excited states of Ni(II) complexes relevant to photoredox catalysis: spectroscopic identification and mechanistic implications. J. Am. Chem. Soc. 142, 5800–5810 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Goldschmid, S. L. et al. Overcoming photochemical limitations in metallaphotoredox catalysis: red-light-driven C–N cross-coupling. J. Am. Chem. Soc. 144, 22409–22415 (2022).

    Article  CAS  PubMed  Google Scholar 

  83. Zhang, T., Rabeah, J. & Das, S. Red-light-mediated copper-catalyzed photoredox catalysis promotes regioselectivity switch in the difunctionalization of alkenes. Nat. Commun. 15, 5208 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yasu, Y., Koike, T. & Akita, M. Visible light-induced selective generation of radicals from organoborates by photoredox catalysis. Adv. Synth. Catal. 354, 3414–3420 (2012).

    Article  CAS  Google Scholar 

  85. Cannes, C., Labbé, E., Durandetti, M., Devaud, M. & Nédélec, J. Y. Nickel-catalyzed electrochemical homocoupling of alkenyl halides: rates and mechanisms. J. Electroanal. Chem. 412, 85–93 (1996).

    Article  Google Scholar 

  86. Xie, K. A. et al. Orange light-driven C(sp2)–C(sp3) cross-coupling via spin-forbidden Ir(III) metallaphotoredox catalysis. J. Am. Chem. Soc. 145, 19925–19931 (2023).

    Article  CAS  PubMed  Google Scholar 

  87. Obara, S. et al. Highly phosphorescent iridium complexes containing both tridentate bis(benzimidazolyl)-benzene or -pyridine and bidentate phenylpyridine: synthesis, photophysical properties, and theoretical study of Ir-bis(benzimidazolyl)benzene complex. Inorg. Chem. 45, 8907–8921 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Basch, C. H., Liao, J., Xu, J., Piane, J. J. & Watson, M. P. Harnessing alkyl amines as electrophiles for nickel-catalyzed cross couplings via C–N bond activation. J. Am. Chem. Soc. 139, 5313–5316 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Molander, G. A. & Sandrock, D. L. Potassium trifluoroborate salts as convenient, stable reagents for difficult alkyl transfers. Curr. Opin. Drug Discov. Dev. 12, 811–823 (2009).

    CAS  Google Scholar 

  90. Xie, K. A. et al. A unified method for oxidative and reductive decarboxylative arylation with orange light-driven Ir/Ni metallaphotoredox catalysis. J. Am. Chem. Soc. 146, 25780–25787 (2024).

    Article  CAS  PubMed  Google Scholar 

  91. Ravetz, B. D. et al. Photoredox catalysis using infrared light via triplet fusion upconversion. Nature 565, 343–346 (2019). This study provides a seminal report on the use of triplet fusion upconversion for photoredox catalysis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Farney, E. P. & Yoon, T. P. Visible-light sensitization of vinyl azides by transition-metal photocatalysis. Angew. Chem. Int. Ed. 53, 793–797 (2014).

    Article  CAS  Google Scholar 

  93. Ischay, M. A., Anzovino, M. E., Du, J. & Yoon, T. P. Efficient visible light photocatalysis of [2+2] enone cycloadditions. J. Am. Chem. Soc. 130, 12886–12887 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Glaser, F. & Wenger, O. S. Sensitizer-controlled photochemical reactivity via upconversion of red light. Chem. Sci. 14, 149–161 (2023).

    Article  CAS  Google Scholar 

  95. Zeng, L., Huang, L., Lin, W., Jiang, L.-H. & Han, G. Red light-driven electron sacrificial agents-free photoreduction of inert aryl halides via triplet-triplet annihilation. Nat. Commun. 14, 1102 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang, C., Wegeberg, C. & Wenger, O. S. First-row d6 metal complex enables photon upconversion and initiates blue light-dependent polymerization with red light. Angew. Chem. Int. Ed. 62, e202311470 (2023).

    Article  CAS  Google Scholar 

  97. Liang, W. et al. Near-infrared photon upconversion and solar synthesis using lead-free nanocrystals. Nat. Photonics 17, 346–353 (2023).

    Article  CAS  Google Scholar 

  98. Huang, L. & Han, G. Triplet–triplet annihilation photon upconversion-mediated photochemical reactions. Nat. Rev. Chem. 8, 238–255 (2024). This recent study provides a comprehensive review on developments in triplet fusion upconversion for photochemical reactions and its applications.

    Article  CAS  PubMed  Google Scholar 

  99. Hill-West, J. L., Chowdhury, S. M., Slepian, M. J. & Hubbell, J. A. Inhibition of thrombosis and intimal thickening by in situ photopolymerization of thin hydrogel barriers. Proc. Natl Acad. Sci. USA 91, 5967–5971 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hill-West, J. L., Dunn, R. C. & Hubbell, J. A. Local release of fibrinolytic agents for adhesion prevention. J. Surg. Res. 59, 759–763 (1995).

    Article  CAS  PubMed  Google Scholar 

  101. Elisseeff, J. et al. Transdermal photopolymerization for minimally invasive implantation. Proc. Natl Acad. Sci. USA 96, 3104–3107 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Belfield, K. D. et al. Near-IR two-photon photoinitiated polymerization using a fluorone/amine initiating system. J. Am. Chem. Soc. 122, 1217–1218 (2000).

    Article  CAS  Google Scholar 

  103. Xiao, P. et al. Panchromatic photopolymerizable cationic films using indoline and squaraine dye based photoinitiating systems. ACS Macro Lett. 2, 736–740 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Xiao, P. et al. Cationic and thiol–ene photopolymerization upon red lights using anthraquinone derivatives as photoinitiators. Macromolecules 46, 6744–6750 (2013).

    Article  CAS  Google Scholar 

  105. Shanmugam, S., Xu, J. & Boyer, C. Light-regulated polymerization under near-infrared/far-red irradiation catalyzed by bacteriochlorophyll a. Angew. Chem. Int. Ed. 55, 1036–1040 (2016).

    Article  CAS  Google Scholar 

  106. Cao, H. et al. Far-red light-induced reversible addition–fragmentation chain transfer polymerization using a man-made bacteriochlorin. ACS Macro Lett. 8, 616–622 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Wu, Z., Jung, K. & Boyer, C. Effective utilization of NIR wavelengths for photo-controlled polymerization: penetration through thick barriers and parallel solar syntheses. Angew. Chem. Int. Ed. 59, 2013–2017 (2020). This report details highly efficient and NIR-controlled polymerization and its applications in barrier penetration and parallel synthesis.

    Article  CAS  Google Scholar 

  108. Wu, Z. et al. Photo-RAFT polymerization for hydrogel synthesis through barriers and development of light-regulated healable hydrogels under NIR irradiation. Angew. Chem. Int. Ed. 62, e202302451 (2023).

    Article  CAS  Google Scholar 

  109. Bielawski, C. W. & Grubbs, R. H. Living ring-opening metathesis polymerization. Prog. Polym. Sci. 32, 1–29 (2007).

    Article  CAS  Google Scholar 

  110. Schanz, H.-J. Stimuli-responsive olefin metathesis catalysts. Curr. Org. Chem. 17, 2575–2591 (2013).

    Article  CAS  Google Scholar 

  111. Ahumada, G., Ryu, Y. & Bielawski, C. W. Potentiostatically controlled olefin metathesis. Organometallics 39, 1744–1750 (2020).

    Article  CAS  Google Scholar 

  112. Nguyen, J. A., Cabanero, D. C. & Rovis, T. Electrochemically controlled ruthenium-catalyzed olefin metathesis. Synlett 34, 1477–1481 (2023).

    Article  CAS  Google Scholar 

  113. Theunissen, C., Ashley, M. A. & Rovis, T. Visible-light-controlled ruthenium-catalyzed olefin metathesis. J. Am. Chem. Soc. 141, 6791–6796 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Eivgi, O., Phatake, R. S., Nechmad, N. B. & Lemcoff, N. G. Light-activated olefin metathesis: catalyst development, synthesis, and applications. Acc. Chem. Res. 53, 2456–2471 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Stafford, A. et al. Catalyst halogenation enables rapid and efficient polymerizations with visible to far-red light. J. Am. Chem. Soc. 142, 14733–14742 (2020).

    Article  CAS  PubMed  Google Scholar 

  116. Dadashi-Silab, S. et al. Conjugated cross-linked phenothiazines as green or red light heterogeneous photocatalysts for copper-catalyzed atom transfer radical polymerization. J. Am. Chem. Soc. 143, 9630–9638 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Dadashi-Silab, S. et al. Red-light-induced, copper-catalyzed atom transfer radical polymerization. ACS Macro Lett. 11, 376–381 (2022).

    Article  CAS  PubMed  Google Scholar 

  118. Hu, X. et al. Red-light-driven atom transfer radical polymerization for high-throughput polymer synthesis in open air. J. Am. Chem. Soc. 145, 24315–24327 (2023). This study details a highly efficient, air-tolerant, water-tolerant and biocompatible NIR-ATRP with applications in synthesizing DNA–polymer conjugates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Toh, K. et al. Chemoproteomic identification of blue-light-damaged proteins. J. Am. Chem. Soc. 144, 20171–20176 (2022).

    Article  CAS  PubMed  Google Scholar 

  120. Liu, L.-H. et al. A red light activatable multifunctional prodrug for image-guided photodynamic therapy and cascaded chemotherapy. Adv. Funct. Mater. 26, 6257–6269 (2016).

    Article  CAS  Google Scholar 

  121. He, G. et al. Red-light-responsive Ru complex photosensitizer for lysosome localization photodynamic therapy. ACS Appl. Mater. Interfaces 13, 19572–19580 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Ma, H. et al. New Cy5 photosensitizers for cancer phototherapy: a low singlet–triplet gap provides high quantum yield of singlet oxygen. Chem. Sci. 12, 13809–13816 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang, R. et al. A glutathione activatable photosensitizer for combined photodynamic and gas therapy under red light irradiation. Adv. Healthc. Mater. 11, 2102017 (2022).

    Article  CAS  Google Scholar 

  124. Agostinis, P. et al. Photodynamic therapy of cancer: an update. CA Cancer J. Clin. 61, 250–281 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Raza, M. K., Noor, A. & Samantaray, P. K. Ir(III) and Ru(II) complexes in photoredox catalysis and photodynamic therapy: a new paradigm towards anticancer applications. ChemBioChem 22, 3270–3272 (2021).

    Article  CAS  PubMed  Google Scholar 

  126. Koh, E. & Fluhr, R. Singlet oxygen detection in biological systems: uses and limitations. Plant Signal. Behav. 11, e1192742 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Baugh, S. D. P., Yang, Z., Leung, D. K., Wilson, D. M. & Breslow, R. Cyclodextrin dimers as cleavable carriers of photodynamic sensitizers. J. Am. Chem. Soc. 123, 12488–12494 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Jiang, M. Y. & Dolphin, D. Site-specific prodrug release using visible light. J. Am. Chem. Soc. 130, 4236–4237 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Sato, S. & Nakamura, H. Ligand-directed selective protein modification based on local single-electron-transfer catalysis. Angew. Chem. Int. Ed. 52, 8681–8684 (2013).

    Article  CAS  Google Scholar 

  130. Tsushima, M., Sato, S., Niwa, T., Taguchi, H. & Nakamura, H. Catalyst-proximity protein chemical labelling on affinity beads targeting endogenous lectins. Chem. Commun. 55, 13275–13278 (2019).

    Article  CAS  Google Scholar 

  131. Choi-Rhee, E., Schulman, H. & Cronan, J. E. Promiscuous protein biotinylation by Escherichia coli biotin protein ligase. Protein Sci. 13, 3043–3050 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Branon, T. C. et al. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol. 36, 880–887 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sears, R. M., May, D. G. & Roux, K. J. in Enzyme-Mediated Ligation Methods (eds Nuijens, T. & Schmidt, M.) 299–313 (Springer, 2019).

  134. Nguyen, T. M. T., Kim, J., Doan, T. T., Lee, M.-W. & Lee, M. APEX proximity labeling as a versatile tool for biological research. Biochemistry 59, 260–269 (2020).

    Article  CAS  PubMed  Google Scholar 

  135. Ryu, K. A., Kaszuba, C. M., Bissonnette, N. B., Oslund, R. C. & Fadeyi, O. O. Interrogating biological systems using visible-light-powered catalysis. Nat. Rev. Chem. 5, 322–337 (2021).

    Article  CAS  PubMed  Google Scholar 

  136. Oslund, R. C. et al. Detection of cell–cell interactions via photocatalytic cell tagging. Nat. Chem. Biol. 18, 850–858 (2022).

    Article  CAS  PubMed  Google Scholar 

  137. Knutson, S. D., Buksh, B. F., Huth, S. W., Morgan, D. C. & MacMillan, D. W. C. Current advances in photocatalytic proximity labeling. Cell Chem. Biol. 31, 1145–1161 (2024).

    Article  CAS  PubMed  Google Scholar 

  138. Geri, J. B. et al. Microenvironment mapping via Dexter energy transfer on immune cells. Science 367, 1091–1097 (2020). This study provides a seminal report on photoproximity labelling using Ir(III) photocatalysis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Buksh, B. F. et al. μMap-red: proximity labeling by red light photocatalysis. J. Am. Chem. Soc. 144, 6154–6162 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Tay, N. E. S. et al. Targeted activation in localized protein environments via deep red photoredox catalysis. Nat. Chem. 15, 101–109 (2023).

    Article  CAS  PubMed  Google Scholar 

  141. Trowbridge, A. D. et al. Small molecule photocatalysis enables drug target identification via energy transfer. Proc. Natl Acad. Sci. USA 119, e2208077119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Huth, S. W. et al. μMap photoproximity labeling enables small molecule binding site mapping. J. Am. Chem. Soc. 145, 16289–16296 (2023). This study provides a report on mapping small molecule–protein interactions through photoproximity labelling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kawatani, M. & Osada, H. Affinity-based target identification for bioactive small molecules. MedChemComm 5, 277–287 (2014).

    Article  CAS  Google Scholar 

  144. Hill, J. R. & Robertson, A. A. B. Fishing for drug targets: a focus on diazirine photoaffinity probe synthesis. J. Med. Chem. 61, 6945–6963 (2018).

    Article  CAS  PubMed  Google Scholar 

  145. Cabanero, D. C. et al. Photocatalytic activation of aryl(trifluoromethyl) diazos to carbenes for high-resolution protein labeling with red light. J. Am. Chem. Soc. 146, 1337–1345 (2024). This study demonstrates the use of red light for high-resolution protein labelling.

    Article  CAS  PubMed  Google Scholar 

  146. Ryu, K. A. et al. Near-infrared photoredox catalyzed fluoroalkylation strategy for protein labeling in complex tissue environments. ACS Catal. 14, 3482–3491 (2024).

    Article  CAS  Google Scholar 

  147. Jemas, A. et al. Catalytic activation of bioorthogonal chemistry with light (CABL) enables rapid, spatiotemporally controlled labeling and no-wash, subcellular 3D-patterning in live cells using long wavelength light. J. Am. Chem. Soc. 144, 1647–1662 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zhao, Z. et al. Nature-inspired photocatalytic azo bond cleavage with red light. J. Am. Chem. Soc. 146, 1364–1373 (2024).

    Article  CAS  PubMed  Google Scholar 

  149. Rosenberger, J. E. et al. Ligand-directed photocatalysts and far-red light enable catalytic bioorthogonal uncaging inside live cells. J. Am. Chem. Soc. 145, 6067–6078 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wang, L. et al. Potent, orally active heterocycle-based combretastatin A-4 analogues: synthesis, structure−activity relationship, pharmacokinetics, and in vivo antitumor activity evaluation. J. Med. Chem. 45, 1697–1711 (2002).

    Article  CAS  PubMed  Google Scholar 

  151. Holmlin, R. E. & Barton, J. K. Os(phen)2(dppz)2+: a red-emitting DNA probe. Inorg. Chem. 34, 7–8 (1995).

    Article  CAS  Google Scholar 

  152. Moucheron, C., Kirsch-De Mesmaeker, A. & Kelly, J. M. Photoreactions of ruthenium (II) and osmium (II) complexes with deoxyribonucleic acid (DNA). J. Photochem. Photobiol. B 40, 91–106 (1997).

    Article  CAS  PubMed  Google Scholar 

  153. Chouai, A. et al. Ruthenium(II) complexes of 1,12-diazaperylene and their interactions with DNA. Inorg. Chem. 44, 5996–6003 (2005).

    Article  CAS  PubMed  Google Scholar 

  154. Bruijnincx, P. C. A. & Sadler, P. J. in Advances in Inorganic Chemistry Vol. 61 (eds van Eldik, R. & Hubbard, C. D.) 1–62 (Academic, 2009).

  155. Monro, S. et al. Photobiological activity of Ru(II) dyads based on (pyren-1-yl)ethynyl derivatives of 1,10-phenanthroline. Inorg. Chem. 49, 2889–2900 (2010).

    Article  CAS  PubMed  Google Scholar 

  156. Mardanya, S., Karmakar, S., Maity, D. & Baitalik, S. Ruthenium(II) and osmium(II) mixed chelates based on pyrenyl–pyridylimidazole and 2,2′-bipyridine ligands as efficient DNA intercalators and anion sensors. Inorg. Chem. 54, 513–526 (2015).

    Article  CAS  PubMed  Google Scholar 

  157. Liang, X. et al. Near infrared light-triggered photocatalytic decaging for remote-controlled spatiotemporal activation in living mice. Angew. Chem. Int. Ed. 62, e202310920 (2023).

    Article  CAS  Google Scholar 

  158. Gan, X. et al. Carbon quaternization of redox active esters and olefins by decarboxylative coupling. Science 384, 113–118 (2024).

    Article  CAS  PubMed  Google Scholar 

  159. Laudadio, G. et al. Nickel-electrocatalytic decarboxylative arylation to access quaternary centers. Angew. Chem. Int. Ed. 136, e202314617 (2024).

    Article  Google Scholar 

  160. Tay, N. E. S., Lehnherr, D. & Rovis, T. Photons or electrons? A critical comparison of electrochemistry and photoredox catalysis for organic synthesis. Chem. Rev. 122, 2487–2649 (2022).

    Article  CAS  PubMed  Google Scholar 

  161. Kawamata, Y. et al. An electroaffinity labelling platform for chemoproteomic-based target identification. Nat. Chem. 15, 1267–1275 (2023).

    Article  CAS  PubMed  Google Scholar 

  162. Plamper, F. A. Polymerizations under electrochemical control. Colloid Polym. Sci. 292, 777–783 (2014).

    Article  CAS  Google Scholar 

  163. Novaes, T. et al. Electrocatalysis as an enabling technology for organic synthesis. Chem. Soc. Rev. 50, 7941–8002 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Do, J.-L. & Friščić, T. Mechanochemistry: a force of synthesis. ACS Cent. Sci. 3, 13–19 (2017).

    Article  CAS  PubMed  Google Scholar 

  165. France, S. P., Lewis, R. D. & Martinez, C. A. The evolving nature of biocatalysis in pharmaceutical research and development. JACS Au 3, 715–735 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank N. Tay for the helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to David C. Cabanero or Tomislav Rovis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Xianjun Lang, Aleksandr Savateev and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Dexter EnT

An energy transfer mechanism through which electrons are exchanged between an excited-state donor and an acceptor molecule. This exchange requires overlap of the wavefunctions of the donor and acceptor and, thus, occurs at short distances.

Förster EnT

An energy transfer mechanism through which a non-radiative relaxation of an excited-state electron from the donor results in the excitation of the electron of an acceptor molecule. The distance between the molecules exceeds that of the sum of their van der Waals radii, and the efficiency of quenching is characteristically sensitive to changes in the distance between the two molecules.

Streptavidin

A tetrameric protein with an extremely strong affinity for biotin. This pair is typically used in biotechnology for purification and detection of biomolecules.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabanero, D.C., Rovis, T. Low-energy photoredox catalysis. Nat Rev Chem 9, 28–45 (2025). https://doi.org/10.1038/s41570-024-00663-6

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41570-024-00663-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing