Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Taking dynamic covalent chemistry out of the lab and into reprocessable industrial thermosets

Abstract

Dynamic covalent chemistry (DCC) allows the development of thermally (re)processable and recyclable polymer networks, which is a highly attractive feature for new generations of thermoset materials. However, despite a surge in academic interest wherein soon almost any imaginable DCC platform may have been applied in a thermoset formulation, dynamic or reversible covalent polymer networks have so far found only few industrial applications. This Review provides a perspective on the main strategies for the application of DCC in the design and development of bulk thermoset materials, and it presents some of the key hurdles for their industrial implementation. The polymer design strategies and associated chemistries are viewed from the perspective of how ‘close to market’ their development pathway is, thus providing a roadmap to achieve high-volume breakthrough applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the thermal reprocessing pathways for thermoplastic and thermoset polymers below and above their degradation temperature.
Fig. 2: Overview of the three distinct strategies for the design of DCC-thermosets that will be discussed in this Review.
Fig. 3: Native DCC-thermosets that can be obtained through catalyst (cat.) doping and stoichiometry fine tuning in traditional thermosets, together with promising chemistries.
Fig. 4: Overview of disruptive DCC-thermosets obtained from combining existing bulk chemicals.
Fig. 5: Disruptive DCC-thermosets obtained from new compounds.
Fig. 6: Overview of the preparation of hybrid DCC-thermosets wherein a reactive DCC-comonomer is used in an existing thermoset formulation.

Similar content being viewed by others

References

  1. Coates, G. W. & Getzler, Y. D. Y. L. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 5, 501–516 (2020).

    Article  CAS  Google Scholar 

  2. Hinsken, H., Moss, S., Pauquet, J. R. & Zweifel, H. Degradation of polyolefins during melt processing. Polym. Degrad. Stab. 34, 279–293 (1991).

    Article  CAS  Google Scholar 

  3. Miranda, R., Yang, J., Roy, C. & Vasile, C. Vacuum pyrolysis of PVC I. Kinetic study. Polym. Degrad. Stab. 64, 127–144 (1999).

    Article  CAS  Google Scholar 

  4. Kartalis, C. N., Papaspyrides, C. D., Pfaendner, R., Hoffmann, K. & Herbst, H. Closed loop recycling of bottle crates using the restabilization technique. Macromol. Mater. Eng. 288, 124–136 (2003).

    Article  CAS  Google Scholar 

  5. Oblak, P., Gonzalez-Gutierrez, J., Zupančič, B., Aulova, A. & Emri, I. Processability and mechanical properties of extensively recycled high density polyethylene. Polym. Degrad. Stab. 114, 133–145 (2015).

    Article  CAS  Google Scholar 

  6. Rahimi, A. & García, J. M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 1, 0046 (2017).

    Article  Google Scholar 

  7. Rodríguez Lamar, Y., Noboa, J., Torres Miranda, A. S. & Almeida Streitwieser, D. Conversion of PP, HDPE and LDPE plastics into liquid fuels and chemical precursors by thermal cracking. J. Polym. Environ. 29, 3842–3853 (2021).

    Article  Google Scholar 

  8. Nguyen, T. Q. & Kausch, H. H. in Mechanical Properties and Testing of Polymers 143–150 (Springer Nature, 1999).

  9. Weerasinghe, M. A. S. N. et al. Educational series: turning monomers into crosslinked polymer networks. Polym. Chem. 14, 4503–4514 (2023).

    Article  CAS  Google Scholar 

  10. Rajawasam, C. W. H. et al. Educational series: characterizing crosslinked polymer networks. Polym. Chem. 15, 219–247 (2023).

    Article  Google Scholar 

  11. Li, H. et al. Expanding plastics recycling technologies: chemical aspects, technology status and challenges. Green Chem. 24, 8899–9002 (2022).

    Article  CAS  Google Scholar 

  12. Schyns, Z. O. G. & Shaver, M. P. Mechanical recycling of packaging plastics: a review. Macromol. Rapid Commun. 42, 1–27 (2021).

    Article  Google Scholar 

  13. Jehanno, C. et al. Critical advances and future opportunities in upcycling commodity polymers. Nature 603, 803–814 (2022).

    Article  CAS  PubMed  Google Scholar 

  14. Ragaert, K., Delva, L. & Van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 69, 24–58 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Utekar, S., Suriya, V. K., More, N. & Rao, A. Comprehensive study of recycling of thermosetting polymer composites — driving force, challenges and methods. Compos. B Eng. 207, 108596 (2021).

    Article  CAS  Google Scholar 

  16. Law, K. L. & Narayan, R. Reducing environmental plastic pollution by designing polymer materials for managed end-of-life. Nat. Rev. Mater. 7, 104–116 (2022).

    Article  CAS  Google Scholar 

  17. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, 25–29 (2017).

    Article  Google Scholar 

  18. Van Lijsebetten, F., Debsharma, T., Winne, J. M. & Du Prez, F. E. A highly dynamic covalent polymer network without creep: mission impossible? Angew. Chem. Int. Ed. 61, e202210405 (2022).

    Article  Google Scholar 

  19. Wu, S. & Chen, Q. Advances and new opportunities in the rheology of physically and chemically reversible polymers. Macromolecules 55, 697–714 (2022).

    Article  CAS  Google Scholar 

  20. Winne, J. M., Leibler, L. & Du Prez, F. E. Dynamic covalent chemistry in polymer networks: a mechanistic perspective. Polym. Chem. 10, 6091–6108 (2019).

    Article  CAS  Google Scholar 

  21. Shieh, P. et al. Cleavable comonomers enable degradable, recyclable thermoset plastics. Nature 583, 542–547 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Naqvi, S. R. et al. A critical review on recycling of end-of-life carbon fibre/glass fibre reinforced composites waste using pyrolysis towards a circular economy. Resour. Conserv. Recycl. 136, 118–129 (2018).

    Article  CAS  Google Scholar 

  23. Lehn, J. M. Dynamers: dynamic molecular and supramolecular polymers. Prog. Polym. Sci. 30, 814–831 (2005).

    Article  CAS  Google Scholar 

  24. Lei, Z., Chen, H., Jin, Y. & Zhang, W. Dynamic covalent chemistry toward wearable electronics. Cell Rep. Phys. Sci. 4, 101336 (2023).

    Article  CAS  Google Scholar 

  25. Park, H. Y., Kloxin, C. J., Scott, T. F. & Bowman, C. N. Covalent adaptable networks as dental restorative resins: stress relaxation by addition–fragmentation chain transfer in allyl sulfide-containing resins. Dent. Mater. 26, 1010–1016 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, V., Kang, B., Accardo, J. V. & Kalow, J. A. Structure–reactivity–property relationships in covalent adaptable networks. J. Am. Chem. Soc. 144, 22358–22377 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Van Zee, N. J. & Nicolaÿ, R. in Macromolecular Engineering 1–38 (Wiley, 2022).

  28. Zou, W., Dong, J., Luo, Y., Zhao, Q. & Xie, T. Dynamic covalent polymer networks: from old chemistry to modern day innovations. Adv. Mater. 29, 1606100 (2017).

  29. Chakma, P. & Konkolewicz, D. Dynamic covalent bonds in polymeric materials. Angew. Chem. Int. Ed. 58, 9682–9695 (2019).

    Article  CAS  Google Scholar 

  30. Deng, Y., Zhang, Q. & Feringa, B. L. Dynamic chemistry toolbox for advanced sustainable materials. Adv. Sci. 2308666, 1–22 (2024).

    Google Scholar 

  31. Wanasinghe, S. V., Dodo, O. J. & Konkolewicz, D. Dynamic bonds: adaptable timescales for responsive materials. Angew. Chem. Int. Ed. 61, e202206938 (2022).

    Article  CAS  Google Scholar 

  32. Lei, Z. et al. New advances in covalent network polymers via dynamic covalent chemistry. Chem. Rev. 124, 7829–7906 (2024).

    Article  CAS  PubMed  Google Scholar 

  33. Elling, B. R. & Dichtel, W. R. Reprocessable cross-linked polymer networks: are associative exchange mechanisms desirable? ACS Cent. Sci. 6, 1488–1496 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Denissen, W., Winne, J. M. & Du Prez, F. E. Vitrimers: permanent organic networks with glass-like fluidity. Chem. Sci. 7, 30–38 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Guerre, M., Taplan, C., Winne, J. M. & Du Prez, F. E. Vitrimers: directing chemical reactivity to control material properties. Chem. Sci. 11, 4855–4870 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Alabiso, W. & Schlögl, S. The impact of vitrimers on the industry of the future: chemistry, properties and sustainable forward-looking applications. Polymers 12, 1660 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kloxin, C. J., Scott, T. F., Adzima, B. J. & Bowman, C. N. Covalent adaptable networks (CANs): a unique paradigm in cross-linked polymers. Macromolecules 43, 2643–2653 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Montarnal, D., Capelot, M., Tournilhac, F. & Leibler, L. Silica-like malleable materials from permanent organic networks. Science 334, 965–968 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Kloxin, C. J. & Bowman, C. N. Covalent adaptable networks: smart, reconfigurable and responsive network systems. Chem. Soc. Rev. 42, 7161–7173 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Van Zee, N. J. & Nicolaÿ, R. Vitrimers: permanently crosslinked polymers with dynamic network topology. Prog. Polym. Sci. 104, 101233 (2020).

    Article  Google Scholar 

  41. Bowman, C. N. & Kloxin, C. J. Covalent adaptable networks: reversible bond structures incorporated in polymer networks. Angew. Chem. Int. Ed. 51, 4272–4274 (2012).

    Article  CAS  Google Scholar 

  42. Scheutz, G. M., Lessard, J. J., Sims, M. B. & Sumerlin, B. S. Adaptable crosslinks in polymeric materials: resolving the intersection of thermoplastics and thermosets. J. Am. Chem. Soc. 141, 16181–16196 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Dobson, A. L., Bongiardina, N. J. & Bowman, C. N. Combined dynamic network and filler interface approach for improved adhesion and toughness in pressure-sensitive adhesives. ACS Appl. Polym. Mater. 2, 1053–1060 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Sowan, N., Dobson, A., Podgorski, M. & Bowman, C. N. Dynamic covalent chemistry (DCC) in dental restorative materials: implementation of a DCC-based adaptive interface (AI) at the resin–filler interface for improved performance. Dent. Mater. 36, 53–59 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Aldana, A. A. et al. Biomimetic double network hydrogels: combining dynamic and static crosslinks to enable biofabrication and control cell‐matrix interactions. J. Polym. Sci. 59, 2832–2843 (2021).

    Article  CAS  Google Scholar 

  46. Tobolsky, A. V., Prettyman, I. B. & Dillon, J. H. Stress relaxation of natural and synthetic rubber stocks. J. Appl. Phys. 15, 380–395 (1944).

    Article  CAS  Google Scholar 

  47. Craven, J. M. Cross-linked thermally reversible polymers produced from condensation polymers with pendant furan groups cross-linked with maleimides. US patent WO 3435003 (1969).

  48. Frich, D., Goranov, K., Schneggenburger, L. & Economy, J. Novel high-temperature aromatic copolyester thermosets: synthesis, characterization, and physical properties. Macromolecules 29, 7734–7739 (1996).

    Article  CAS  Google Scholar 

  49. Lehn, J. M. From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem. Soc. Rev. 36, 151–160 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Chen, X., Wudl, F., Mal, A. K., Shen, H. & Nutt, S. R. New thermally remendable highly cross-linked polymeric materials. Macromolecules 36, 1802–1807 (2003).

    Article  CAS  Google Scholar 

  51. Rowan, S. J., Cantrill, S. J., Cousins, G. R. L., Sanders, J. K. M. & Stoddart, J. F. Dynamic covalent chemistry. Angew. Chem. Int. Ed. 41, 898–952 (2002).

    Article  Google Scholar 

  52. Taynton, P. et al. Heat- or water-driven malleability in a highly recyclable covalent network polymer. Adv. Mater. 26, 3938–3942 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Jin, Y., Yu, C., Denman, R. J. & Zhang, W. Recent advances in dynamic covalent chemistry. Chem. Soc. Rev. 42, 6634–6654 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Denissen, W. et al. Vinylogous urethane vitrimers. Adv. Funct. Mater. 25, 2451–2457 (2015).

    Article  CAS  Google Scholar 

  55. De Alwis Watuthanthrige, N., Chakma, P. & Konkolewicz, D. Designing dynamic materials from dynamic bonds to macromolecular architecture. Trends Chem. 3, 231–247 (2021).

    Article  Google Scholar 

  56. Capelot, M., Montarnal, D., Tournilhac, F. & Leibler, L. Metal-catalyzed transesterification for healing and assembling of thermosets. J. Am. Chem. Soc. 134, 7664–7667 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Capelot, M., Unterlass, M. M., Tournilhac, F. & Leibler, L. Catalytic control of the vitrimer glass transition. ACS Macro Lett. 1, 789–792 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Poutrel, Q.-A., Blaker, J. J., Soutis, C., Tournilhac, F. & Gresil, M. Dicarboxylic acid-epoxy vitrimers: influence of the off-stoichiometric acid content on cure reactions and thermo-mechanical properties. Polym. Chem. 11, 5327–5338 (2020).

    Article  CAS  Google Scholar 

  59. Altuna, F. I., Hoppe, C. E. & Williams, R. J. J. Shape memory epoxy vitrimers based on DGEBA crosslinked with dicarboxylic acids and their blends with citric acid. RSC Adv. 6, 88647–88655 (2016).

    Article  CAS  Google Scholar 

  60. Li, L., Chen, X., Jin, K. & Torkelson, J. M. Vitrimers designed both to strongly suppress creep and to recover original cross-link density after reprocessing: quantitative theory and experiments. Macromolecules 51, 5537–5546 (2018).

    Article  CAS  Google Scholar 

  61. Self, J. L., Dolinski, N. D., Zayas, M. S., Read de Alaniz, J. & Bates, C. M. Brønsted-acid-catalyzed exchange in polyester dynamic covalent networks. ACS Macro Lett. 7, 817–821 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Han, J. et al. A catalyst-free epoxy vitrimer system based on multifunctional hyperbranched polymer. Macromolecules 51, 6789–6799 (2018).

    Article  CAS  Google Scholar 

  63. Han, J. et al. Hyperbranched polymer assisted curing and repairing of an epoxy coating. Ind. Eng. Chem. Res. 58, 6466–6475 (2019).

    Article  CAS  Google Scholar 

  64. Yang, S. et al. Direct and catalyst-free ester metathesis reaction for covalent adaptable networks. J. Am. Chem. Soc. 145, 20927–20935 (2023).

    Article  CAS  PubMed  Google Scholar 

  65. Altuna, F. I., Hoppe, C. E. & Williams, R. J. J. Epoxy vitrimers with a covalently bonded tertiary amine as catalyst of the transesterification reaction. Eur. Polym. J. 113, 297–304 (2019).

    Article  CAS  Google Scholar 

  66. Li, Y. et al. Catalyst-free vitrimer elastomers based on a dimer acid: robust mechanical performance, adaptability and hydrothermal recyclability. Green Chem. 22, 870–881 (2020).

    Article  CAS  Google Scholar 

  67. Hao, C. et al. Recyclable CFRPs with extremely high Tg: hydrothermal recyclability in pure water and upcycling of the recyclates for new composite preparation. J. Mater. Chem. A 10, 15623–15633 (2022).

    Article  CAS  Google Scholar 

  68. Qiu, J. et al. Upcycling of polyethylene terephthalate to continuously reprocessable vitrimers through reactive extrusion. Macromolecules 54, 703–712 (2021).

    Article  CAS  Google Scholar 

  69. Zhou, Y., Goossens, J. G. P., Sijbesma, R. P. & Heuts, J. P. A. Poly(butylene terephthalate)/glycerol-based vitrimers via solid-state polymerization. Macromolecules 50, 6742–6751 (2017).

    Article  CAS  Google Scholar 

  70. Zhou, Y., Groote, R., Goossens, J. G. P., Sijbesma, R. P. & Heuts, J. P. A. Tuning PBT vitrimer properties by controlling the dynamics of the adaptable network. Polym. Chem. 10, 136–144 (2019).

    Article  CAS  Google Scholar 

  71. Demongeot, A. et al. Cross-linking of poly(butylene terephthalate) by reactive extrusion using Zn(II) epoxy-vitrimer chemistry. Macromolecules 50, 6117–6127 (2017).

    Article  CAS  Google Scholar 

  72. Ng, K. W. J. et al. A facile alternative strategy of upcycling mixed plastic waste into vitrimers. Commun. Chem. 6, 158 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Berzelius, J. J. Rapport annuel sur les progrès de la chimie (Swedish Royal Academy of Science, 1847).

  74. Sandler, S. R. & Karo, W. (eds). in Polymer Syntheses 29, Ch. 5 (Elsevier, 1977).

  75. Delahaye, M., Winne, J. M. & Du Prez, F. E. Internal catalysis in covalent adaptable networks: phthalate monoester transesterification as a versatile dynamic cross-linking chemistry. J. Am. Chem. Soc. 141, 15277–15287 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Bender, M. L., Chloupek, F. & Neveu, M. C. Intramolecular catalysis of hydrolytic reactions. III. Intramolecular catalysis by carboxylate ion in the hydrolysis of methyl hydrogen phthalate 1,2. J. Am. Chem. Soc. 80, 5384–5387 (1958).

    Article  CAS  Google Scholar 

  77. Thanassi, J. W. & Bruice, T. C. Neighboring carboxyl group participation in the hydrolysis of monoesters of phthalic acid. The dependence of mechanisms on leaving group tendencies. J. Am. Chem. Soc. 88, 747–752 (1966).

    Article  CAS  PubMed  Google Scholar 

  78. Hernández, A. et al. Design and continuous (re)processing of thermally resilient poly(styrene-co-maleic maleate)-based covalent adaptable networks. Chem. Mater. 36, 7487–7503 (2024).

    Article  Google Scholar 

  79. Delebecq, E., Pascault, J., Boutevin, B. & Ganachaud, F. On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem. Rev. 113, 80–118 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Offenbach, J. A. & Tobolsky, A. V. Chemical relaxation of stress in polyurethane elastomers. J. Colloid Sci. 11, 39–47 (1956).

    Article  CAS  Google Scholar 

  81. Colodny, P. C. & Tobolsky, A. V. Chemorheological study of polyurethan elastomers 1. J. Am. Chem. Soc. 79, 4320–4323 (1957).

    Article  CAS  Google Scholar 

  82. Wicks, D. A. & Wicks, Z. W. Blocked isocyanates III: part A. Mechanisms and chemistry. Prog. Org. Coat. 36, 148–172 (1999).

    Article  CAS  Google Scholar 

  83. Wicks, D. A. & Wicks, Z. W. Blocked isocyanates III — part B: uses and applications of blocked isocyanates. Prog. Org. Coat. 41, 1–83 (2001).

    Article  CAS  Google Scholar 

  84. Maes, S., Van Lijsebetten, F., Winne, J. M. & Du Prez, F. E. N-Sulfonyl urethanes to design polyurethane networks with temperature-controlled dynamicity. Macromolecules 56, 1934–1944 (2023).

    Article  CAS  Google Scholar 

  85. Camberlin, Y., Michaud, P., Pesando, C. & Pascault, J. P. Isocyanate blocking agents use in polyurethane processing. Makromol. Chem. Macromol. Symp. 25, 91–99 (1989).

    Article  CAS  Google Scholar 

  86. Chen, X., Hu, S., Li, L. & Torkelson, J. M. Dynamic covalent polyurethane networks with excellent property and cross-link density recovery after recycling and potential for monomer recovery. ACS Appl. Polym. Mater. 2, 2093–2101 (2020).

    Article  CAS  Google Scholar 

  87. Elizalde, F., Aguirresarobe, R. H., Gonzalez, A. & Sardon, H. Dynamic polyurethane thermosets: tuning associative/dissociative behavior by catalyst selection. Polym. Chem. 11, 5386–5396 (2020).

    Article  CAS  Google Scholar 

  88. Stern, M. D. & Tobolsky, A. V. Stress-time-temperature relations in polysulfide rubbers. J. Chem. Phys. 14, 93–100 (1946).

    Article  CAS  Google Scholar 

  89. Osthoff, R. C., Bueche, A. M. & Grubb, W. T. Chemical stress-relaxation of polydimethylsiloxane elastomers. J. Am. Chem. Soc. 76, 4659–4663 (1954).

    Article  CAS  Google Scholar 

  90. Zheng, P. & McCarthy, T. J. A surprise from 1954: siloxane equilibration is a simple, robust, and obvious polymer self-healing mechanism. J. Am. Chem. Soc. 134, 2024–2027 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Ramdani, N., Zaimeche, H. & Derradji, M. Biobased thermally-stable aromatic cyanate ester thermosets: a review. React. Funct. Polym. 168, 105037 (2021).

    Article  CAS  Google Scholar 

  92. Lei, Z. et al. Recyclable and malleable thermosets enabled by activating dormant dynamic linkages. Nat. Chem. 14, 1399–1404 (2022).

    Article  CAS  PubMed  Google Scholar 

  93. Van Lijsebetten, F., Maes, S., Winne, J. M. & Du Prez, F. E. Thermoswitchable catalysis to inhibit and promote plastic flow in vitrimers. Chem. Sci. 15, 7061–7071 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Unal, K. et al. Foam-to-elastomer recycling of polyurethane materials through incorporation of dynamic covalent TAD–indole linkages. ACS Appl. Polym. Mater. 6, 2604–2615 (2024).

    Article  CAS  Google Scholar 

  95. Van Lijsebetten, F., Holloway, J. O., Winne, J. M. & Du Prez, F. E. Internal catalysis for dynamic covalent chemistry applications and polymer science. Chem. Soc. Rev. 49, 8425–8438 (2020).

    Article  PubMed  Google Scholar 

  96. Wink, R., Majumdar, S., van Benthem, R. A. T. M., Heuts, J. P. A. & Sijbesma, R. P. RNA-inspired phosphate diester dynamic covalent networks. Polym. Chem. 14, 4294–4302 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Majumdar, S. et al. Efficient exchange in a bioinspired dynamic covalent polymer network via a cyclic phosphate triester intermediate. Macromolecules 54, 7955–7962 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Peerman, D., Tolberg, W. & Floyd, D. Reaction of polyamide resins and epoxy resins. Ind. Eng. Chem. 49, 1091–1094 (1957).

    Article  CAS  Google Scholar 

  99. Huang, K., Xia, J., Yang, X., Li, M. & Ding, H. Properties and curing kinetics of C21-based reactive polyamides as epoxy-curing agents derived from tung oil. Polym. J. 42, 51–57 (2010).

    Article  CAS  Google Scholar 

  100. Van Lijsebetten, F., Maiheu, T., Winne, J. M. & Du Prez, F. E. Epoxy adhesives with reversible hardeners: controllable thermal debonding in bulk and at interfaces. Adv. Mater. 35, 1–11 (2023).

    Google Scholar 

  101. Miller, I. K. Amide‐exchange reactions in mixtures of N‐alkyl amides and in polyamide melt blends. J. Polym. Sci. Polym. Chem. Ed. 14, 1403–1417 (1976).

    Article  CAS  Google Scholar 

  102. Smith, M. E. & Adkins, H. The relative reactivity of amines in the aminolysis of amides 1. J. Am. Chem. Soc. 60, 657–663 (1938).

    Article  Google Scholar 

  103. Van Lijsebetten, F., Spiesschaert, Y., Winne, J. M. & Du Prez, F. E. Reprocessing of covalent adaptable polyamide networks through internal catalysis and ring-size effects. J. Am. Chem. Soc. 143, 15834–15844 (2021).

    Article  PubMed  Google Scholar 

  104. Chen, Y. et al. Dynamic polyamide networks via amide–imide exchange. Macromolecules 54, 9703–9711 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Michael, A. & Schulthess, O. Ueber die addition von natriumacetessig‐ und Natriummalonsäureäthern zu den Aethern ungesättigter Säuren. J. Prakt. Chem. 45, 55–63 (1892).

    Article  Google Scholar 

  106. Boynton, N. R. et al. Accessing pluripotent materials through tempering of dynamic covalent polymer networks. Science 383, 545–551 (2024).

    Article  CAS  PubMed  Google Scholar 

  107. Van Herck, N. et al. Covalent adaptable networks with tunable exchange rates based on reversible thiol–yne cross‐linking. Angew. Chem. Int. Ed. 59, 3609–3617 (2020).

    Article  Google Scholar 

  108. Fischer, S. M., Kaschnitz, P. & Slugovc, C. Tris(2,4,6-trimethoxyphenyl)phosphine — a Lewis base able to compete with phosphazene bases in catalysing oxa-Michael reactions. Catal. Sci. Technol. 12, 6204–6212 (2022).

    Article  CAS  Google Scholar 

  109. Fischer, S. M., Schallert, V., Uher, J. M. & Slugovc, C. Sequential dual-curing of electron-deficient olefins and alcohols relying on oxa-Michael addition and anionic polymerization. Polym. Chem. 14, 1081–1084 (2023).

    Article  CAS  Google Scholar 

  110. Mather, B. D., Viswanathan, K., Miller, K. M. & Long, T. E. Michael addition reactions in macromolecular design for emerging technologies. Prog. Polym. Sci. 31, 487–531 (2006).

    Article  CAS  Google Scholar 

  111. Genest, A., Portinha, D., Fleury, E. & Ganachaud, F. The aza-Michael reaction as an alternative strategy to generate advanced silicon-based (macro)molecules and materials. Prog. Polym. Sci. 72, 61–110 (2017).

    Article  CAS  Google Scholar 

  112. González, G., Fernández-Francos, X., Serra, À., Sangermano, M. & Ramis, X. Environmentally-friendly processing of thermosets by two-stage sequential aza-Michael addition and free-radical polymerization of amine-acrylate mixtures. Polym. Chem. 6, 6987–6997 (2015).

    Article  Google Scholar 

  113. Wang, J., Zhang, C., Ye, W., Zhou, X. & Xue, Z. Amine-acrylate Michael addition: a versatile platform for fabrication of polymer electrolytes with varied cross-linked networks. ACS Appl. Polym. Mater. 6, 2041–2048 (2024).

    Article  CAS  Google Scholar 

  114. Baruah, R. et al. Recyclable thermosets based on dynamic amidation and aza-Michael addition chemistry. Macromolecules 49, 7814–7824 (2016).

    Article  CAS  Google Scholar 

  115. Taplan, C., Guerre, M. & Du Prez, F. E. Covalent adaptable networks using β-amino esters as thermally reversible building blocks. J. Am. Chem. Soc. 143, 9140–9150 (2021).

    Article  CAS  PubMed  Google Scholar 

  116. Berne, D. et al. Taking advantage of β-hydroxy amine enhanced reactivity and functionality for the synthesis of dual covalent adaptable networks. Polym. Chem. 13, 3806–3814 (2022).

    Article  CAS  Google Scholar 

  117. Engelen, S., Van Lijsebetten, F., Aksakal, R., Winne, J. M. & Du Prez, F. E. Enhanced viscosity control in thermosets derived from epoxy and acrylate monomers based on thermoreversible aza-Michael chemistry. Macromolecules 56, 7055–7064 (2023).

    Article  CAS  Google Scholar 

  118. Stricker, L., Taplan, C. & Du Prez, F. E. Biobased, creep-resistant covalent adaptable networks based on β-amino ester chemistry. ACS Sustain. Chem. Eng. 10, 14045–14052 (2022).

    Article  CAS  Google Scholar 

  119. Ivaldi, C. et al. Exploiting β-amino ester chemistry to obtain methacrylate-based covalent adaptable networks. Polymer 293, 126636 (2024).

    Article  CAS  Google Scholar 

  120. Nguyen, L. T., Portone, F. & Du Prez, F. E. β-Amino amide based covalent adaptable networks with high dimensional stability. Polym. Chem. 15, 11–16 (2023).

    Article  Google Scholar 

  121. del Rector, F., Blount, W. W. & Leonard, D. R. Applications for acetoacetyl chemistry in thermoset coatings. J. Coat. Technol. 61, 31–37 (1989).

    Google Scholar 

  122. De Bruycker, K. et al. Triazolinediones as highly enabling synthetic tools. Chem. Rev. 116, 3919–3974 (2016).

    Article  PubMed  Google Scholar 

  123. Fortman, D. J., Brutman, J. P., Cramer, C. J., Hillmyer, M. A. & Dichtel, W. R. Mechanically activated, catalyst-free polyhydroxyurethane vitrimers. J. Am. Chem. Soc. 137, 14019–14022 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. Bakkali-Hassani, C. et al. Polyhydroxyurethane covalent adaptable networks: looking for suitable catalysts. Polym. Chem. 14, 3610–3620 (2023).

    Article  CAS  Google Scholar 

  125. Monie, F. et al. Chemo- and regioselective additions of nucleophiles to cyclic carbonates for the preparation of self-blowing non-isocyanate polyurethane foams. Angew. Chem. Int. Ed. 59, 17033–17041 (2020).

    Article  CAS  Google Scholar 

  126. Monie, F., Grignard, B. & Detrembleur, C. Divergent aminolysis approach for constructing recyclable self-blown nonisocyanate polyurethane foams. ACS Macro Lett. 11, 236–242 (2022).

    Article  CAS  PubMed  Google Scholar 

  127. Purwanto, N. S., Chen, Y., Wang, T. & Torkelson, J. M. Rapidly synthesized, self-blowing, non-isocyanate polyurethane network foams with reprocessing to bulk networks via hydroxyurethane dynamic chemistry. Polymer 272, 125858 (2023).

    Article  CAS  Google Scholar 

  128. Zhao, X. L., Li, Y. D. & Zeng, J. B. Progress in the design and synthesis of biobased epoxy covalent adaptable networks. Polym. Chem. 13, 6573–6588 (2022).

    Article  CAS  Google Scholar 

  129. Wu, X. et al. A facile access to stiff epoxy vitrimers with excellent mechanical properties: via siloxane equilibration. J. Mater. Chem. A 6, 10184–10188 (2018).

    Article  CAS  Google Scholar 

  130. Debsharma, T. et al. Fast dynamic siloxane exchange mechanism for reshapable vitrimer composites. J. Am. Chem. Soc. 144, 12280–12289 (2022).

    Article  CAS  PubMed  Google Scholar 

  131. Debsharma, T., Engelen, S., De Baere, I., Van Paepegem, W. & Du Prez, F. Resorcinol-derived vitrimers and their flax fiber-reinforced composites based on fast siloxane exchange. Macromol. Rapid Commun. 44, 1–5 (2023).

    Article  Google Scholar 

  132. Putnam-Neeb, A. A. et al. Oligosiloxane-based epoxy vitrimers: adaptable thermosetting networks with dual dynamic bonds. ACS Appl. Polym. Mater. 6, 14229–14234 (2024).

    Article  CAS  Google Scholar 

  133. Rekondo, A. et al. Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis. Mater. Horiz. 1, 237–240 (2014).

    Article  CAS  Google Scholar 

  134. Li, B., Zhu, G., Hao, Y. & Ren, T. An investigation on the performance of epoxy vitrimers based on disulfide bond. J. Appl. Polym. Sci. 139, e51589 (2022).

    Article  Google Scholar 

  135. Azcune, I. & Odriozola, I. Aromatic disulfide crosslinks in polymer systems: self-healing, reprocessability, recyclability and more. Eur. Polym. J. 84, 147–160 (2016).

    Article  CAS  Google Scholar 

  136. Ruiz de Luzuriaga, A. et al. Chemical control of the aromatic disulfide exchange kinetics for tailor-made epoxy vitrimers. Polymer 239, 124457 (2022).

    Article  CAS  Google Scholar 

  137. Ruiz De Luzuriaga, A. et al. Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites. Mater. Horiz. 3, 241–247 (2016).

    Article  CAS  Google Scholar 

  138. Schenk, V. et al. Exploring the limits of high-Tg epoxy vitrimers produced through resin-transfer molding. ACS Appl. Mater. Interfaces 15, 46357–46367 (2023).

    Article  CAS  PubMed  Google Scholar 

  139. Ruiz de Luzuriaga, A. et al. Aero grade epoxy vitrimer towards commercialization. Polymers 14, 3180 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Guggari, S. et al. Vanillin-based epoxy vitrimers: looking at the cystamine hardener from a different perspective. ACS Sustain. Chem. Eng. 11, 6021–6031 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Li, L., Chen, X. & Torkelson, J. M. Covalent adaptive networks for enhanced adhesion: exploiting disulfide dynamic chemistry and annealing during application. ACS Appl. Polym. Mater. 2, 4658–4665 (2020).

    Article  CAS  Google Scholar 

  142. Li, B., Zhu, G., Hao, Y. & Ren, T. Effect of cross-link density on the performance of polyimine/epoxy vitrimers. Smart Mater. Struct. 33, 025014 (2024).

    Article  CAS  Google Scholar 

  143. Guerre, M., Taplan, C., Nicolaÿ, R., Winne, J. M. & Du Prez, F. E. Fluorinated vitrimer elastomers with a dual temperature response. J. Am. Chem. Soc. 140, 13272–13284 (2018).

    Article  CAS  PubMed  Google Scholar 

  144. Taplan, C., Guerre, M., Winne, J. M. & Du Prez, F. E. Fast processing of highly crosslinked, low-viscosity vitrimers. Mater. Horiz. 7, 104–110 (2020).

    Article  CAS  Google Scholar 

  145. Van Lijsebetten, F., De Bruycker, K., Spiesschaert, Y., Winne, J. M. & Du Prez, F. E. Suppressing creep and promoting fast reprocessing of vitrimers with reversibly trapped amines. Angew. Chem. Int. Ed. 61, e202113872 (2022).

    Article  Google Scholar 

  146. Van Lijsebetten, F., De Bruycker, K., Winne, J. M. & Du Prez, F. E. Masked primary amines for a controlled plastic flow of vitrimers. ACS Macro Lett. 11, 919–924 (2022).

    Article  PubMed  Google Scholar 

  147. Soavi, G. et al. Phenoxy resin-based vinylogous urethane covalent adaptable networks. React. Funct. Polym. 191, 105681 (2023).

    Article  CAS  Google Scholar 

  148. Spiesschaert, Y. et al. Dynamic curing agents for amine-hardened epoxy vitrimers with short (re)processing times. Macromolecules 53, 2485–2495 (2020).

    Article  CAS  Google Scholar 

  149. Adjaoud, A., Puchot, L. & Verge, P. Polybenzoxazine-based covalent adaptable networks: a mini-review. Polymer 287, 126426 (2023).

    Article  CAS  Google Scholar 

  150. Luo, J. et al. Highly recyclable and tough elastic vitrimers from a defined polydimethylsiloxane network. Angew. Chem. Int. Ed. 62, e202310989 (2023).

    Article  CAS  Google Scholar 

  151. Vozzolo, G., Ximenis, M., Mantione, D., Fernández, M. & Sardon, H. Thermally reversible organocatalyst for the accelerated reprocessing of dynamic networks with creep resistance. ACS Macro Lett. 12, 1536–1542 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Martins, M. L. et al. Viscoelasticity of polymers with dynamic covalent bonds: concepts and misconceptions. Macromolecules 56, 8688–8696 (2023).

    Article  CAS  Google Scholar 

  153. Fortman, D. J., Snyder, R. L., Sheppard, D. T. & Dichtel, W. R. Rapidly reprocessable cross-linked polyhydroxyurethanes based on disulfide exchange. ACS Macro Lett. 7, 1226–1231 (2018).

    Article  CAS  PubMed  Google Scholar 

  154. Slone, R. V. Methacrylic ester polymers. Encycl. Polym. Sci. Technol. 3, 249–277 (2001).

    Google Scholar 

  155. Lessard, J. J. et al. Catalyst-free vitrimers from vinyl polymers. Macromolecules 52, 2105–2111 (2019).

    Article  CAS  Google Scholar 

  156. Lessard, J. J. et al. Block copolymer vitrimers. J. Am. Chem. Soc. 142, 283–289 (2020).

    Article  CAS  PubMed  Google Scholar 

  157. Lessard, J. J., Scheutz, G. M., Hughes, R. W. & Sumerlin, B. S. Polystyrene-based vitrimers: inexpensive and recyclable thermosets. ACS Appl. Polym. Mater. 2, 3044–3048 (2020).

    Article  CAS  Google Scholar 

  158. Lossada, F., Jiao, D., Yao, X. & Walther, A. Waterborne methacrylate-based vitrimers. ACS Macro Lett. 9, 70–76 (2020).

    Article  CAS  PubMed  Google Scholar 

  159. Chen, J., Jiang, S., Gao, Y. & Sun, F. Reducing volumetric shrinkage of photopolymerizable materials using reversible disulfide-bond reactions. J. Mater. Sci. 53, 16169–16181 (2018).

    Article  CAS  Google Scholar 

  160. Takahashi, A., Goseki, R., Ito, K. & Otsuka, H. Thermally healable and reprocessable bis(hindered amino)disulfide-cross-linked polymethacrylate networks. ACS Macro Lett. 6, 1280–1284 (2017).

    Article  CAS  PubMed  Google Scholar 

  161. Maes, S., Scholiers, V. & Du Prez, F. E. Photo‐crosslinking and reductive decrosslinking of polymethacrylate‐based copolymers containing 1,2‐dithiolane rings. Macromol. Chem. Phys. 224, 2100445 (2023).

    Article  CAS  Google Scholar 

  162. Cuthbert, J., Wanasinghe, S. V., Matyjaszewski, K. & Konkolewicz, D. Are RAFT and ATRP universally interchangeable polymerization methods in network formation? Macromolecules 54, 8331–8340 (2021).

    Article  CAS  Google Scholar 

  163. Lepage, M. L. & Wulff, J. E. Mixed plastics upcycled dynamically. Nature 616, 663–664 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to all the experts who provided valuable insights and perspectives that greatly enriched this Review: G. Bouquet (principal research scientist at Trinseo in Terneuzen), M. Guerre (CNRS Researcher at Université de Toulouse), L. Imbernon (R&D engineer at Carpenter Co. Wetteren), R. Sijbesma (full professor at TU Eindhoven), A. Slark (Professorial Fellow at the University of Sheffield), P. Taynton (CEO at Mallinda Inc.), F. G. Tournilhac (Research Director at C3M in CNRS and ESPCI Paris-PSL) and T. Xie (Qiushi Chair Professor at Zhenjiang University in China). F.E.D.P would like to thank the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (CiMaC project — grant agreement no. 101021081).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Johan M. Winne or Filip E. Du Prez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ASTP Innovations: https://www.atspinnovations.com/

Mallinda Incorporated: https://mallinda.com/

Toyobo MC Corporation, Limited: https://www.toyobo-mc.jp

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maes, S., Badi, N., Winne, J.M. et al. Taking dynamic covalent chemistry out of the lab and into reprocessable industrial thermosets. Nat Rev Chem 9, 144–158 (2025). https://doi.org/10.1038/s41570-025-00686-7

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41570-025-00686-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing