Abstract
Mechanically interlocked molecules, including catenanes, rotaxanes and knots, are an intriguing class of synthetic targets with potential applications in molecular switches and machines. Although mechanically interlocked molecules are typically constructed using macrocyclic frameworks, the interlocking of two or more three-dimensional, shape-persistent cages remains relatively underexplored. Recent advances have accelerated the development of mechanically interlocked cages (MICs), which consist of interlocked three-dimensional molecular cages rather than macrocycles. Despite their potential in areas such as molecular recognition, separation and catalysis, the design and synthesis of MICs remain challenging. This Review examines the synthetic strategies used to construct MICs, along with their interlocked architecture characteristics, structural dynamics and potential applications. Special attention is given to the guest-binding properties and catalytic performance of monomeric versus catenated cages. We conclude with perspectives on the current challenges and opportunities for future development of MICs.

This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout







Similar content being viewed by others
References
Lewis, J. E. M., Beer, P. D., Loeb, S. J. & Goldup, S. M. Metal ions in the synthesis of interlocked molecules and materials. Chem. Soc. Rev. 46, 2577–2591 (2017).
Stoddart, J. F. Mechanically interlocked molecules (MIMs) — molecular shuttles, switches, and machines (Nobel lecture). Angew. Chem. Int. Ed. 56, 11094–11125 (2017).
Wilmore, J. T. & Beer, P. D. Exploiting the mechanical bond effect for enhanced molecular recognition and sensing. Adv. Mater. 36, 2309098 (2024).
Moulin, E., Carmona-Vargas, C. C. & Giuseppone, N. Daisy chain architectures: from discrete molecular entities to polymer materials. Chem. Soc. Rev. 52, 7333–7358 (2023).
Xue, M., Yang, Y., Chi, X., Yan, X. & Huang, F. Development of pseudorotaxanes and rotaxanes: from synthesis to stimuli-responsive motions to applications. Chem. Rev. 115, 7398–7501 (2015).
Yu, J., Gaedke, M. & Schaufelberger, F. Dynamic covalent chemistry for synthesis and co-conformational control of mechanically interlocked molecules. Eur. J. Org. Chem. 26, e202201130 (2023).
Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).
Zhang, H.-N. & Jin, G.-X. Synthesis of molecular Borromean links featuring trimeric metallocages. Nat. Synth. https://doi.org/10.1038/s44160-024-00720-4 (2025).
Frank, M., Johnstone, M. D. & Clever, G. H. Interpenetrated cage structures. Chem. Eur. J. 22, 14104–14125 (2016).
Chen, Q., Chen, L., Jiang, F. & Hong, M. Controllable coordination self-assembly based on flexible tripodal ligands: from finite metallocages to infinite polycatenanes step by step. Chem. Rec. 15, 711–727 (2015).
Fujita, M., Fujita, N., Ogura, K. & Yamaguchi, K. Spontaneous assembly of ten components into two interlocked, identical coordination cages. Nature 400, 52–55 (1999).
Li, Y. et al. Sulfate anion templated synthesis of a triply interlocked capsule. Chem. Commun. 14, 7134–7136 (2009).
Cui, X. et al. Outer surface interactions of cucurbit[6]uril that trigger the assembly of supramolecular three-dimensional polycatenanes. Chem. Eur. J. 23, 2759–2763 (2017).
Tateishi, T., Yasutake, Y., Kojima, T., Takahashi, S. & Hiraoka, S. Self-assembly process of a quadruply interlocked palladium cage. Commun. Chem. 2, 25 (2019).
Westcott, A., Fisher, J., Harding, L. P., Rizkallah, P. & Hardie, M. J. Self-assembly of a 3-D triply interlocked chiral [2]catenane. J. Am. Chem. Soc. 130, 2950–2951 (2008).
Martí-Rujas, J., Elli, S., Sacchetti, A. & Castiglione, F. Mechanochemical synthesis of mechanical bonds in M12L8 poly-[n]-catenanes. Dalton Trans. 51, 53–58 (2022).
Wu, X., Xu, Z.-X., Wang, F. & Zhang, J. Catenation of homochiral metal–organic nanocages or nanotubes. Inorg. Chem. 55, 5095–5097 (2016).
Marti-Rujas, J. & Famulari, A. Polycatenanes formed of self-assembled metal organic cages. Angew. Chem. Int. Ed. 63, e202407626 (2024).
Chen, L., Sheng, X., Li, G. & Huang, F. Mechanically interlocked polymers based on rotaxanes. Chem. Soc. Rev. 51, 7046–7065 (2022).
Wang, Y. et al. Multistate circularly polarized luminescence switching through stimuli-induced co-conformation regulations of pyrene-functionalized topologically chiral [2]catenane. Angew. Chem. Int. Ed. 61, e202210542 (2022).
Wang, Y.-P. et al. Recent progress in metal-organic cages for biomedical application: highlighted research during 2018–2023. Coord. Chem. Rev. 501, 215570 (2024).
Saady, A. et al. A platform approach to cleavable macrocycles for the controlled disassembly of mechanically caged molecules. Angew. Chem. Int. Ed. 63, e202400344 (2024).
Cui, Z. & Jin, G.-X. Construction of a molecular prime link by interlocking two trefoil knots. Nat. Synth. 1, 635–640 (2022). This article covers the topologically chiral interlocked molecular double trefoil knot, which is the first example of cage-liked knots.
Goldup, S. M. The end of the beginning of mechanical stereochemistry. Acc. Chem. Res. 57, 1696–1708 (2024).
Kumar, A. & Mukherjee, P. S. Multicomponent self-assembly of PdII/PtII interlocked molecular cages: cage-to-cage conversion and self-sorting in aqueous medium. Chem. Eur. J. 26, 4842–4849 (2020).
Schulte, T. R., Holstein, J. J. & Clever, G. H. Chiral self-discrimination and guest recognition in helicene-based coordination cages. Angew. Chem. Int. Ed. 58, 5562–5566 (2019).
Martí-Rujas, J., Elli, S., Zanotti, A., Famulari, A. & Castiglione, F. Molecular recognition of aromatics in spherical nanocages. Chem. Eur. J. 29, e202302025 (2023).
Chakraborty, D., Saha, R., Clegg, J. K. & Mukherjee, P. S. Selective separation of planar and non-planar hydrocarbons using an aqueous Pd6 interlocked cage. Chem. Sci. 13, 11764–11771 (2022).
Qiao, W.-Z., Song, T.-Q., Cheng, P. & Zhao, B. Highly selective enamination of β-ketoesters catalyzed by interlocked [Cu8] and [Cu18] nanocages. Angew. Chem. Int. Ed. 58, 13302–13307 (2019).
Sekiya, R., Fukuda, M. & Kuroda, R. Anion-directed formation and degradation of an interlocked metallohelicate. J. Am. Chem. Soc. 134, 10987–10997 (2012).
Heard, A. W. & Goldup, S. M. Simplicity in the design, operation, and applications of mechanically interlocked molecular machines. ACS Cent. Sci. 6, 117–128 (2020).
Heard, A. W., Suárez, J. M. & Goldup, S. M. Controlling catalyst activity, chemoselectivity and stereoselectivity with the mechanical bond. Nat. Rev. Chem. 6, 182–196 (2022).
May, J. H., Fehr, J. M., Lorenz, J. C., Zakharov, L. N. & Jasti, R. A high-yielding active template click reaction (AT−CuAAC) for the synthesis of mechanically interlocked nanohoops. Angew. Chem. Int. Ed. 63, e202401823 (2024).
May, J. H., Van Raden, J. M., Maust, R. L., Zakharov, L. N. & Jasti, R. Active template strategy for the preparation of π-conjugated interlocked nanocarbons. Nat. Chem. 15, 170–176 (2023).
Ashbridge, Z. et al. Knotting matters: orderly molecular entanglements. Chem. Soc. Rev. 51, 7779–7809 (2022).
Gao, W.-X., Feng, H.-J., Guo, B.-B., Lu, Y. & Jin, G.-X. Coordination-directed construction of molecular links. Chem. Rev. 120, 6288–6325 (2020).
Wilson, B. H. & Loeb, S. J. Integrating the mechanical bond into metal-organic frameworks. Chem 6, 1604–1612 (2020).
Ma, T. et al. Catenated covalent organic frameworks constructed from polyhedra. Nat. Synth. 2, 286–295 (2023).
Wang, X.-Q., Li, W.-J., Wang, W. & Yang, H.-B. Rotaxane dendrimers: alliance between giants. Acc. Chem. Res. 54, 4091–4106 (2021).
Zhu, X.-W., Luo, D., Zhou, X.-P. & Li, D. Imidazole-based metal-organic cages: synthesis, structures, and functions. Coord. Chem. Rev. 455, 214354 (2022).
Saura-Sanmartin, A. Synthesis of ‘impossible’ rotaxanes. Chem. Eur. J. 30, e202304025 (2024).
Bar, A. K., Raghothama, S., Moon, D. & Mukherjee, P. S. Three-component self-assembly of a series of triply interlocked Pd12 coordination prisms and their non-interlocked Pd6 analogues. Chem. Eur. J. 18, 3199–3209 (2012).
Liu, Y., Xuan, W. & Cui, Y. Engineering homochiral metal-organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation. Adv. Mater. 22, 4112–4135 (2010).
McNaughton, D. A. et al. New insights and discoveries in anion receptor chemistry. Chem 9, 3045–3112 (2023).
Fukuda, M., Sekiya, R. & Kuroda, R. A quadruply stranded metallohelicate and its spontaneous dimerization into an interlocked metallohelicate. Angew. Chem. Int. Ed. 47, 706–710 (2008).
Sekiya, R., Fukuda, M. & Kuroda, R. Site-selective anion recognition of an interlocked dimer. Org. Biomol. Chem. 15, 4328–4335 (2017).
Li, Y.-H. et al. Solvent- and anion-induced interconversions of metal–organic cages. Chem. Commun. 52, 8745–8748 (2016).
Freye, S. et al. Allosteric binding of halide anions by a new dimeric interpenetrated coordination cage. Angew. Chem. Int. Ed. 51, 2191–2194 (2012).
Frank, M., Dieterich, J. M., Freye, S., Mata, R. A. & Clever, G. H. Relative anion binding affinity in a series of interpenetrated coordination cages. Dalton Trans. 42, 15906–15910 (2013).
Freye, S. et al. Template control over dimerization and guest selectivity of interpenetrated coordination cages. J. Am. Chem. Soc. 135, 8476–8479 (2013).
Freye, S., Engelhard, D. M., John, M. & Clever, G. H. Counterion dynamics in an interpenetrated coordination cage capable of dissolving AgCl. Chem. Eur. J. 19, 2114–2121 (2013).
Bloch, W. M., Holstein, J. J., Dittrich, B., Hiller, W. & Clever, G. H. Hierarchical assembly of an interlocked M8L16 container. Angew. Chem. Int. Ed. 57, 5534–5538 (2018).
Zhang, W., Zhao, J. & Yang, D. Anion-coordination-driven assembly: from discrete supramolecular self-assemblies to functional soft materials. ChemPlusChem 87, e202200294 (2022).
Jamagne, R. et al. Active template synthesis. Chem. Soc. Rev. 53, 10216–10252 (2024).
Schulte, T. R. et al. A new mechanically-interlocked [Pd2L4] cage motif by dimerization of two peptide-based lemniscates. Angew. Chem. Int. Ed. 59, 22489–22493 (2020). This work describes a peptide-based [Pd2L4] cage featuring a mechanically interlocked figure-eight-shaped structure, expanding the diversity of low-nuclearity metallo-supramolecular architectures with promising biological applications.
Luo, D. et al. An interlocked coordination cage based on aromatic amide ligands. Chin. Chem. Lett. 32, 1397–1399 (2021).
Domoto, Y., Abe, M., Kikuchi, T. & Fujita, M. Self-assembly of coordination polyhedra with highly entangled faces induced by metal–acetylene interactions. Angew. Chem. Int. Ed. 59, 3450–3454 (2020). This work introduces a novel self-assembly strategy based on metal–acetylene π coordination, successfully constructing nanostructured polyhedra with highly entangled surfaces.
Ronson, T. K., Wang, Y., Baldridge, K., Siegel, J. S. & Nitschke, J. R. An S10-symmetric 5-fold interlocked [2]catenane. J. Am. Chem. Soc. 142, 10267–10272 (2020).
Feng, T. et al. Backbone-directed self-assembly of interlocked molecular cyclic metalla[3]catenanes. Angew. Chem. Int. Ed. 59, 13516–13520 (2020).
Shan, W.-L., Lin, Y.-J., Hahn, F. E. & Jin, G.-X. Highly selective synthesis of iridium(III) metalla[2]catenanes through component pre-orientation by π⋅⋅⋅π stacking. Angew. Chem. Int. Ed. 58, 5882–5886 (2019).
Zhang, H.-N., Gao, W.-X., Lin, Y.-J. & Jin, G.-X. Reversible structural transformation between a molecular Solomon link and an unusual unsymmetrical trefoil knot. J. Am. Chem. Soc. 141, 16057–16063 (2019).
Zhang, Y.-Y., Qiu, F.-Y., Shi, H.-T. & Yu, W. Self-assembly and guest-induced disassembly of triply interlocked [2]catenanes. Chem. Commun. 57, 3010–3013 (2021).
Yu, W. et al. Coordination assembly and host–guest chemistry of a triply interlocked [2]catenane. Inorg. Chem. Front. 8, 2356–2364 (2021).
Mishra, A. et al. Molecular self-assembly of arene-Ru based interlocked catenane metalla-cages. Chem. Commun. 50, 7542–7544 (2014).
Séjourné, S. et al. Chiral truxene-based self-assembled cages: triple interlocking and supramolecular chirogenesis. Angew. Chem. Int. Ed. 63, e202400961 (2024).
Zhang, Y.-W., Bai, S., Wang, Y.-Y. & Han, Y.-F. A strategy for the construction of triply interlocked organometallic cages by rational design of poly-NHC precursors. J. Am. Chem. Soc. 142, 13614–13621 (2020).
Goodwin, M. J. et al. Factors that impact photochemical cage escape yields. Chem. Rev. 124, 7379–7464 (2024).
Wang, Y. et al. A cyclic bis[2]catenane metallacage. Nat. Commun. 11, 2727 (2020).
Cai, L.-X. et al. Controlled self-assembly and multistimuli-responsive interconversions of three conjoined twin-cages. J. Am. Chem. Soc. 143, 2016–2024 (2021).
Yang, X., Ullah, Z., Stoddart, J. F. & Yavuz, C. T. Porous organic cages. Chem. Rev. 123, 4602–4634 (2023).
Chen, Q. & Zhu, K. Advancements and strategic approaches in catenane synthesis. Chem. Soc. Rev. 53, 5677–5703 (2024).
Huang, S., Lei, Z., Jin, Y. & Zhang, W. By-design molecular architectures via alkyne metathesis. Chem. Sci. 12, 9591–9606 (2021).
Ono, K. & Iwasawa, N. Dynamic behavior of covalent organic cages. Chem. Eur. J. 24, 17856–17868 (2018).
Greenlee, A. J., Wendell, C. I., Cencer, M. M., Laffoon, S. D. & Moore, J. S. Kinetic and thermodynamic control in dynamic covalent synthesis. Trends Chem. 2, 1043–1051 (2020).
Montà-González, G., Sancenón, F., Martínez-Máñez, R. & Martí-Centelles, V. Purely covalent molecular cages and containers for guest encapsulation. Chem. Rev. 122, 13636–13708 (2022).
Yang, M., Su, K. & Yuan, D. Construction of stable porous organic cages: from the perspective of chemical bonds. Chem. Commun. 60, 10476–10487 (2024).
Hasell, T. et al. Triply interlocked covalent organic cages. Nat. Chem. 2, 750–755 (2010).
Wang, D., Zhang, L. & Zhao, Y. Template-free synthesis of an interlocked covalent organic molecular cage. J. Org. Chem. 87, 2767–2772 (2022).
Benke, B. P., Kirschbaum, T., Graf, J., Gross, J. H. & Mastalerz, M. Dimeric and trimeric catenation of giant chiral [8 + 12] imine cubes driven by weak supramolecular interactions. Nat. Chem. 15, 413–423 (2023). This study reports the dimeric and trimeric catenation of giant chiral [8 + 12] imine cubes driven by weak supramolecular interactions.
Wagner, P., Rominger, F., Gross, J. H. & Mastalerz, M. Solvent-controlled quadruple catenation of giant chiral [8+12] salicylimine cubes driven by weak hydrogen bonding. Angew. Chem. Int. Ed. 62, e202217251 (2023). This work demonstrates the solvent-controlled synthesis of a quadruply interlocked giant chiral [8 + 12] salicylimine cage, constructing a complex mechanically interlocked molecule.
Xu, S. et al. Catenated cages mediated by enthalpic reaction intermediates. CCS Chem. 3, 1838–1850 (2020).
Li, P. et al. De novo construction of catenanes with dissymmetric cages by space-discriminative post-assembly modification. Angew. Chem. Int. Ed. 59, 7113–7121 (2020).
Dong, J. et al. Enhanced biological imaging via aggregation-induced emission active porous organic cages. ACS Nano 16, 2355–2368 (2022).
Chen, L. et al. Interwoven trimeric cage-catenanes with topological chirality. J. Am. Chem. Soc. 146, 30303–30313 (2024).
Greenaway, R. L. et al. High-throughput discovery of organic cages and catenanes using computational screening fused with robotic synthesis. Nat. Commun. 9, 2849 (2018). This work proposes a method that combines computational screening with robotic synthesis to efficiently discover new cage topologies.
Zhang, G., Presly, O., White, F., Oppel, I. M. & Mastalerz, M. A shape-persistent quadruply interlocked giant cage catenane with two distinct pores in the solid state. Angew. Chem. Int. Ed. 53, 5126–5130 (2014).
Li, H. et al. Quantitative self-assembly of a purely organic three-dimensional catenane in water. Nat. Chem. 7, 1003–1008 (2015).
Wang, Q. et al. Solution-phase dynamic assembly of permanently interlocked aryleneethynylene cages through alkyne metathesis. Angew. Chem. Int. Ed. 54, 7550–7554 (2015).
Wang, Q. et al. Dynamic covalent synthesis of aryleneethynylene cages through alkyne metathesis: dimer, tetramer, or interlocked complex? Chem. Sci. 7, 3370–3376 (2016).
Chakraborty, D. & Mukherjee, P. S. Recent trends in organic cage synthesis: push towards water-soluble organic cages. Chem. Commun. 58, 5558–5573 (2022).
Chakraborty, D., Modak, R., Howlader, P. & Mukherjee, P. S. De novo approach for the synthesis of water-soluble interlocked and non-interlocked organic cages. Chem. Commun. 57, 3995–3998 (2021).
Wu, Y. et al. Syntheses of three-dimensional catenanes under kinetic control. Proc. Natl Acad. Sci. USA 119, e2118573119 (2022).
McTernan, C. T., Davies, J. A. & Nitschke, J. R. Beyond platonic: how to build metal–organic polyhedra capable of binding low-symmetry, information-rich molecular cargoes. Chem. Rev. 122, 10393–10437 (2022).
Li, Y. et al. Hetero- and homointerlocked metal–organic cages. J. Am. Chem. Soc. 146, 3147–3159 (2024). This work presents the innovative synthesis of hetero-interlocked cages with unique photocatalytic properties, showcasing the potential for designing complex molecular topologies.
Grommet, A. B., Feller, M. & Klajn, R. Chemical reactivity under nanoconfinement. Nat. Nanotechnol. 15, 256–271 (2020).
Zeng, H. et al. Orthogonal-array dynamic molecular sieving of propylene/propane mixtures. Nature 595, 542–548 (2021).
Yu, H.-M. et al. Self-assembly of cluster-mediated 3D catenanes with size-specific recognition behavior. J. Am. Chem. Soc. 145, 25103–25108 (2023). This work reports the self-assembly of an interlocked cage with unique size-specific recognition behaviour.
Lai, Y.-L. et al. Selective separation of pyrene from mixed polycyclic aromatic hydrocarbons by a hexahedral metal-organic cage. Chin. Chem. Lett. 35, 108326 (2024).
Feng, X. et al. Perylene diimide based imine cages for inclusion of aromatic guest molecules and visible-light photocatalysis. ChemPhotoChem 3, 1014–1019 (2019).
Chakraborty, D., Pradhan, S., Clegg, J. K. & Mukherjee, P. S. Mechanically interlocked water-soluble Pd6 host for the selective separation of coal tar-based planar aromatic molecules. Inorg. Chem. 63, 14924–14932 (2024).
Yang, L. et al. Binding of anions in triply interlocked coordination catenanes and dynamic allostery for dehalogenation reactions. Chem. Sci. 9, 1050–1057 (2018).
Dong, J., Han, X., Liu, Y., Li, H. & Cui, Y. Metal–covalent organic frameworks (MCOFs): a bridge between metal–organic frameworks and covalent organic frameworks. Angew. Chem. Int. Ed. 59, 13722–13733 (2020).
Tan, C. et al. Design and assembly of a chiral metallosalen-based octahedral coordination cage for supramolecular asymmetric catalysis. Angew. Chem. Int. Ed. 57, 2085–2090 (2018).
Jiao, J. et al. Design and assembly of chiral coordination cages for asymmetric sequential reactions. J. Am. Chem. Soc. 140, 2251–2259 (2018).
Schröder, H. V., Zhang, Y. & Link, A. J. Dynamic covalent self-assembly of mechanically interlocked molecules solely made from peptides. Nat. Chem. 13, 850–857 (2021).
Beeren, S. R., McTernan, C. T. & Schaufelberger, F. The mechanical bond in biological systems. Chem 9, 1378–1412 (2023).
Cheng, P.-M. et al. Bottom-up construction of chiral metal-peptide assemblies from metal cluster motifs. Nat. Commun. 15, 9034 (2024).
Kang, X. et al. Mechanically rigid metallopeptide nanostructures achieved by highly efficient folding. Nat. Synth. https://doi.org/10.1038/s44160-024-00640-3 (2024).
Zhang, D. et al. Atomic-resolution transmission electron microscopy of electron beam-sensitive crystalline materials. Science 359, 675–679 (2018).
Zhang, H. et al. Three-dimensional inhomogeneity of zeolite structure and composition revealed by electron ptychography. Science 380, 633–638 (2023).
Zhan, G. et al. Observing polymerization in 2D dynamic covalent polymers. Nature 603, 835–840 (2022).
Guo, Z. et al. Long-range hot-carrier transport in hybrid perovskites visualized by ultrafast microscopy. Science 356, 59–62 (2017).
Dong, J., Liu, Y. & Cui, Y. Emerging chiral two-dimensional materials. Nat. Chem. 16, 1398–1407 (2024).
Dong, J. et al. Free-standing homochiral 2D monolayers by exfoliation of molecular crystals. Nature 602, 606–611 (2022).
Ji, C. et al. Aptamer–protein interactions: from regulation to biomolecular detection. Chem. Rev. 123, 12471–12506 (2023).
Tang, X. et al. Supramolecular assembly frameworks (SAFs): shaping the future of functional materials. Angew. Chem. Int. Ed. 63, e202406956 (2024).
Acknowledgements
This work was funded by the National Key R&D Program of China (2022YFA1503302, 2021YFA1200302, 2021YFA1200402 and 2021YFA1501501), the National Natural Science Foundation of China (grants 22225111, 22331007 and 22271184), and the Key Project of Basic Research of Shanghai (22JC1402000).
Author information
Authors and Affiliations
Contributions
E.D. and X.T. contributed equally. All authors contributed to the discussion of the content and the writing of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Chemistry thanks Valeria Amendola, James Lewis, Guo-Xin Jin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Du, E., Tang, X., Zhang, W. et al. Emerging mechanically interlocked cages. Nat Rev Chem 9, 506–522 (2025). https://doi.org/10.1038/s41570-025-00721-7
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41570-025-00721-7