Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging mechanically interlocked cages

Abstract

Mechanically interlocked molecules, including catenanes, rotaxanes and knots, are an intriguing class of synthetic targets with potential applications in molecular switches and machines. Although mechanically interlocked molecules are typically constructed using macrocyclic frameworks, the interlocking of two or more three-dimensional, shape-persistent cages remains relatively underexplored. Recent advances have accelerated the development of mechanically interlocked cages (MICs), which consist of interlocked three-dimensional molecular cages rather than macrocycles. Despite their potential in areas such as molecular recognition, separation and catalysis, the design and synthesis of MICs remain challenging. This Review examines the synthetic strategies used to construct MICs, along with their interlocked architecture characteristics, structural dynamics and potential applications. Special attention is given to the guest-binding properties and catalytic performance of monomeric versus catenated cages. We conclude with perspectives on the current challenges and opportunities for future development of MICs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanically interlocked cages.
Fig. 2: Different approaches for the construction of interlocked coordination cages.
Fig. 3: Dynamic reversible reaction approach to interlocked organic cages.
Fig. 4: Irreversible reaction approach to interlocked organic cages.
Fig. 5: Design and synthesis of a hetero-interlocked cage.
Fig. 6: Molecular recognition and separation of mechanically interlocked cages (MICs).
Fig. 7: Catalytic applications of mechanically interlocked cages (MICs).

Similar content being viewed by others

References

  1. Lewis, J. E. M., Beer, P. D., Loeb, S. J. & Goldup, S. M. Metal ions in the synthesis of interlocked molecules and materials. Chem. Soc. Rev. 46, 2577–2591 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Stoddart, J. F. Mechanically interlocked molecules (MIMs) — molecular shuttles, switches, and machines (Nobel lecture). Angew. Chem. Int. Ed. 56, 11094–11125 (2017).

    Article  CAS  Google Scholar 

  3. Wilmore, J. T. & Beer, P. D. Exploiting the mechanical bond effect for enhanced molecular recognition and sensing. Adv. Mater. 36, 2309098 (2024).

    Article  CAS  Google Scholar 

  4. Moulin, E., Carmona-Vargas, C. C. & Giuseppone, N. Daisy chain architectures: from discrete molecular entities to polymer materials. Chem. Soc. Rev. 52, 7333–7358 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Xue, M., Yang, Y., Chi, X., Yan, X. & Huang, F. Development of pseudorotaxanes and rotaxanes: from synthesis to stimuli-responsive motions to applications. Chem. Rev. 115, 7398–7501 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Yu, J., Gaedke, M. & Schaufelberger, F. Dynamic covalent chemistry for synthesis and co-conformational control of mechanically interlocked molecules. Eur. J. Org. Chem. 26, e202201130 (2023).

    Article  CAS  Google Scholar 

  7. Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, H.-N. & Jin, G.-X. Synthesis of molecular Borromean links featuring trimeric metallocages. Nat. Synth. https://doi.org/10.1038/s44160-024-00720-4 (2025).

  9. Frank, M., Johnstone, M. D. & Clever, G. H. Interpenetrated cage structures. Chem. Eur. J. 22, 14104–14125 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Chen, Q., Chen, L., Jiang, F. & Hong, M. Controllable coordination self-assembly based on flexible tripodal ligands: from finite metallocages to infinite polycatenanes step by step. Chem. Rec. 15, 711–727 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Fujita, M., Fujita, N., Ogura, K. & Yamaguchi, K. Spontaneous assembly of ten components into two interlocked, identical coordination cages. Nature 400, 52–55 (1999).

    Article  CAS  Google Scholar 

  12. Li, Y. et al. Sulfate anion templated synthesis of a triply interlocked capsule. Chem. Commun. 14, 7134–7136 (2009).

    Article  Google Scholar 

  13. Cui, X. et al. Outer surface interactions of cucurbit[6]uril that trigger the assembly of supramolecular three-dimensional polycatenanes. Chem. Eur. J. 23, 2759–2763 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Tateishi, T., Yasutake, Y., Kojima, T., Takahashi, S. & Hiraoka, S. Self-assembly process of a quadruply interlocked palladium cage. Commun. Chem. 2, 25 (2019).

    Article  Google Scholar 

  15. Westcott, A., Fisher, J., Harding, L. P., Rizkallah, P. & Hardie, M. J. Self-assembly of a 3-D triply interlocked chiral [2]catenane. J. Am. Chem. Soc. 130, 2950–2951 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Martí-Rujas, J., Elli, S., Sacchetti, A. & Castiglione, F. Mechanochemical synthesis of mechanical bonds in M12L8 poly-[n]-catenanes. Dalton Trans. 51, 53–58 (2022).

    Article  Google Scholar 

  17. Wu, X., Xu, Z.-X., Wang, F. & Zhang, J. Catenation of homochiral metal–organic nanocages or nanotubes. Inorg. Chem. 55, 5095–5097 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Marti-Rujas, J. & Famulari, A. Polycatenanes formed of self-assembled metal organic cages. Angew. Chem. Int. Ed. 63, e202407626 (2024).

    Article  CAS  Google Scholar 

  19. Chen, L., Sheng, X., Li, G. & Huang, F. Mechanically interlocked polymers based on rotaxanes. Chem. Soc. Rev. 51, 7046–7065 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, Y. et al. Multistate circularly polarized luminescence switching through stimuli-induced co-conformation regulations of pyrene-functionalized topologically chiral [2]catenane. Angew. Chem. Int. Ed. 61, e202210542 (2022).

    Article  CAS  Google Scholar 

  21. Wang, Y.-P. et al. Recent progress in metal-organic cages for biomedical application: highlighted research during 2018–2023. Coord. Chem. Rev. 501, 215570 (2024).

    Article  CAS  Google Scholar 

  22. Saady, A. et al. A platform approach to cleavable macrocycles for the controlled disassembly of mechanically caged molecules. Angew. Chem. Int. Ed. 63, e202400344 (2024).

    Article  CAS  Google Scholar 

  23. Cui, Z. & Jin, G.-X. Construction of a molecular prime link by interlocking two trefoil knots. Nat. Synth. 1, 635–640 (2022). This article covers the topologically chiral interlocked molecular double trefoil knot, which is the first example of cage-liked knots.

    Article  CAS  Google Scholar 

  24. Goldup, S. M. The end of the beginning of mechanical stereochemistry. Acc. Chem. Res. 57, 1696–1708 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kumar, A. & Mukherjee, P. S. Multicomponent self-assembly of PdII/PtII interlocked molecular cages: cage-to-cage conversion and self-sorting in aqueous medium. Chem. Eur. J. 26, 4842–4849 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Schulte, T. R., Holstein, J. J. & Clever, G. H. Chiral self-discrimination and guest recognition in helicene-based coordination cages. Angew. Chem. Int. Ed. 58, 5562–5566 (2019).

    Article  CAS  Google Scholar 

  27. Martí-Rujas, J., Elli, S., Zanotti, A., Famulari, A. & Castiglione, F. Molecular recognition of aromatics in spherical nanocages. Chem. Eur. J. 29, e202302025 (2023).

    Article  PubMed  Google Scholar 

  28. Chakraborty, D., Saha, R., Clegg, J. K. & Mukherjee, P. S. Selective separation of planar and non-planar hydrocarbons using an aqueous Pd6 interlocked cage. Chem. Sci. 13, 11764–11771 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Qiao, W.-Z., Song, T.-Q., Cheng, P. & Zhao, B. Highly selective enamination of β-ketoesters catalyzed by interlocked [Cu8] and [Cu18] nanocages. Angew. Chem. Int. Ed. 58, 13302–13307 (2019).

    Article  CAS  Google Scholar 

  30. Sekiya, R., Fukuda, M. & Kuroda, R. Anion-directed formation and degradation of an interlocked metallohelicate. J. Am. Chem. Soc. 134, 10987–10997 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Heard, A. W. & Goldup, S. M. Simplicity in the design, operation, and applications of mechanically interlocked molecular machines. ACS Cent. Sci. 6, 117–128 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Heard, A. W., Suárez, J. M. & Goldup, S. M. Controlling catalyst activity, chemoselectivity and stereoselectivity with the mechanical bond. Nat. Rev. Chem. 6, 182–196 (2022).

    Article  PubMed  Google Scholar 

  33. May, J. H., Fehr, J. M., Lorenz, J. C., Zakharov, L. N. & Jasti, R. A high-yielding active template click reaction (AT−CuAAC) for the synthesis of mechanically interlocked nanohoops. Angew. Chem. Int. Ed. 63, e202401823 (2024).

    Article  CAS  Google Scholar 

  34. May, J. H., Van Raden, J. M., Maust, R. L., Zakharov, L. N. & Jasti, R. Active template strategy for the preparation of π-conjugated interlocked nanocarbons. Nat. Chem. 15, 170–176 (2023).

    Article  CAS  PubMed  Google Scholar 

  35. Ashbridge, Z. et al. Knotting matters: orderly molecular entanglements. Chem. Soc. Rev. 51, 7779–7809 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gao, W.-X., Feng, H.-J., Guo, B.-B., Lu, Y. & Jin, G.-X. Coordination-directed construction of molecular links. Chem. Rev. 120, 6288–6325 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Wilson, B. H. & Loeb, S. J. Integrating the mechanical bond into metal-organic frameworks. Chem 6, 1604–1612 (2020).

    Article  CAS  Google Scholar 

  38. Ma, T. et al. Catenated covalent organic frameworks constructed from polyhedra. Nat. Synth. 2, 286–295 (2023).

    Article  CAS  Google Scholar 

  39. Wang, X.-Q., Li, W.-J., Wang, W. & Yang, H.-B. Rotaxane dendrimers: alliance between giants. Acc. Chem. Res. 54, 4091–4106 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Zhu, X.-W., Luo, D., Zhou, X.-P. & Li, D. Imidazole-based metal-organic cages: synthesis, structures, and functions. Coord. Chem. Rev. 455, 214354 (2022).

    Article  CAS  Google Scholar 

  41. Saura-Sanmartin, A. Synthesis of ‘impossible’ rotaxanes. Chem. Eur. J. 30, e202304025 (2024).

    Article  CAS  PubMed  Google Scholar 

  42. Bar, A. K., Raghothama, S., Moon, D. & Mukherjee, P. S. Three-component self-assembly of a series of triply interlocked Pd12 coordination prisms and their non-interlocked Pd6 analogues. Chem. Eur. J. 18, 3199–3209 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Liu, Y., Xuan, W. & Cui, Y. Engineering homochiral metal-organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation. Adv. Mater. 22, 4112–4135 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. McNaughton, D. A. et al. New insights and discoveries in anion receptor chemistry. Chem 9, 3045–3112 (2023).

    Article  CAS  Google Scholar 

  45. Fukuda, M., Sekiya, R. & Kuroda, R. A quadruply stranded metallohelicate and its spontaneous dimerization into an interlocked metallohelicate. Angew. Chem. Int. Ed. 47, 706–710 (2008).

    Article  CAS  Google Scholar 

  46. Sekiya, R., Fukuda, M. & Kuroda, R. Site-selective anion recognition of an interlocked dimer. Org. Biomol. Chem. 15, 4328–4335 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Li, Y.-H. et al. Solvent- and anion-induced interconversions of metal–organic cages. Chem. Commun. 52, 8745–8748 (2016).

    Article  CAS  Google Scholar 

  48. Freye, S. et al. Allosteric binding of halide anions by a new dimeric interpenetrated coordination cage. Angew. Chem. Int. Ed. 51, 2191–2194 (2012).

    Article  CAS  Google Scholar 

  49. Frank, M., Dieterich, J. M., Freye, S., Mata, R. A. & Clever, G. H. Relative anion binding affinity in a series of interpenetrated coordination cages. Dalton Trans. 42, 15906–15910 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Freye, S. et al. Template control over dimerization and guest selectivity of interpenetrated coordination cages. J. Am. Chem. Soc. 135, 8476–8479 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Freye, S., Engelhard, D. M., John, M. & Clever, G. H. Counterion dynamics in an interpenetrated coordination cage capable of dissolving AgCl. Chem. Eur. J. 19, 2114–2121 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Bloch, W. M., Holstein, J. J., Dittrich, B., Hiller, W. & Clever, G. H. Hierarchical assembly of an interlocked M8L16 container. Angew. Chem. Int. Ed. 57, 5534–5538 (2018).

    Article  CAS  Google Scholar 

  53. Zhang, W., Zhao, J. & Yang, D. Anion-coordination-driven assembly: from discrete supramolecular self-assemblies to functional soft materials. ChemPlusChem 87, e202200294 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Jamagne, R. et al. Active template synthesis. Chem. Soc. Rev. 53, 10216–10252 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schulte, T. R. et al. A new mechanically-interlocked [Pd2L4] cage motif by dimerization of two peptide-based lemniscates. Angew. Chem. Int. Ed. 59, 22489–22493 (2020). This work describes a peptide-based [Pd2L4] cage featuring a mechanically interlocked figure-eight-shaped structure, expanding the diversity of low-nuclearity metallo-supramolecular architectures with promising biological applications.

    Article  CAS  Google Scholar 

  56. Luo, D. et al. An interlocked coordination cage based on aromatic amide ligands. Chin. Chem. Lett. 32, 1397–1399 (2021).

    Article  CAS  Google Scholar 

  57. Domoto, Y., Abe, M., Kikuchi, T. & Fujita, M. Self-assembly of coordination polyhedra with highly entangled faces induced by metal–acetylene interactions. Angew. Chem. Int. Ed. 59, 3450–3454 (2020). This work introduces a novel self-assembly strategy based on metal–acetylene π coordination, successfully constructing nanostructured polyhedra with highly entangled surfaces.

    Article  CAS  Google Scholar 

  58. Ronson, T. K., Wang, Y., Baldridge, K., Siegel, J. S. & Nitschke, J. R. An S10-symmetric 5-fold interlocked [2]catenane. J. Am. Chem. Soc. 142, 10267–10272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Feng, T. et al. Backbone-directed self-assembly of interlocked molecular cyclic metalla[3]catenanes. Angew. Chem. Int. Ed. 59, 13516–13520 (2020).

    Article  CAS  Google Scholar 

  60. Shan, W.-L., Lin, Y.-J., Hahn, F. E. & Jin, G.-X. Highly selective synthesis of iridium(III) metalla[2]catenanes through component pre-orientation by ππ stacking. Angew. Chem. Int. Ed. 58, 5882–5886 (2019).

    Article  CAS  Google Scholar 

  61. Zhang, H.-N., Gao, W.-X., Lin, Y.-J. & Jin, G.-X. Reversible structural transformation between a molecular Solomon link and an unusual unsymmetrical trefoil knot. J. Am. Chem. Soc. 141, 16057–16063 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Zhang, Y.-Y., Qiu, F.-Y., Shi, H.-T. & Yu, W. Self-assembly and guest-induced disassembly of triply interlocked [2]catenanes. Chem. Commun. 57, 3010–3013 (2021).

    Article  CAS  Google Scholar 

  63. Yu, W. et al. Coordination assembly and host–guest chemistry of a triply interlocked [2]catenane. Inorg. Chem. Front. 8, 2356–2364 (2021).

    Article  CAS  Google Scholar 

  64. Mishra, A. et al. Molecular self-assembly of arene-Ru based interlocked catenane metalla-cages. Chem. Commun. 50, 7542–7544 (2014).

    Article  CAS  Google Scholar 

  65. Séjourné, S. et al. Chiral truxene-based self-assembled cages: triple interlocking and supramolecular chirogenesis. Angew. Chem. Int. Ed. 63, e202400961 (2024).

    Article  Google Scholar 

  66. Zhang, Y.-W., Bai, S., Wang, Y.-Y. & Han, Y.-F. A strategy for the construction of triply interlocked organometallic cages by rational design of poly-NHC precursors. J. Am. Chem. Soc. 142, 13614–13621 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Goodwin, M. J. et al. Factors that impact photochemical cage escape yields. Chem. Rev. 124, 7379–7464 (2024).

    Article  CAS  PubMed  Google Scholar 

  68. Wang, Y. et al. A cyclic bis[2]catenane metallacage. Nat. Commun. 11, 2727 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cai, L.-X. et al. Controlled self-assembly and multistimuli-responsive interconversions of three conjoined twin-cages. J. Am. Chem. Soc. 143, 2016–2024 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Yang, X., Ullah, Z., Stoddart, J. F. & Yavuz, C. T. Porous organic cages. Chem. Rev. 123, 4602–4634 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chen, Q. & Zhu, K. Advancements and strategic approaches in catenane synthesis. Chem. Soc. Rev. 53, 5677–5703 (2024).

    Article  CAS  PubMed  Google Scholar 

  72. Huang, S., Lei, Z., Jin, Y. & Zhang, W. By-design molecular architectures via alkyne metathesis. Chem. Sci. 12, 9591–9606 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ono, K. & Iwasawa, N. Dynamic behavior of covalent organic cages. Chem. Eur. J. 24, 17856–17868 (2018).

    Article  CAS  PubMed  Google Scholar 

  74. Greenlee, A. J., Wendell, C. I., Cencer, M. M., Laffoon, S. D. & Moore, J. S. Kinetic and thermodynamic control in dynamic covalent synthesis. Trends Chem. 2, 1043–1051 (2020).

    Article  CAS  Google Scholar 

  75. Montà-González, G., Sancenón, F., Martínez-Máñez, R. & Martí-Centelles, V. Purely covalent molecular cages and containers for guest encapsulation. Chem. Rev. 122, 13636–13708 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Yang, M., Su, K. & Yuan, D. Construction of stable porous organic cages: from the perspective of chemical bonds. Chem. Commun. 60, 10476–10487 (2024).

    Article  CAS  Google Scholar 

  77. Hasell, T. et al. Triply interlocked covalent organic cages. Nat. Chem. 2, 750–755 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Wang, D., Zhang, L. & Zhao, Y. Template-free synthesis of an interlocked covalent organic molecular cage. J. Org. Chem. 87, 2767–2772 (2022).

    Article  CAS  PubMed  Google Scholar 

  79. Benke, B. P., Kirschbaum, T., Graf, J., Gross, J. H. & Mastalerz, M. Dimeric and trimeric catenation of giant chiral [8 + 12] imine cubes driven by weak supramolecular interactions. Nat. Chem. 15, 413–423 (2023). This study reports the dimeric and trimeric catenation of giant chiral [8 + 12] imine cubes driven by weak supramolecular interactions.

    Article  CAS  PubMed  Google Scholar 

  80. Wagner, P., Rominger, F., Gross, J. H. & Mastalerz, M. Solvent-controlled quadruple catenation of giant chiral [8+12] salicylimine cubes driven by weak hydrogen bonding. Angew. Chem. Int. Ed. 62, e202217251 (2023). This work demonstrates the solvent-controlled synthesis of a quadruply interlocked giant chiral [8 + 12] salicylimine cage, constructing a complex mechanically interlocked molecule.

    Article  CAS  Google Scholar 

  81. Xu, S. et al. Catenated cages mediated by enthalpic reaction intermediates. CCS Chem. 3, 1838–1850 (2020).

    Article  Google Scholar 

  82. Li, P. et al. De novo construction of catenanes with dissymmetric cages by space-discriminative post-assembly modification. Angew. Chem. Int. Ed. 59, 7113–7121 (2020).

    Article  CAS  Google Scholar 

  83. Dong, J. et al. Enhanced biological imaging via aggregation-induced emission active porous organic cages. ACS Nano 16, 2355–2368 (2022).

    Article  CAS  PubMed  Google Scholar 

  84. Chen, L. et al. Interwoven trimeric cage-catenanes with topological chirality. J. Am. Chem. Soc. 146, 30303–30313 (2024).

    Article  CAS  PubMed  Google Scholar 

  85. Greenaway, R. L. et al. High-throughput discovery of organic cages and catenanes using computational screening fused with robotic synthesis. Nat. Commun. 9, 2849 (2018). This work proposes a method that combines computational screening with robotic synthesis to efficiently discover new cage topologies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang, G., Presly, O., White, F., Oppel, I. M. & Mastalerz, M. A shape-persistent quadruply interlocked giant cage catenane with two distinct pores in the solid state. Angew. Chem. Int. Ed. 53, 5126–5130 (2014).

    Article  CAS  Google Scholar 

  87. Li, H. et al. Quantitative self-assembly of a purely organic three-dimensional catenane in water. Nat. Chem. 7, 1003–1008 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Wang, Q. et al. Solution-phase dynamic assembly of permanently interlocked aryleneethynylene cages through alkyne metathesis. Angew. Chem. Int. Ed. 54, 7550–7554 (2015).

    Article  CAS  Google Scholar 

  89. Wang, Q. et al. Dynamic covalent synthesis of aryleneethynylene cages through alkyne metathesis: dimer, tetramer, or interlocked complex? Chem. Sci. 7, 3370–3376 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chakraborty, D. & Mukherjee, P. S. Recent trends in organic cage synthesis: push towards water-soluble organic cages. Chem. Commun. 58, 5558–5573 (2022).

    Article  CAS  Google Scholar 

  91. Chakraborty, D., Modak, R., Howlader, P. & Mukherjee, P. S. De novo approach for the synthesis of water-soluble interlocked and non-interlocked organic cages. Chem. Commun. 57, 3995–3998 (2021).

    Article  CAS  Google Scholar 

  92. Wu, Y. et al. Syntheses of three-dimensional catenanes under kinetic control. Proc. Natl Acad. Sci. USA 119, e2118573119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. McTernan, C. T., Davies, J. A. & Nitschke, J. R. Beyond platonic: how to build metal–organic polyhedra capable of binding low-symmetry, information-rich molecular cargoes. Chem. Rev. 122, 10393–10437 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Li, Y. et al. Hetero- and homointerlocked metal–organic cages. J. Am. Chem. Soc. 146, 3147–3159 (2024). This work presents the innovative synthesis of hetero-interlocked cages with unique photocatalytic properties, showcasing the potential for designing complex molecular topologies.

    Article  CAS  PubMed  Google Scholar 

  95. Grommet, A. B., Feller, M. & Klajn, R. Chemical reactivity under nanoconfinement. Nat. Nanotechnol. 15, 256–271 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Zeng, H. et al. Orthogonal-array dynamic molecular sieving of propylene/propane mixtures. Nature 595, 542–548 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Yu, H.-M. et al. Self-assembly of cluster-mediated 3D catenanes with size-specific recognition behavior. J. Am. Chem. Soc. 145, 25103–25108 (2023). This work reports the self-assembly of an interlocked cage with unique size-specific recognition behaviour.

    Article  CAS  PubMed  Google Scholar 

  98. Lai, Y.-L. et al. Selective separation of pyrene from mixed polycyclic aromatic hydrocarbons by a hexahedral metal-organic cage. Chin. Chem. Lett. 35, 108326 (2024).

    Article  CAS  Google Scholar 

  99. Feng, X. et al. Perylene diimide based imine cages for inclusion of aromatic guest molecules and visible-light photocatalysis. ChemPhotoChem 3, 1014–1019 (2019).

    Article  CAS  Google Scholar 

  100. Chakraborty, D., Pradhan, S., Clegg, J. K. & Mukherjee, P. S. Mechanically interlocked water-soluble Pd6 host for the selective separation of coal tar-based planar aromatic molecules. Inorg. Chem. 63, 14924–14932 (2024).

    Article  CAS  PubMed  Google Scholar 

  101. Yang, L. et al. Binding of anions in triply interlocked coordination catenanes and dynamic allostery for dehalogenation reactions. Chem. Sci. 9, 1050–1057 (2018).

    Article  CAS  PubMed  Google Scholar 

  102. Dong, J., Han, X., Liu, Y., Li, H. & Cui, Y. Metal–covalent organic frameworks (MCOFs): a bridge between metal–organic frameworks and covalent organic frameworks. Angew. Chem. Int. Ed. 59, 13722–13733 (2020).

    Article  CAS  Google Scholar 

  103. Tan, C. et al. Design and assembly of a chiral metallosalen-based octahedral coordination cage for supramolecular asymmetric catalysis. Angew. Chem. Int. Ed. 57, 2085–2090 (2018).

    Article  CAS  Google Scholar 

  104. Jiao, J. et al. Design and assembly of chiral coordination cages for asymmetric sequential reactions. J. Am. Chem. Soc. 140, 2251–2259 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Schröder, H. V., Zhang, Y. & Link, A. J. Dynamic covalent self-assembly of mechanically interlocked molecules solely made from peptides. Nat. Chem. 13, 850–857 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Beeren, S. R., McTernan, C. T. & Schaufelberger, F. The mechanical bond in biological systems. Chem 9, 1378–1412 (2023).

    Article  CAS  Google Scholar 

  107. Cheng, P.-M. et al. Bottom-up construction of chiral metal-peptide assemblies from metal cluster motifs. Nat. Commun. 15, 9034 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kang, X. et al. Mechanically rigid metallopeptide nanostructures achieved by highly efficient folding. Nat. Synth. https://doi.org/10.1038/s44160-024-00640-3 (2024).

    Article  Google Scholar 

  109. Zhang, D. et al. Atomic-resolution transmission electron microscopy of electron beam-sensitive crystalline materials. Science 359, 675–679 (2018).

    Article  CAS  PubMed  Google Scholar 

  110. Zhang, H. et al. Three-dimensional inhomogeneity of zeolite structure and composition revealed by electron ptychography. Science 380, 633–638 (2023).

    Article  CAS  PubMed  Google Scholar 

  111. Zhan, G. et al. Observing polymerization in 2D dynamic covalent polymers. Nature 603, 835–840 (2022).

    Article  CAS  PubMed  Google Scholar 

  112. Guo, Z. et al. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy. Science 356, 59–62 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Dong, J., Liu, Y. & Cui, Y. Emerging chiral two-dimensional materials. Nat. Chem. 16, 1398–1407 (2024).

    Article  CAS  PubMed  Google Scholar 

  114. Dong, J. et al. Free-standing homochiral 2D monolayers by exfoliation of molecular crystals. Nature 602, 606–611 (2022).

    Article  CAS  PubMed  Google Scholar 

  115. Ji, C. et al. Aptamer–protein interactions: from regulation to biomolecular detection. Chem. Rev. 123, 12471–12506 (2023).

    Article  CAS  PubMed  Google Scholar 

  116. Tang, X. et al. Supramolecular assembly frameworks (SAFs): shaping the future of functional materials. Angew. Chem. Int. Ed. 63, e202406956 (2024).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Key R&D Program of China (2022YFA1503302, 2021YFA1200302, 2021YFA1200402 and 2021YFA1501501), the National Natural Science Foundation of China (grants 22225111, 22331007 and 22271184), and the Key Project of Basic Research of Shanghai (22JC1402000).

Author information

Authors and Affiliations

Authors

Contributions

E.D. and X.T. contributed equally. All authors contributed to the discussion of the content and the writing of the manuscript.

Corresponding authors

Correspondence to Jinqiao Dong, Yong Cui or Yan Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Valeria Amendola, James Lewis, Guo-Xin Jin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, E., Tang, X., Zhang, W. et al. Emerging mechanically interlocked cages. Nat Rev Chem 9, 506–522 (2025). https://doi.org/10.1038/s41570-025-00721-7

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41570-025-00721-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing