Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Structural control over single-crystalline oxides for heterogeneous catalysis

Abstract

Oxides are integral to heterogeneous catalysis, serving critical roles such as catalyst supports, active materials and electrodes. A highly ordered subset, single-crystalline oxides, have traditionally been used as model catalyst supports in fundamental surface science studies. However, advancements in bulk synthesis have rendered their general use more feasible for real-world applications. In this review, we explore the efficiency of single-crystalline oxides as active metals and supports across a wide range of heterogeneous processes, often performing exceptionally well. Beginning with synthetic methods, we discuss the advantages of single-crystalline oxides in thermo-, electro- and photocatalysis. Previously held conventions about catalytic activity, deactivation and surface–adsorbate interactions are re-evaluated by understanding how these ordered materials behave during the respective reactions. Last, we assess advances in characterization techniques and their impact on designing the next generation of catalysts based on single-crystalline oxides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Alternative synthetic methods for nano-sized single-crystalline oxide preparation.
Fig. 2: Single-crystalline oxides in thermochemical catalysis.
Fig. 3: Engineering stability and activity through facet control.
Fig. 4: Characterization of single-crystalline oxide-based catalyst structures.
Fig. 5: Integrating reaction and surface spectroscopy analysis for mechanistic studies.

Similar content being viewed by others

References

  1. Chen, S., Xiong, F. & Huang, W. Surface chemistry and catalysis of oxide model catalysts from single crystals to nanocrystals. Surf. Sci. Rep. 74, 100471 (2019).

    Article  CAS  Google Scholar 

  2. Goodman, D. W. Catalysis: from single crystals to the ‘real world’. Surf. Sci. 299-300, 837–848 (1994).

    Article  CAS  Google Scholar 

  3. Oosterbeek, H. Bridging the pressure and material gap in heterogeneous catalysis: cobalt Fischer–Tropsch catalysts from surface science to industrial application. Phys. Chem. Chem. Phys. 9, 3570–3576 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Esposito, D. Mind the gap. Nat. Catal. 1, 807–808 (2018).

    Article  Google Scholar 

  5. Huang, W. X. Oxide nanocrystal model catalysts. Acc. Chem. Res. 49, 520–527 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Somorjai, G. A. & Park, J. Y. Molecular surface chemistry by metal single crystals and nanoparticles from vacuum to high pressure. Chem. Soc. Rev. 37, 2155–2162 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Liu, L. C. & Corma, A. Structural transformations of solid electrocatalysts and photocatalysts. Nat. Rev. Chem. 5, 256–276 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Zaera, F. Shape-controlled nanostructures in heterogeneous catalysis. ChemSusChem 6, 1797–1820 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Liang, S. X., Zhang, L. C., Reichenberger, S. & Barcikowski, S. Design and perspective of amorphous metal nanoparticles from laser synthesis and processing. Phys. Chem. Chem. Phys. 23, 11121–11154 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Song, Y. et al. Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO. Science 367, 777–781 (2020). This paper introduces the new nanocatalysts on single crystal edges (NOSCE) technique in heterogeneous catalysis.

    Article  CAS  PubMed  Google Scholar 

  11. Briega-Martos, V. & Yang, Y. Single-crystal metals and oxides as atomically precise energy materials platforms for fundamental electrocatalysis. Acc. Mater. Res. 5, 518–522 (2024).

    Article  CAS  Google Scholar 

  12. Fu, C. et al. Spontaneous bulk-surface charge separation of TiO2-{001} nanocrystals leads to high activity in photocatalytic methane combustion. ACS Catal. 12, 6457–6463 (2022).

    Article  CAS  Google Scholar 

  13. Berry, T., Ng, N. & McQueen, T. M. Tools and tricks for single crystal growth. Chem. Mater. 36, 4929–4944 (2024).

    Article  CAS  Google Scholar 

  14. Jin, S. & Ruoff, R. S. Preparation and uses of large area single crystal metal foils. Apl. Mater. 7, 100905 (2019).

    Article  Google Scholar 

  15. Birks, L. S., Hurley, J. W. & Sweeney, W. E. Perfection of ruby laser crystals. J. Appl. Phys. 36, 3562–3565 (1965).

    Article  CAS  Google Scholar 

  16. Müller, G. The czochralski method — where we are 90 years after Jan Czochralski’s invention. Cryst. Res. Technol. 42, 1150–1161 (2007).

    Article  Google Scholar 

  17. Kato, H., Kobayashi, M., Hara, M. & Kakihana, M. Fabrication of SrTiO3 exposing characteristic facets using molten salt flux and mprovement of photocatalytic activity for water splitting. Catal. Sci. Technol. 3, 1733–1738 (2013).

    Article  CAS  Google Scholar 

  18. Lyu, S. C., Zhang, Y., Lee, C. J., Ruh, H. & Lee, H. J. Low-temperature growth of ZnO nanowire array by a simple physical vapor-deposition method. Chem. Mater. 15, 3294–3299 (2003).

    Article  CAS  Google Scholar 

  19. Li, W.-N., Yuan, J., Gomez-Mower, S., Sithambaram, S. & Suib, S. L. Synthesis of single crystal manganese oxide octahedral molecular sieve (OMS) nanostructures with tunable tunnels and shapes. J. Phys. Chem. B 110, 3066–3070 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, L. H., Wu, J. J., Liao, H. B., Hou, Y. L. & Gao, S. Octahedral Fe3O4 nanoparticles and their assembled structures. Chem. Commun. 4378–4380 (2009).

  21. Wang, X. et al. Synthesis of single-crystalline Co3O4 octahedral cages with tunable surface aperture and their lithium storage properties. J. Phys. Chem. C. 113, 15553–15558 (2009).

    Article  CAS  Google Scholar 

  22. Corbett, J. D. in Survey of Progress in Chemistry Vol. 2 (ed. Scott, A. F.) 91–154 (Elsevier, 1964).

  23. Fisher, I. R., Shapiro, M. C. & Analytis, J. G. Principles of crystal growth of intermetallic and oxide compounds from molten solutions. Phil. Mag. 92, 2401–2435 (2012).

    Article  CAS  Google Scholar 

  24. Voronkova, V. I., Yanovskii, V. K., Vodolazskaya, I. V. & Shubentsova, E. S. in Growth of Crystals (eds Givargizov, E. I. & Grinberg, S. A.) 111–127 (Springer, 1993).

  25. Boltersdorf, J., King, N. & Maggard, P. A. Flux-mediated crystal growth of metal oxides: synthetic tunability of particle morphologies, sizes, and surface features for photocatalysis research. CrystEngComm 17, 2225–2241 (2015).

    Article  CAS  Google Scholar 

  26. Gupta, S. K. & Mao, Y. A review on molten salt synthesis of metal oxide nanomaterials: status, opportunity, and challenge. Prog. Mater. Sci. 117, 100734 (2021).

    Article  CAS  Google Scholar 

  27. Jiang, Z.-Y. et al. Molten salt route toward the growth of ZnO nanowires in unusual growth directions. J. Phys. Chem. B 109, 23269–23273 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Ke, X. et al. Molten salt synthesis of single-crystal Co3O4 nanorods. Mater. Lett. 61, 3901–3903 (2007).

    Article  CAS  Google Scholar 

  29. Rockett, A. in The Materials Science of Semiconductors (ed. Rockett, A.) 505–572 (Springer, 2008).

  30. Pan, Z. W., Dai, Z. R. & Wang, Z. L. Nanobelts of semiconducting oxides. Science 291, 1947–1949 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Sandana, V. E. et al. Comparison of ZnO nanostructures grown using pulsed laser deposition, metal organic chemical vapor deposition, and physical vapor transport. J. Vac. Sci. Technol. B 27, 1678–1683 (2009).

    Article  CAS  Google Scholar 

  32. Muth, J. F., Kolbas, R. M., Sharma, A. K., Oktyabrsky, S. & Narayan, J. Excitonic structure and absorption coefficient measurements of ZnO single crystal epitaxial films deposited by pulsed laser deposition. J. Appl. Phys. 85, 7884–7887 (1999).

    Article  CAS  Google Scholar 

  33. Wu, J.-J. & Liu, S.-C. Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition. Adv. Mater. 14, 215–218 (2002).

    Article  CAS  Google Scholar 

  34. Mathur, S., Barth, S., Werner, U., Hernandez-Ramirez, F. & Romano-Rodriguez, A. Chemical vapor growth of one-dimensional magnetite nanostructures. Adv. Mater. 20, 1550–1554 (2008).

    Article  CAS  Google Scholar 

  35. Haddad, K. et al. Growth of single crystal, oriented SnO2 nanocolumn arrays by aerosol chemical vapour deposition. CrystEngComm 18, 7544–7553 (2016).

    Article  CAS  Google Scholar 

  36. Whittingham, M. S. Hydrothermal synthesis of transition metal oxides under mild conditions. Curr. Opin. Solid. State Mater. Sci. 1, 227–232 (1996).

    Article  CAS  Google Scholar 

  37. Rabenau, A. The role of hydrothermal synthesis in preparative chemistry. Angew. Chem. Int. Ed. Engl. 24, 1026–1040 (1985).

    Article  Google Scholar 

  38. Beck, J. S. et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834–10843 (1992).

    Article  CAS  Google Scholar 

  39. Cundy, C. S. & Cox, P. A. The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time. Chem. Rev. 103, 663–702 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Kardash, T. Y. et al. The evolution of the M1 local structure during preparation of VMoNbTeO catalysts for ethane oxidative dehydrogenation to ethylene. RSC Adv. 8, 35903–35916 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dordevic, T., Wittwer, A., Jaglicic, Z. & Djerdj, I. Hydrothermal synthesis of single crystal CoAs2O4 and NiAs2O4 compounds and their magnetic properties. RSC Adv. 5, 18280–18287 (2015).

    Article  Google Scholar 

  42. Zhang, S. W. & Chen, G. Z. Manganese oxide based materials for supercapacitors. Energy Mater. 3, 186–200 (2008).

    Article  CAS  Google Scholar 

  43. Yuan, Z.-Y., Zhang, Z., Du, G., Ren, T.-Z. & Su, B.-L. A simple method to synthesise single-crystalline manganese oxide nanowires. Chem. Phys. Lett. 378, 349–353 (2003).

    Article  CAS  Google Scholar 

  44. Wang, X. & Li, Y. Selected-control hydrothermal synthesis of α- and β-MnO2 single crystal nanowires. J. Am. Chem. Soc. 124, 2880–2881 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Fang, K.-M. et al. Gelatin-assisted hydrothermal synthesis of single crystalline zinc oxide nanostars and their photocatalytic properties. J. Colloid Interface Sci. 402, 68–74 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Feng, X. et al. Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications. Nano Lett. 8, 3781–3786 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Mulinari, T. A. et al. Microwave-hydrothermal synthesis of single-crystalline Co3O4 spinel nanocubes. CrystEngComm 15, 7443–7449 (2013).

    Article  CAS  Google Scholar 

  48. Hench, L. L. & West, J. K. The sol-gel process. Chem. Rev. 90, 33–72 (1990).

    Article  CAS  Google Scholar 

  49. Li, G.-R. et al. Electrochemical synthesis of nanostructured materials for electrochemical energy conversion and storage. Nanoscale 5, 4056–4069 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Dong, H., Chen, Y. C. & Feldmann, C. Polyol synthesis of nanoparticles: status and options regarding metals, oxides, chalcogenides, and non-metal elements. Green Chem. 17, 4107–4132 (2015).

    Article  CAS  Google Scholar 

  51. Kumar, A., Kuang, Y., Liang, Z. & Sun, X. Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: a review. Mater. Today Nano 11, 100076 (2020).

    Article  Google Scholar 

  52. Patzke, G. R., Zhou, Y., Kontic, R. & Conrad, F. Oxide nanomaterials: synthetic developments, mechanistic studies, and technological innovations. Angew. Chem. Int. Ed. Engl. 50, 826–859 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Zitoun, D., Pinna, N., Frolet, N. & Belin, C. Single crystal manganese oxide multipods by oriented attachment. J. Am. Chem. Soc. 127, 15034–15035 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Kim, M. H., Lim, B., Lee, E. P. & Xia, Y. Polyol synthesis of Cu2O nanoparticles: use of chloride to promote the formation of a cubic morphology. J. Mater. Chem. 18, 4069–4073 (2008).

    Article  CAS  Google Scholar 

  55. Mourdikoudis, S. & Liz-Marzán, L. M. Oleylamine in nanoparticle synthesis. Chem. Mater. 25, 1465–1476 (2013).

    Article  CAS  Google Scholar 

  56. Mourdikoudis, S. et al. Oleic acid/oleylamine ligand pair: a versatile combination in the synthesis of colloidal nanoparticles. Nanoscale Horiz. 7, 941–1015 (2022).

    Article  CAS  PubMed  Google Scholar 

  57. Srinivas, B., Pandit, M. A. & Muralidharan, K. Importance of clean surfaces on the catalyst: SnS2 nanorings for environmental remediation. ACS Omega 4, 14970–14980 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Qiu, C. W. et al. Visualising Co nanoparticle aggregation and encapsulation in Co/TiO2 catalysts and its mitigation through surfactant residues. J. Catal. 419, 58–67 (2023).

    Article  CAS  Google Scholar 

  59. Devi, N., Sahoo, S., Kumar, R. & Singh, R. K. A review of the microwave-assisted synthesis of carbon nanomaterials, metal oxides/hydroxides and their composites for energy storage applications. Nanoscale 13, 11679–11711 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Joshi, U. A., Jang, J. S., Borse, P. H. & Lee, J. S. Microwave synthesis of single-crystalline perovskite BiFeO3 nanocubes for photoelectrode and photocatalytic applications. Appl. Phys. Lett. 92, 242106 (2008).

    Article  Google Scholar 

  61. Kaur, A., Bajaj, B., Kaushik, A., Saini, A. & Sud, D. A review on template assisted synthesis of multi-functional metal oxide nanostructures: status and prospects. Mater. Sci. Eng. B 286, 116005 (2022).

    Article  CAS  Google Scholar 

  62. Ajayan, P. M., Stephan, O., Redlich, P. & Colliex, C. Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures. Nature 375, 564–567 (1995).

    Article  CAS  Google Scholar 

  63. Wang, X., Yu, L., Hu, P. & Yuan, F. Synthesis of single-crystalline hollow octahedral NiO. Cryst. Growth Des. 7, 2415–2418 (2007).

    Article  CAS  Google Scholar 

  64. Yang, H. et al. One-step nanocasting synthesis of highly ordered single crystalline indium oxide nanowire arrays from mesostructured frameworks. J. Am. Chem. Soc. 125, 4724–4725 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Yue, Zhou Synthesis of porous single crystals of metal oxides via a solid−liquid route. Chem. Mater. 19, 2359–2363 (2007).

    Article  CAS  Google Scholar 

  66. Zheng, X. et al. Close-packed colloidal SiO2 as a nanoreactor: generalized synthesis of metal oxide mesoporous single crystals and mesocrystals. Chem. Mater. 26, 5700–5709 (2014).

    Article  CAS  Google Scholar 

  67. Varma, A., Mukasyan, A. S., Rogachev, A. S. & Manukyan, K. V. Solution combustion synthesis of nanoscale materials. Chem. Rev. 116, 14493–14586 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Nguyen, T.-S. et al. Ultrastable iridium–ceria nanopowders synthesized in one step by solution combustion for catalytic hydrogen production. J. Mater. Chem. A 2, 19822–19832 (2014).

    Article  CAS  Google Scholar 

  69. Cai, Z. & Li, J. Facile synthesis of single crystalline SnO2 nanowires. Ceram. Int. 39, 377–382 (2013).

    Article  CAS  Google Scholar 

  70. Merchan-Merchan, W., Saveliev, A. V. & Desai, M. Volumetric flame synthesis of well-defined molybdenum oxide nanocrystals. Nanotechnology 20, 475601 (2009).

    Article  PubMed  Google Scholar 

  71. Dong, Z., Al-Sharab, J. F., Kear, B. H. & Tse, S. D. Combined flame and electrodeposition synthesis of energetic coaxial tungsten-oxide/aluminum nanowire arrays. Nano Lett. 13, 4346–4350 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Teoh, W. Y., Amal, R. & Mädler, L. Flame spray pyrolysis: an enabling technology for nanoparticles design and fabrication. Nanoscale 2, 1324–1347 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Yan, J. K. et al. Advances in the synthesis of halide perovskite single crystals for optoelectronic applications. Chem. Mater. 35, 2683–2712 (2023).

    Article  CAS  Google Scholar 

  74. Yun, Q. B. et al. Recent progress on phase engineering of nanomaterials. Chem. Rev. 123, 13489–13692 (2023).

    Article  CAS  PubMed  Google Scholar 

  75. Leybo, D. et al. Metal–support interactions in metal oxide-supported atomic, cluster, and nanoparticle catalysis. Chem. Soc. Rev. 53, 10450–10490 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liu, L. C. et al. Crystal-plane effects on the catalytic properties of Au/TiO2. ACS Catal. 3, 2768–2775 (2013).

    Article  CAS  Google Scholar 

  77. Zhang, Y. S. et al. Structure sensitivity of Au-TiO2 strong metal-support interactions. Angew. Chem. Int. Ed. Engl. 60, 12074–12081 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Lang, R. et al. Non defect-stabilized thermally stable single-atom catalyst. Nat. Commun. 10, 234 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cheng, F. Y., Duan, X. Y. & Xie, K. Dry reforming of CH4/CO2 by stable Ni nanocrystals on porous single-crystalline mgo monoliths at reduced temperature. Angew. Chem. Int. Ed. Engl. 60, 18792–18799 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Li, W., Zhao, Z. & Wang, G. Modulating morphology and textural properties of ZrO2 for supported Ni catalysts toward dry reforming of methane. AIChE J. 63, 2900–2915 (2017).

    Article  CAS  Google Scholar 

  81. Xiao, Y. C. & Xie, K. Active exsolved metal-oxide interfaces in porous single-crystalline ceria monoliths for efficient and durable CH4/CO2 reforming. Angew. Chem. Int. Ed. Engl. 61, e202113079 (2021).

    Article  PubMed  Google Scholar 

  82. Song, Y.-Q., He, D.-H. & Xu, B.-Q. Effects of preparation methods of ZrO2 support on catalytic performances of Ni/ZrO2 catalysts in methane partial oxidation to syngas. Appl. Catal. A Gen. 337, 19–28 (2008).

    Article  CAS  Google Scholar 

  83. Rodriguez, J. A., Liu, P., Hrbek, J., Evans, J. & Pérez, M. Water gas shift reaction on Cu and Au nanoparticles supported on CeO2(111) and ZnO(000-1): intrinsic activity and importance of support interactions. Angew. Chem. Int. Ed. Engl. 46, 1329–1332 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Si, R. & Flytzani-Stephanopoulos, M. Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water–gas shift reaction. Angew. Chem. Int. Ed. Engl. 47, 2884–2887 (2008). This paper shows how thermochemical catalyst performance can be tuned by the single-crystal shape.

    Article  CAS  PubMed  Google Scholar 

  85. Qiao, Z.-A., Wu, Z. & Dai, S. Shape-controlled ceria-based nanostructures for catalysis applications. ChemSusChem 6, 1821–1833 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Jomjaree, T. et al. Catalytic performance of Ni catalysts supported on CeO2 with different morphologies for low-temperature CO2 methanation. Catal. Today 375, 234–244 (2021).

    Article  CAS  Google Scholar 

  87. Xiao, Y. C., Li, H. & Xie, K. Activating lattice oxygen at the twisted surface in a mesoporous CeO2 single crystal for efficient and durable catalytic CO oxidation. Angew. Chem. Int. Ed. Engl. 60, 5240–5244 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Luo, W. et al. Morphology and crystal-plane dependence of CeO2-TiO2 catalysts: activity and mechanism for the selective catalytic reduction of NOx with NH3. Chem. Eng. J. 444, 136488 (2022).

    Article  CAS  Google Scholar 

  89. Kwok, K. M., Ong, S. W. D., Chen, L. & Zeng, H. C. Transformation of stöber silica spheres to hollow hierarchical single-crystal ZSM-5 zeolites with encapsulated metal nanocatalysts for selective catalysis. ACS Appl. Mater. Interfaces 11, 14774–14785 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Sun, M.-H. et al. Hierarchical zeolite single-crystal reactor for excellent catalytic efficiency. Matter 3, 1226–1245 (2020).

    Article  Google Scholar 

  91. Qin, Z. et al. Preparation of single-crystal ‘House-of-Cards’-like ZSM-5 and their performance in ethanol-to-hydrocarbon conversion. Chem. Mater. 31, 4639–4648 (2019). This paper presents research on selectively increasing desired catalytic activity by introducing porosity into a single crystal.

    Article  CAS  Google Scholar 

  92. Zhang, Q. et al. High-quality single-crystalline MFI-type nanozeolites: a facile synthetic strategy and MTP catalytic studies. Chem. Mater. 30, 2750–2758 (2018).

    Article  CAS  Google Scholar 

  93. Over, H. Fundamental studies of planar single-crystalline oxide model electrodes (RuO2, IrO2) for acidic water splitting. ACS Catal. 11, 8848–8871 (2021).

    Article  CAS  Google Scholar 

  94. Gayen, P., Saha, S. & Ramani, V. Pyrochlores for advanced oxygen electrocatalysis. Acc. Chem. Res. 55, 2191–2200 (2022).

    Article  CAS  PubMed  Google Scholar 

  95. Park, J. et al. Single crystalline pyrochlore nanoparticles with metallic conduction as efficient bi-functional oxygen electrocatalysts for Zn–air batteries. Energy Environ. Sci. 10, 129–136 (2017).

    Article  CAS  Google Scholar 

  96. Tung, C.-W. et al. Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution. Nat. Commun. 6, 8106 (2015). This paper experimentally demonstrated the advantages of single-crystal catalyst supports compared with polycrystals in electrochemical catalysis reactions.

    Article  CAS  PubMed  Google Scholar 

  97. Ling, T. et al. Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis. Nat. Commun. 7, 12876 (2016). This paper explained that single-crystal catalysts exhibit better electrochemical activity than polycrystal catalysts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nong, S. et al. Well-dispersed ruthenium in mesoporous crystal TiO2 as an advanced electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 140, 5719–5727 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Liang, Y. et al. Crystal plane dependent electrocatalytic performance of NiS2 nanocrystals for hydrogen evolution reaction. J. Catal. 381, 63–69 (2020). This paper shows that electrochemical catalyst performance can be tuned depending on the single-crystal shape.

    Article  CAS  Google Scholar 

  100. Gu, Z. et al. Oxygen vacancy tuning toward efficient electrocatalytic CO2 reduction to C2H4. Small Methods 3, 1800449 (2019).

    Article  Google Scholar 

  101. Wang, X. et al. Morphology and mechanism of highly selective Cu(II) oxide nanosheet catalysts for carbon dioxide electroreduction. Nat. Commun. 12, 794 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu, H. et al. Highly efficient CO2 electrolysis within a wide operation window using octahedral tin oxide single crystals. J. Mater. Chem. A 9, 7848–7856 (2021).

    Article  CAS  Google Scholar 

  103. Ye, L. T., Shang, Z. B. & Xie, K. Selective oxidative coupling of methane to ethylene in a solid oxide electrolyser based on porous single-crystalline CeO2 monoliths. Angew. Chem. Int. Ed. Engl. 61, e202207211 (2022).

    Article  CAS  PubMed  Google Scholar 

  104. Dong, C. Y. et al. Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles. Nat. Commun. 9, 1252 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003).

    Article  CAS  Google Scholar 

  106. Zeng, J. H., Jin, B. B. & Wang, Y. F. Facet enhanced photocatalytic effect with uniform single-crystalline zinc oxide nanodisks. Chem. Phys. Lett. 472, 90–95 (2009).

    Article  CAS  Google Scholar 

  107. Debroye, E. et al. Facet-dependent photoreduction on single ZnO crystals. J. Phys. Chem. Lett. 8, 340–346 (2017).

    Article  CAS  PubMed  Google Scholar 

  108. Wu, N. et al. Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts. J. Am. Chem. Soc. 132, 6679–6685 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gordon, T. R. et al. Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity. J. Am. Chem. Soc. 134, 6751–6761 (2012). This paper investigates photocatalytic activity of single-crystal surfaces with various shapes through changing their synthetic protocols.

    Article  CAS  PubMed  Google Scholar 

  110. Xing, M. Y. et al. Enhanced photocatalysis by Au nanoparticle loading on TiO2 single-crystal (001) and (110) facets. J. Phys. Chem. Lett. 4, 3910–3917 (2013). This paper introduces research on enhancing photocatalytic activity by placing active metals on single crystals.

    Article  CAS  Google Scholar 

  111. Parzinger, E. et al. Photocatalytic stability of single- and few-layer MoS2. ACS Nano 9, 11302–11309 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Kislov, N. et al. Photocatalytic degradation of methyl orange over single crystalline ZnO: orientation dependence of photoactivity and photostability of ZnO. Langmuir 25, 3310–3315 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Liu, J. et al. 2D ZnO mesoporous single-crystal nanosheets with exposed {0001} polar facets for the depollution of cationic dye molecules by highly selective adsorption and photocatalytic decomposition. Appl. Catal. B Environ. 181, 138–145 (2016).

    Article  CAS  Google Scholar 

  114. Wu, W., Hao, R., Liu, F., Su, X. & Hou, Y. Single-crystalline α-Fe2O3 nanostructures: controlled synthesis and high-index plane-enhanced photodegradation by visible light. J. Mater. Chem. A 1, 6888–6894 (2013).

    Article  CAS  Google Scholar 

  115. Lu, Y. et al. Facile synthesis of graphene-like copper oxide nanofilms with enhanced electrochemical and photocatalytic properties in energy and environmental applications. ACS Appl. Mater. Interfaces 7, 9682–9690 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Yin, G. et al. Photocatalytic carbon dioxide reduction by copper oxide nanocluster-grafted niobate nanosheets. ACS Nano 9, 2111–2119 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Li, S. et al. Ferroelectric polarization and thin-layered structure synergistically promoting CO2 photoreduction of Bi2MoO6. J. Mater. Chem. A 8, 9268–9277 (2020).

    Article  CAS  Google Scholar 

  118. Han, Q. et al. Convincing synthesis of atomically thin, single-crystalline InVO4 sheets toward promoting highly selective and efficient solar conversion of CO2 into CO. J. Am. Chem. Soc. 141, 4209–4213 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Chen, S. et al. Facet-engineered surface and interface design of monoclinic scheelite bismuth vanadate for enhanced photocatalytic performance. ACS Catal. 10, 1024–1059 (2020).

    Article  CAS  Google Scholar 

  120. Li, R. G. et al. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nat. Commun. 4, 1432 (2013).

    Article  PubMed  Google Scholar 

  121. Yan, J. et al. Tungsten oxide single crystal nanosheets for enhanced multichannel solar light harvesting. Adv. Mater. 27, 1580–1586 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Pastor, E. et al. Complementary probes for the electrochemical interface. Nat. Rev. Chem. 8, 159–178 (2024).

    Article  PubMed  Google Scholar 

  123. Qiu, S. et al. Strategies for the synthesis of large zeolite single crystals. Micro. Meso. Mater. 21, 245–251 (1998).

    Article  CAS  Google Scholar 

  124. Hauptman, H. A. The phase problem of X-ray crystallography. Rep. Prog. Phys. 54, 1427 (1991).

    Article  CAS  Google Scholar 

  125. Brouwer, D. H., Darton, R. J., Morris, R. E. & Levitt, M. H. A solid-state NMR method for solution of zeolite crystal structures. J. Am. Chem. Soc. 127, 10365–10370 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Munn, J., Barnes, P., Häusermann, D., Axon, S. A. & Klinowski, J. In-situ studies of the hydrothermal synthesis of zeolites using synchrotron energy-dispersive X-ray diffraction. Phase Transit. 39, 129–134 (1992).

    Article  CAS  Google Scholar 

  127. Harlow, G. S., Lundgren, E. & Escudero-Escribano, M. Recent advances in surface x-ray diffraction and the potential for determining structure-sensitivity relations in single-crystal electrocatalysis. Curr. Opin. Electrochem. 23, 162–173 (2020).

    Article  CAS  Google Scholar 

  128. Rao, R. R. et al. Operando identification of site-dependent water oxidation activity on ruthenium dioxide single-crystal surfaces. Nat. Catal. 3, 516–525 (2020).

    Article  CAS  Google Scholar 

  129. Thomas, A. G. et al. Comparison of the electronic structure of anatase and rutile TiO2 single-crystal surfaces using resonant photoemission and X-ray absorption spectroscopy. Phys. Rev. B 75, 035105 (2007).

    Article  Google Scholar 

  130. Tepavcevic, S. et al. Fundamental insights from a single-crystal sodium iridate battery. Adv. Energ. Mater. 10, 1903128 (2020).

    Article  CAS  Google Scholar 

  131. Addiego, C., Gao, W. P., Huyan, H. & Pan, X. Q. Probing charge density in materials with atomic resolution in real space. Nat. Rev. Phys. 5, 117–132 (2023).

    Article  Google Scholar 

  132. Fang, S. et al. Atomic electrostatic maps of 1D channels in 2D semiconductors using 4D scanning transmission electron microscopy. Nat. Commun. 10, 1127 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Shibata, N. et al. Differential phase-contrast microscopy at atomic resolution. Nat. Phys. 8, 611–615 (2012).

    Article  CAS  Google Scholar 

  134. Kohno, Y., Seki, T., Findlay, S. D., Ikuhara, Y. & Shibata, N. Real-space visualization of intrinsic magnetic fields of an antiferromagnet. Nature 602, 234–239 (2022).

    Article  CAS  PubMed  Google Scholar 

  135. Nan, P. et al. Visualizing the Mg atoms in Mg3Sb2 thermoelectrics using advanced iDPC-STEM technique. Mater. Today Phys. 21, 100524 (2021).

    Article  CAS  Google Scholar 

  136. Wang, C. L. et al. CO-induced dimer decay responsible for gem-dicarbonyl formation on a model single-atom catalyst. Angew. Chem. Int. Ed. Engl. 63, e202317347 (2024).

    Article  CAS  PubMed  Google Scholar 

  137. Kraushofer, F. et al. Surface reduction state determines stabilization and incorporation of Rh on α-Fe2O3(11-02). Adv. Mater. Interfaces 8, 2001908 (2021).

    Article  CAS  Google Scholar 

  138. Nguyen, L., Tao, F. F., Tang, Y., Dou, J. & Bao, X.-J. Understanding catalyst surfaces during catalysis through near ambient pressure X-ray photoelectron spectroscopy. Chem. Rev. 119, 6822–6905 (2019).

    Article  PubMed  Google Scholar 

  139. Tao, F. Design of an in-house ambient pressure AP-XPS using a bench-top X-ray source and the surface chemistry of ceria under reaction conditions. Chem. Commun. 48, 3812–3814 (2012).

    Article  CAS  Google Scholar 

  140. Shah, S. A. & Baldelli, S. Chemical imaging of surfaces with sum frequency generation vibrational spectroscopy. Acc. Chem. Res. 53, 1139–1150 (2020).

    Article  CAS  PubMed  Google Scholar 

  141. Rupprechter, G. Surface vibrational spectroscopy from ultrahigh vacuum to atmospheric pressure: adsorption and reactions on single crystals and nanoparticle model catalysts monitored by sum frequency generation spectroscopy. Phys. Chem. Chem. Phys. 3, 4621–4632 (2001).

    Article  CAS  Google Scholar 

  142. Zilli, A. et al. Frequency tripling via sum-frequency generation at the nanoscale. ACS Photonics 8, 1175–1182 (2021).

    Article  CAS  Google Scholar 

  143. Yamaguchi, S., Suzuki, Y., Nojima, Y. & Otosu, T. Perspective on sum frequency generation spectroscopy of ice surfaces and interfaces. Chem. Phys. 522, 199–210 (2019).

    Article  CAS  Google Scholar 

  144. Kennedy, G., Baker, L. R. & Somorjai, G. A. Selective amplification of C = O bond hydrogenation on Pt/TiO2: catalytic reaction and sum- frequency generation vibrational spectroscopy studies of crotonaldehyde hydrogenation. Angew. Chem. Int. Ed. Engl. 53, 3405–3408 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Neri, G., Walsh, J. J., Teobaldi, G., Donaldson, P. M. & Cowan, A. J. Detection of catalytic intermediates at an electrode surface during carbon dioxide reduction by an earth-abundant catalyst. Nat. Catal. 1, 952–959 (2018).

    Article  CAS  Google Scholar 

  146. Gardner, A. M. et al. Potential dependent reorientation controlling activity of a molecular electrocatalyst. J. Am. Chem. Soc. 146, 7130–7134 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Campbell, C. T. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity. Acc. Chem. Res. 46, 1712–1719 (2013).

    Article  CAS  PubMed  Google Scholar 

  148. Luo, L., Hernandez, R., Zhou, X.-D. & Yan, H. Heterogeneous catalysis at metal-oxide interfaces using in situ and operando spectroscopy: from nanoparticles to single-atom sites. Appl. Catal. A Gen. 624, 118330 (2021).

    Article  CAS  Google Scholar 

  149. Zhou, Y., Doronkin, D. E., Chen, M. L., Wei, S. Q. & Grunwaldt, J. D. Interplay of Pt and crystal facets of TiO2: CO oxidation activity and XAS/DRIFTS studies. ACS Catal. 6, 7799–7809 (2016).

    Article  CAS  Google Scholar 

  150. Zeinalipour-Yazdi, C. D., Willock, D. J., Thomas, L., Wilson, K. & Lee, A. F. CO adsorption over Pd nanoparticles: a general framework for IR simulations on nanoparticles. Surf. Sci. 646, 210–220 (2016).

    Article  CAS  Google Scholar 

  151. Fois, E. & Tabacchi, G. in Tailored Functional Oxide Nanomaterials (eds Maccato, C. & Barreca, D.) 111–136 (Wiley–VCH, 2022).

  152. Rousseau, R., Glezakou, V. A. & Selloni, A. Theoretical insights into the surface physics and chemistry of redox-active oxides. Nat. Rev. Mater. 5, 460–475 (2020).

    Article  CAS  Google Scholar 

  153. Grönbeck, H. in Metal Oxide Nanoparticles (eds Diwald, O. & Berger, T.) 693–710 (Wiley, 2021).

  154. Demkov, A. A., Fredrickson, K. D., Seo, H. & O’Hara, A. in Handbook of Materials Modeling. Applications: Current and Emerging Materials (eds Andreoni, W. & Yip, S.) 1–30 (Springer, 2018).

  155. Liu, L. C. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Abriata, J. P. & Laughlin, D. E. The third law of thermodynamics and low temperature phase stability. Prog. Mater. Sci. 49, 367–387 (2004).

    Article  CAS  Google Scholar 

  157. Muhammad, P. et al. Defect engineering in nanocatalysts: from design and synthesis to applications. Adv. Func. Mater. 34, e202314686 (2024).

    Article  Google Scholar 

  158. Milisavljevic, I. & Wu, Y. Current status of solid-state single crystal growth. BMC Mater. 2, 2 (2020).

    Article  Google Scholar 

  159. Idriss, H. & Barteau, M. A. Active sites on oxides: from single crystals to catalysts. Adv. Catal. 45, 261–331 (2000).

    Article  CAS  Google Scholar 

  160. Kim, J. H., Suh, D. J., Park, T. J. & Kim, K. L. Effect of metal particle size on coking during CO2 reforming of CH4 over Ni-alumina aerogel catalysts. Appl. Catal. A Gen. 197, 191–200 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is funded by King Abdullah University of Science and Technology (KAUST).

Author information

Authors and Affiliations

Authors

Contributions

S.-J.K. and R.V.M.-G. contributed equally and wrote the manuscript. P.B. and J.M. provided sections and editing. C.T.Y. conceived, wrote, edited, and supervised the review.

Corresponding author

Correspondence to Cafer T. Yavuz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks the anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SJ., Maligal-Ganesh, R.V., Mahmood, J. et al. Structural control over single-crystalline oxides for heterogeneous catalysis. Nat Rev Chem 9, 397–414 (2025). https://doi.org/10.1038/s41570-025-00715-5

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41570-025-00715-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing