Abstract
Lithium and other alkali-metal-based batteries are promising candidates for next-generation energy-storage technologies. However, such batteries suffer from limited lifespans caused by the continuous inactivation of their electrodes during operation and even storage, creating inactivated or ‘dead’ Li, which is a combination of electrically insulated metallic Li and solid–electrolyte interphases (SEIs). Numerous efforts have been devoted to uncovering the origins of this inactivation and how it could be mitigated. Given that dead Li cannot be entirely prevented, rejuvenating it has emerged as a solution for prolonging the lifetimes of batteries and energy-storage systems. Here, we discuss the origins of dead Li and its effects on battery operations. We summarize the emerging challenges related to dead Li, such as SEI dissolution, dead Li migration and Li corrosion. We evaluate the limitations of the present strategies devoted to reducing the formation of dead Li, and how to recover and rejuvenate dead Li through redox chemistry and electrochemical protocols. We conclude with development opportunities in operando diagnoses and the rejuvenation of other inactivated electrode materials beyond Li chemistry in cells and large-scale systems already on the market.

This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Li, M., Lu, J., Chen, Z. & Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 30, 1800561 (2018).
Cheng, X. B., Zhang, R., Zhao, C. Z. & Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017).
Li, Q. et al. Recent advances and opportunities in reactivating inactive lithium in batteries. Angew. Chem. Int. Ed. 63, e202404554 (2024).
Tao, M. et al. Recent advances in quantifying the inactive lithium and failure mechanism of Li anodes in rechargeable lithium metal batteries. J. Energy Chem. 96, 226–248 (2024).
Fang, C. et al. Quantifying inactive lithium in lithium metal batteries. Nature 572, 511–515 (2019).
Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).
Yang, C. P., Yin, Y. X., Zhang, S. F., Li, N. W. & Guo, Y. G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 6, 8058 (2015).
Tikekar, M. D., Choudhury, S., Tu, Z. & Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1, 16114 (2016).
Zhang, R. et al. Dead lithium formation in lithium metal batteries: a phase field model. J. Energy Chem. 71, 29–35 (2022).
Sayavong, P. et al. Dissolution of the solid electrolyte interphase and its effects on lithium metal anode cyclability. J. Am. Chem. Soc. 145, 12342–12350 (2023).
Liu, F. et al. Dynamic spatial progression of isolated lithium during battery operations. Nature 600, 659–663 (2021).
Palacin, M. R. Understanding ageing in Li-ion batteries: a chemical issue. Chem. Soc. Rev. 47, 4924–4933 (2018).
Palanisamy, M., Parekh, M. H. & Pol, V. G. In situ replenishment of formation cycle lithium‐ion loss for enhancing battery life. Adv. Funct. Mater. 30, 2003668 (2020).
Zhang, W. et al. Recovery of isolated lithium through discharged state calendar ageing. Nature 626, 306–312 (2024).
Jin, C. et al. Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nat. Energy 6, 378–387 (2021).
McBrayer, J. D. et al. Calendar aging of silicon-containing batteries. Nat. Energy 6, 866–872 (2021).
Qian, X. et al. Revitalizing dead zinc with ferrocene/ferrocenium redox chemistry for deep-cycle zinc metal batteries. Angew. Chem. Int. Ed. 64, e202412989 (2025).
Lin, J. et al. Salt-assisted recovery of sodium metal anodes for high-rate capability sodium batteries. Adv. Mater. 36, 2409976 (2024).
Zhao, Y., Wu, Y., Liu, H., Chen, S. L. & Bo, S. H. Accelerated growth of electrically isolated lithium metal during battery cycling. ACS Appl. Mater. Interfaces 13, 35750–35758 (2021).
Gervillié-Mouravieff, C., Ah, L., Liu, A., Huang, C.-J. & Meng, Y. S. Deciphering the impact of the active lithium reservoir in anode-free pouch cells. ACS Energy Lett. 9, 1693–1700 (2024).
Deng, W. et al. Quantification of reversible and irreversible lithium in practical lithium-metal batteries. Nat. Energy 7, 1031–1041 (2022).
Hsieh, Y.-C. et al. Quantification of dead lithium via in situ nuclear magnetic resonance spectroscopy. Cell Rep. Phys. Sci. 1, 100139 (2020).
Gunnarsdottir, A. B., Amanchukwu, C. V., Menkin, S. & Grey, C. P. Noninvasive in situ NMR study of “dead lithium” formation and lithium corrosion in full-cell lithium metal batteries. J. Am. Chem. Soc. 142, 20814–20827 (2020).
Geise, N. R., Kasse, R. M., Nelson Weker, J., Steinrück, H.-G. & Toney, M. F. Quantification of efficiency in lithium metal negative electrodes via operando X-ray diffraction. Chem. Mater. 33, 7537–7545 (2021).
Lv, S. et al. Operando monitoring the lithium spatial distribution of lithium metal anodes. Nat. Commun. 9, 2152 (2018).
Tao, M. et al. Quantifying the evolution of inactive Li/lithium hydride and their correlations in rechargeable anode-free Li batteries. Nano Lett. 22, 6775–6781 (2022).
Zhou, M.-Y. et al. Quantifying the apparent electron transfer number of electrolyte decomposition reactions in anode-free batteries. Joule 6, 2122–2137 (2022).
Xu, H., Han, C., Li, W., Li, H. & Qiu, X. Quantification of lithium dendrite and solid electrolyte interphase (SEI) in lithium-ion batteries. J. Power Sources 529, 231219 (2022).
Zhang, H. et al. Titration mass spectroscopy (TMS): a quantitative analytical technology for rechargeable batteries. Nano Lett. 22, 9972–9981 (2022).
Kwon, H. et al. Borate–pyran lean electrolyte-based Li-metal batteries with minimal Li corrosion. Nat. Energy 9, 57–69 (2023).
Tao, M. et al. Clarifying the temperature-dependent lithium deposition/stripping process and the evolution of inactive Li in lithium metal batteries. ACS Nano 17, 24104–24114 (2023).
Zhang, J. G., Xu, W., Xiao, J., Cao, X. & Liu, J. Lithium metal anodes with nonaqueous electrolytes. Chem. Rev. 120, 13312–13348 (2020).
Li, Z., Huang, J., Yann Liaw, B., Metzler, V. & Zhang, J. A review of lithium deposition in lithium-ion and lithium metal secondary batteries. J. Power Sources 254, 168–182 (2014).
Dachraoui, W., Kühnel, R.-S., Battaglia, C. & Erni, R. Nucleation, growth and dissolution of Li metal dendrites and the formation of dead Li in Li-ion batteries investigated by operando electrochemical liquid cell scanning transmission electron microscopy. Nano Energy 130, 110086 (2024).
Chen, H. et al. Tortuosity effects in lithium-metal host anodes. Joule 4, 938–952 (2020).
Wood, K. N. et al. Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Cent. Sci. 2, 790–801 (2016).
Chen, K.-H. et al. Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. J. Mater. Chem. A 5, 11671–11681 (2017).
Zhang, S. et al. Spatially hierarchical carbon enables superior long-term cycling of ultrahigh areal capacity lithium metal anodes. Matter 5, 1263–1276 (2022).
Zhang, S.-J. et al. Achievement of high-cyclability and high-voltage Li-metal batteries by heterogeneous SEI film with internal ionic conductivity/external electronic insulativity hybrid structure. Energy Storage Mater. 40, 337–346 (2021).
Lee, D. et al. Copper nitride nanowires printed Li with stable cycling for Li metal batteries in carbonate electrolytes. Adv. Mater. 32, 1905573 (2020).
Zhu, Y. et al. Design principles for self-forming interfaces enabling stable lithium-metal anodes. Proc. Natl Acad. Sci. USA 117, 27195–27203 (2020).
Cao, J. et al. Hierarchical Li electrochemistry using alloy-type anode for high-energy-density Li metal batteries. Nat. Commun. 15, 1354 (2024).
Mao, M. et al. Anion-enrichment interface enables high-voltage anode-free lithium metal batteries. Nat. Commun. 14, 1082 (2023).
Xiao, J. et al. Understanding and applying coulombic efficiency in lithium metal batteries. Nat. Energy 5, 561–568 (2020).
Zhang, W. et al. Engineering wavy‐nanostructured anode interphases with fast ion transfer kinetics: toward practical Li‐metal full batteries. Adv. Funct. Mater. 30, 2003800 (2020).
Xue, W. et al. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat. Energy 6, 495–505 (2021).
Zhang, G. et al. A monofluoride ether-based electrolyte solution for fast-charging and low-temperature non-aqueous lithium metal batteries. Nat. Commun. 14, 1081 (2023).
Lee, J. A. et al. Compositionally sequenced interfacial layers for high-energy Li-metal batteries. Adv. Sci. 11, 2310094 (2024).
Li, C. et al. Self-assembly monolayer inspired stable artificial solid electrolyte interphase design for next-generation lithium metal batteries. Nano Lett. 23, 4014–4022 (2023).
Shi, P. et al. A successive conversion-deintercalation delithiation mechanism for practical composite lithium anodes. J. Am. Chem. Soc. 144, 212–218 (2022).
Chen, X., Shang, M. & Niu, J. Inter-layer-calated thin Li metal electrode with improved battery capacity retention and dendrite suppression. Nano Lett. 20, 2639–2646 (2020).
Yan, C. et al. Dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition. Adv. Mater. 30, 1707629 (2018).
Zhang, J. et al. Weakly solvating cyclic ether electrolyte for high-voltage lithium metal batteries. ACS Energy Lett. 8, 1752–1761 (2023).
Zhang, Q. K. et al. Reforming the uniformity of solid electrolyte interphase by nanoscale structure regulation for stable lithium metal batteries. Angew. Chem. Int. Ed. 62, e202306889 (2023).
Shi, X. et al. Stable electrode/electrolyte interface for high-voltage NCM 523 cathode constructed by synergistic positive and passive approaches. ACS Appl. Mater. Interfaces 13, 57107–57117 (2021).
Bae, J. et al. Polar polymer–solvent interaction derived favorable interphase for stable lithium metal batteries. Energy Environ. Sci. 12, 3319–3327 (2019).
Lee, H. et al. Electrode edge effects and the failure mechanism of lithium-metal batteries. ChemSusChem 11, 3821–3828 (2018).
Yu, L. et al. A localized high-concentration electrolyte with optimized solvents and lithium difluoro(oxalate)borate additive for stable lithium metal batteries. ACS Energy Lett. 3, 2059–2067 (2018).
Jiao, S. et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 3, 739–746 (2018).
Zhou, Y. et al. Redistributing Li-ion flux by parallelly aligned holey nanosheets for dendrite-free Li metal anodes. Adv. Mater. 32, 2003920 (2020).
Xu, G.-L. et al. Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nat. Energy 4, 484–494 (2019).
Wang, H. et al. Electrolytes enriched by crown ethers for lithium metal batteries. Adv. Funct. Mater. 31, 2002578 (2020).
Yin, Y. et al. Fire-extinguishing, recyclable liquefied gas electrolytes for temperature-resilient lithium-metal batteries. Nat. Energy 7, 548–559 (2022).
Niu, C. et al. Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions. Nat. Nanotechnol. 14, 594–601 (2019).
Wang, X. et al. Hybrid electrolyte with dual-anion-aggregated solvation sheath for stabilizing high-voltage lithium-metal batteries. Adv. Mater. 33, 2007945 (2021).
Wang, X. et al. Dynamic concentration of alloying element on anode surface enabling cycle‐stable Li metal batteries. Adv. Funct. Mater. 33, 2307281 (2023).
Zhang, B. et al. A dielectric MXene‐induced self‐built electric field in polymer electrolyte triggering fast lithium‐ion transport and high‐voltage cycling stability. Angew. Chem. Int. Ed. 63, e202403949 (2024).
Tan, Y. H. et al. Lithium fluoride in electrolyte for stable and safe lithium-metal batteries. Adv. Mater. 33, 2102134 (2021).
Yan, C. et al. Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries. Angew. Chem. Int. Ed. 57, 14055–14059 (2018).
Chang, Z., Yang, H., Pan, A., He, P. & Zhou, H. An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell. Nat. Commun. 13, 6788 (2022).
Liu, S. et al. Salt-in-salt reinforced carbonate electrolyte for Li metal batteries. Angew. Chem. Int. Ed. 61, e202210522 (2022).
Qin, Y. et al. Binding FSI– to construct a self-healing sei film for Li-metal batteries by in situ crosslinking vinyl ionic liquid. Angew. Chem. Int. Ed. 63, e202402456 (2024).
Wang, Z. Y. et al. A dendrite-free lithium/carbon nanotube hybrid for lithium-metal batteries. Adv. Mater. 33, 2006702 (2021).
Yue, X. Y. et al. In situ construction of lithium silicide host with unhindered lithium spread for dendrite‐free lithium metal anode. Adv. Funct. Mater. 31, 2008786 (2020).
Chen, C., Zhang, J., Hu, B., Liang, Q. & Xiong, X. Dynamic gel as artificial interphase layer for ultrahigh-rate and large-capacity lithium metal anode. Nat. Commun. 14, 4018 (2023).
Li, Z. et al. Construction of organic‐rich solid electrolyte interphase for long‐cycling lithium–sulfur batteries. Adv. Funct. Mater. 34, 2304541 (2023).
Qin, J. et al. Sulfur vacancies and 1T phase-rich MoS2 nanosheets as an artificial solid electrolyte interphase for 400 Wh kg–1 lithium metal batteries. Adv. Mater. 36, 2312773 (2024).
Rahman, M. M., Ronne, A., Wang, N., Du, Y. & Hu, E. Spatial progression of polysulfide reactivity with lithium nitrate in Li–sulfur batteries. ACS Energy Lett. 9, 2024–2030 (2024).
Liu, Z., Chen, M., Zhou, D. & Xiao, Z. Scavenging of “dead sulfur” and “dead lithium” revealed by integrated–heterogeneous catalysis for advanced lithium–sulfur batteries. Adv. Funct. Mater. 33, 2306321 (2023).
Adhitama, E. et al. Assessing key issues contributing to the degradation of NCM‐622||Cu cells: competition between transition metal dissolution and “dead Li” formation. Adv. Energy Mater. 14, 2303468 (2024).
Wu, X. et al. Structural evolution upon delithiation/lithiation in prelithiated foil anodes: a case study of agli alloys with high Li utilization and marginal volume variation. Adv. Energy Mater. 11, 2003082 (2021).
Wu, J. et al. Unique tridentate coordination tailored solvation sheath toward highly stable lithium metal batteries. Adv. Mater. 35, 2303347 (2023).
Yao, S. et al. A dual−functional cationic covalent organic frameworks modified separator for high energy lithium metal batteries. Adv. Funct. Mater. 33, 2212466 (2023).
Di, S. et al. A crystalline carbon nitride-based separator for high-performance lithium metal batteries. Proc. Natl Acad. Sci. USA 120, e2302375120 (2023).
Li, P., Zhang, H., Lu, J. & Li, G. Low concentration sulfolane-based electrolyte for high voltage lithium metal batteries. Angew. Chem. Int. Ed. 62, e202216312 (2023).
Guo, C. et al. Inorganic filler enhanced formation of stable inorganic‐rich solid electrolyte interphase for high performance lithium metal batteries. Adv. Funct. Mater. 33, 2301111 (2023).
Zhou, Y., Zhang, X., Ding, Y., Zhang, L. & Yu, G. Reversible deposition of lithium particles enabled by ultraconformal and stretchable graphene film for lithium metal batteries. Adv. Mater. 32, 2005763 (2020).
Wang, K. et al. Self‐regulation seaweed‐like lithium metal anode enables stable cycle life of lithium battery. Adv. Funct. Mater. 31, 2009917 (2021).
Huang, K. et al. Lithiophilic CuO nanoflowers on Ti‐mesh inducing lithium lateral plating enabling stable lithium‐metal anodes with ultrahigh rates and ultralong cycle life. Adv. Energy Mater. 9, 1900853 (2019).
Hou, G. et al. Stable lithium metal anode enabled by an artificial multi-phase composite protective film. J. Power Sources 448, 227547 (2020).
Niu, C. et al. Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries. Nat. Energy 6, 723–732 (2021).
Qian, J. et al. Anode‐free rechargeable lithium metal batteries. Adv. Funct. Mater. 26, 7094–71023 (2016).
Tang, K., Tian, L., Zhang, Y. & Xu, Z. J. Anode-free lithium metal batteries: a promising flexible energy storage system. J. Mater. Chem. A 12, 16268–16292 (2024).
Lim, H.-S., Nguyen, D. T., Lochala, J. A., Cao, X. & Zhang, J.-G. Improving cycling performance of anode-free lithium batteries by pressure and voltage control. ACS Energy Lett. 9, 126–135 (2023).
Lin, D. et al. Fast galvanic lithium corrosion involving a Kirkendall-type mechanism. Nat. Chem. 11, 382–389 (2019).
Louli, A. J. et al. Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nat. Energy 5, 693–702 (2020).
Ren, X. et al. Enabling high-voltage lithium-metal batteries under practical conditions. Joule 3, 1662–16766 (2019).
Ding, J. F. et al. Quantification of the dynamic interface evolution in high-efficiency working Li-metal batteries. Angew. Chem. Int. Ed. 61, e202115602 (2022).
Jin, Y. et al. Low-solvation electrolytes for high-voltage sodium-ion batteries. Nat. Energy 7, 718–725 (2022).
Zhang, Z. et al. Capturing the swelling of solid–electrolyte interphase in lithium metal batteries. Science 375, 66–70 (2022).
Hobold, G. M., Khurram, A. & Gallant, B. M. Operando gas monitoring of solid electrolyte interphase reactions on lithium. Chem. Mater. 32, 2341–2352 (2020).
Xiang, Y. et al. Gas induced formation of inactive Li in rechargeable lithium metal batteries. Nat. Commun. 14, 177 (2023).
Liu, P. et al. Revealing lithium battery gas generation for safer practical applications. Adv. Funct. Mater. 32, 2208586 (2022).
He, X. et al. The passivity of lithium electrodes in liquid electrolytes for secondary batteries. Nat. Rev. Mater. 6, 1036–1052 (2021).
Wang, Y.-Y., Zhang, X.-Q., Zhou, M.-Y. & Huang, J.-Q. Mechanism, quantitative characterization, and inhibition of corrosion in lithium batteries. Nano Res. Energy 2, e9120046 (2023).
Boyle, D. T. et al. Corrosion of lithium metal anodes during calendar ageing and its microscopic origins. Nat. Energy 6, 487–494 (2021).
Leung, K., Merrill, L. C. & Harrison, K. L. Galvanic corrosion and electric field in lithium anode passivation films: effects on self-discharge. J. Phys. Chem. C 126, 8565–8580 (2022).
Kolesnikov, A. et al. Galvanic corrosion of lithium‐powder‐based electrodes. Adv. Energy Mater. 10, 2000017 (2020).
Shi, P. et al. Inhibiting intercrystalline reactions of anode with electrolytes for long-cycling lithium batteries. Sci. Adv. 8, eabq3445 (2022).
Jin, C. et al. A corrosion inhibiting layer to tackle the irreversible lithium loss in lithium metal batteries. Nat. Commun. 14, 8269 (2023).
Sheng, O. et al. Stabilizing Li4SnS4 electrolyte from interface to bulk phase with a gradient lithium iodide/polymer layer in lithium metal batteries. Nano Lett. 22, 8346–8354 (2022).
Liu, X. et al. Local electronic structure variation resulting in Li ‘filament’ formation within solid electrolytes. Nat. Mater. 20, 1485–1490 (2021).
Liang, Z. et al. Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy. Nat. Commun. 14, 259 (2023).
Huang, Y. K., Pan, R., Rehnlund, D., Wang, Z. & Nyholm, L. First‐cycle oxidative generation of lithium nucleation sites stabilizes lithium‐metal electrodes. Adv. Energy Mater. 11, 2003674 (2021).
Wang, D. et al. Synchronous healing of Li metal anode via asymmetrical bidirectional current. iScience 23, 100781 (2020).
Zhang, S. et al. The lasting impact of formation cycling on the Li-ion kinetics between SEI and the Li-metal anode and its correlation with efficiency. Sci. Adv. 10, eadj8889 (2024).
Louli, A. J. et al. Optimizing cycling conditions for anode-free lithium metal cells. J. Electrochem. Soc. 168, 020515 (2021).
Ding, J. F. et al. Dynamic galvanic corrosion of working lithium metal anode under practical conditions. Adv. Energy Mater. 13, 2204305 (2023).
He, X., Zhang, K., Zhu, Z., Tong, Z. & Liang, X. 3D-hosted lithium metal anodes. Chem. Soc. Rev. 53, 9–24 (2024).
Jin, C. et al. Armed lithium metal anodes with functional skeletons. Mater. Today Nano 13, 100103 (2021).
Wan, H., Xu, J. & Wang, C. Designing electrolytes and interphases for high-energy lithium batteries. Nat. Rev. Chem. 8, 30–44 (2024).
Yu, Z. et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7, 94–106 (2022).
Liu, Y. et al. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 375, 739–745 (2022).
Lu, G., Nai, J., Luan, D., Tao, X. & Lou, X. W. D. Surface engineering toward stable lithium metal anodes. Sci. Adv. 9, eadf1550 (2023).
Yu, Z., Cui, Y. & Bao, Z. Design principles of artificial solid electrolyte interphases for lithium-metal anodes. Cell Rep. Phys. Sci. 1, 100119 (2020).
Lee, Y.-G. et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat. Energy 5, 299–308 (2020).
Wang, Z. et al. Lithium anode interlayer design for all-solid-state lithium-metal batteries. Nat. Energy 9, 251–262 (2024).
Jin, S. et al. Solid-solution-based metal alloy phase for highly reversible lithium metal anode. J. Am. Chem. Soc. 142, 8818–8826 (2020).
Deng, Y. et al. Refining grains and optimizing grain boundaries by Al2Yb to enable a dendrite-free lithium anode. Energy Environ. Sci. 17, 5901–5910 (2024).
Gu, X., Dong, J. & Lai, C. Li‐containing alloys beneficial for stabilizing lithium anode: a review. Eng. Rep. 3, e12339 (2020).
Ye, Y. et al. Solid-solution or intermetallic compounds: phase dependence of the Li-alloying reactions for Li-metal batteries. J. Am. Chem. Soc. 145, 24775–24784 (2023).
Fu, L. et al. A lithium metal anode surviving battery cycling above 200 oC. Adv. Mater. 32, 2000952 (2020).
Tan, J. et al. Scalable customization of crystallographic plane controllable lithium metal anodes for ultralong-lasting lithium metal batteries. Adv. Mater. 36, 2403570 (2024).
Niu, C. et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 4, 551–559 (2019).
Fang, C. et al. Pressure-tailored lithium deposition and dissolution in lithium metal batteries. Nat. Energy 6, 987–994 (2021).
Lu, B. et al. Suppressing chemical corrosions of lithium metal anodes. Adv. Energy Mater. 12, 2202012 (2022).
Shen, K., Xu, X. & Tang, Y. Recent progress of magnetic field application in lithium-based batteries. Nano Energy 92, 106703 (2022).
Ma, L., Li, N., Zhou, S., Zhang, X. & Xie, K. Lithium battery‐powered extreme environments exploring: principle, progress, and perspective. Adv. Energy Mater. 14, 2401157 (2024).
Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).
Wang, Q. et al. Dendrite-free lithium deposition via a superfilling mechanism for high-performance Li-metal batteries. Adv. Mater. 31, 1903248 (2019).
Lee, S. H., Hwang, J. Y., Park, S. J., Park, G. T. & Sun, Y. K. Adiponitrile (C6H8N2): a new Bi‐functional additive for high‐performance Li‐metal batteries. Adv. Funct. Mater. 29, 1902496 (2019).
Li, G.-X. et al. Enhancing lithium-metal battery longevity through minimized coordinating diluent. Nat. Energy 9, 817–827 (2024).
Wan, M. et al. Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode. Nat. Commun. 11, 829 (2020).
Wang, Z. et al. Li–Ca alloy composite anode with ant-nest-like lithiophilic channels in carbon cloth enabling high-performance Li metal batteries. Research 2022, 9843093 (2022).
Yin, Q. et al. General fabrication of robust alloyed metal anodes for high-performance metal batteries. Adv. Mater. 36, 2404689 (2024).
Ma, C. et al. Superdense lithium deposition via mixed ionic/electronic conductive interfaces implanted in vivo/vitro for stable lithium metal batteries. Adv. Energy Mater. 14, 2400202 (2024).
Zhang, H., Ju, S., Xia, G. & Yu, X. Identifying the positive role of lithium hydride in stabilizing Li metal anodes. Sci. Adv. 8, eabl8245 (2022).
Li, G. et al. Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects. Nat. Energy 3, 1076–1083 (2018).
Zhang, R. et al. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule 2, 764–7771 (2018).
Ye, H. et al. Guiding uniform Li plating/stripping through lithium–aluminum alloying medium for long-life Li metal batteries. Angew. Chem. Int. Ed. 58, 1094–1099 (2019).
Wang, S. et al. 3D self-supporting core-shell silicon–carbon nanofibers-based host enables confined Li+ deposition for lithium metal battery. Nano Energy 131, 110255 (2024).
Zhang, Y., Yao, M., Wang, T., Wu, H. & Zhang, Y. A 3D hierarchical host with gradient-distributed dielectric properties toward dendrite-free lithium metal anode. Angew. Chem. Int. Ed. 63, e202403399 (2024).
Bae, M. et al. Synergistic regulation of intrinsic lithiophilicity and mass transport kinetics of non‐lithium‐alloying nucleation sites for stable operation of low N/P ratio lithium metal batteries. Adv. Energy Mater. 14, 2304101 (2024).
Jiang, G. et al. Robust artificial solid–electrolyte interfaces with biomimetic ionic channels for dendrite‐free Li metal anodes. Adv. Energy Mater. 11, 2003496 (2020).
Lu, G. et al. In-situ electrodeposition of nanostructured carbon strengthened interface for stabilizing lithium metal anode. ACS Nano 16, 9883–9893 (2022).
Shen, X. et al. Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery. Nat. Commun. 10, 900 (2019).
Zhang, Q.-K. et al. Homogeneous and mechanically stable solid–electrolyte interphase enabled by trioxane-modulated electrolytes for lithium metal batteries. Nat. Energy 8, 725–735 (2023).
Luo, D. et al. Constructing multifunctional solid electrolyte interface via in-situ polymerization for dendrite-free and low N/P ratio lithium metal batteries. Nat. Commun. 12, 186 (2021).
Xie, Y. et al. Surface modification using heptafluorobutyric acid to produce highly stable Li metal anodes. Nat. Commun. 14, 2883 (2023).
Dai, H. et al. Stabilizing lithium metal anode by octaphenyl polyoxyethylene-lithium complexation. Nat. Commun. 11, 643 (2020).
Liao, C. et al. Non‐flammable electrolyte with lithium nitrate as the only lithium salt for boosting ultra‐stable cycling and fire‐safety lithium metal batteries. Adv. Funct. Mater. 33, 2212605 (2023).
Ma, B. et al. Molecular-docking electrolytes enable high-voltage lithium battery chemistries. Nat. Chem. 16, 1427–1435 (2024).
Xu, Q. et al. Li2ZrF6-based electrolytes for durable lithium metal batteries. Nature 637, 339–346 (2025).
Birkl, C. R., Roberts, M. R., McTurk, E., Bruce, P. G. & Howey, D. A. Degradation diagnostics for lithium ion cells. J. Power Sources 341, 373–386 (2017).
Wang, J. et al. Active lithium replenishment to extend the life of a cell employing carbon and iron phosphate electrodes. J. Power Sources 196, 5966–5969 (2011).
Waldmann, T. & Wohlfahrt-Mehrens, M. Effects of rest time after Li plating on safety behavior — ARC tests with commercial high-energy 18650 Li-ion cells. Electrochim. Acta 230, 454–460 (2017).
Atkinson, R. W., Carter, R. & Love, C. T. Operational strategy to stabilize lithium metal anodes by applied thermal gradient. Energy Storage Mater. 22, 18–28 (2019).
Kim, N., Kim, Y., Sung, J. & Cho, J. Issues impeding the commercialization of laboratory innovations for energy-dense Si-containing lithium-ion batteries. Nat. Energy 8, 921–933 (2023).
Made, R. I. et al. Health diagnosis and recuperation of aged Li-ion batteries with data analytics and equivalent circuit modeling. iScience 27, 109416 (2024).
Kang, S., Lee, S., Lee, H. & Kang, Y. M. Manipulating disorder within cathodes of alkali-ion batteries. Nat. Rev. Chem. 8, 587–604 (2024).
Spingler, F. B., Naumann, M. & Jossen, A. Capacity recovery effect in commercial LiFePO4/graphite cells. J. Electrochem. Soc. 167, 040526 (2020).
Zhao, X., Chen, H., Wu, H., Zhao, Y. & Luo, J. Nondisassembly repair of degraded LiFePO4 cells via lithium restoration from the solid electrolyte interphase. ACS Nano 18, 21125–21134 (2024).
Ogihara, N. et al. Direct capacity regeneration for spent Li-ion batteries. Joule 8, 1364–1379 (2024).
Chen, S. et al. External Li supply reshapes Li deficiency and lifetime limit of batteries. Nature 638, 676–683 (2025).
Dong, L. et al. Reconstruction of solid electrolyte interphase with SrI2 reactivates dead Li for durable anode-free Li-metal batteries. Angew. Chem. Int. Ed. 62, e202301073 (2023).
Wen, Z. et al. High‐concentration additive and triiodide/iodide redox couple stabilize lithium metal anode and rejuvenate the inactive lithium in carbonate‐based electrolyte. Adv. Funct. Mater. 32, 2204768 (2022).
Chen, J. et al. Reactivating dead Li by shuttle effect for high-performance anode-free Li metal batteries. J. Electrochem. Soc. 168, 120535 (2021).
Zhang, Y. et al. Reactivating the dead lithium by redox shuttle to promote the efficient utilization of lithium for anode free lithium metal batteries. Adv. Funct. Mater. 33, 2301332 (2023).
Chen, J. et al. Selection of redox mediators for reactivating dead Li in lithium metal batteries. Adv. Energy Mater. 12, 2201800 (2022).
Jin, C. B. et al. Reclaiming inactive lithium with a triiodide/iodide redox couple for practical lithium metal batteries. Angew. Chem. Int. Ed. 60, 22990–22995 (2021).
Liu, Z., Dong, X., Wen, J., Hu, P. & Shang, C. The inducement and “rejuvenation” of Li dendrites by space confinement and positive Fe/Co-sites. Small 19, 2300106 (2023).
Gao, L. T., Huang, P. & Guo, Z. S. Elucidating the role of rational separator microstructures in guiding dendrite growth and reviving dead Li. ACS Appl. Mater. Interfaces 14, 41957–41968 (2022).
Ma, C. et al. Chemically induced activity recovery of isolated lithium in anode-free lithium metal batteries. Nano Lett. 22, 9268–9274 (2022).
Zhang, X. et al. Rethinking how external pressure can suppress dendrites in lithium metal batteries. J. Electrochem. Soc. 166, A3639–A3652 (2019).
Huang, S. et al. A redox-mediated zinc electrode for ultra-robust deep-cycle redox flow batteries. Energy Environ. Sci. 16, 438–445 (2023).
Zhao, Y. et al. Zn‐rejuvenated and SEI‐regulated additive in zinc metal battery via the iodine post‐functionalized zeolitic imidazolate framework‐90. Adv. Energy Mater. 13, 2300627 (2023).
Weret, M. A. et al. Reviving inactive lithium and stabilizing lithium deposition for improving the performance of anode-free lithium–sulfur batteries. ACS Energy Lett. 8, 2817–2823 (2023).
Chen, Q., Guo, W., Wang, D. & Fu, Y. A self-healing Li–S redox flow battery with alternative reaction pathways. J. Mater. Chem. A 9, 12652–12658 (2021).
Qi, X. et al. Electrochemical reactivation of dead Li2S for Li–S batteries in non-solvating electrolytes. Angew. Chem. Int. Ed. 62, e202218803 (2023).
Hu, X. et al. External-pressure–electrochemistry coupling in solid-state lithium metal batteries. Nat. Rev. Mater. 9, 305–320 (2024).
Wang, C. Y. et al. Lithium-ion battery structure that self-heats at low temperatures. Nature 529, 515–518 (2016).
Yang, Y. et al. Capacity recovery by transient voltage pulse in silicon anode batteries. Science 386, 322–327 (2024).
Ma, Y., Li, H., Liu, J. & Zhao, D. Understanding the chemistry of mesostructured porous nanoreactors. Nat. Rev. Chem. 8, 915–931 (2024).
Li, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358, 506–510 (2017).
Han, B. et al. Cryo-electron tomography of highly deformable and adherent solid-electrolyte interphase exoskeleton in Li-metal batteries with ether-based electrolyte. Adv. Mater. 34, 2108252 (2022).
Han, B. et al. Conformal three-dimensional interphase of Li metal anode revealed by low-dose cryoelectron microscopy. Matter 4, 3741–3752 (2021).
Zhan, Y. X. et al. Regulating the two‐stage accumulation mechanism of inactive lithium for practical composite lithium metal anodes. Adv. Funct. Mater. 32, 2206834 (2022).
Cheng, X. et al. Fluorescence probing of active lithium distribution in lithium metal anodes. Angew. Chem. Int. Ed. 58, 5936–5940 (2019).
Aryanfar, A., Brooks, D. J., Colussi, A. J. & Hoffmann, M. R. Quantifying the dependence of dead lithium losses on the cycling period in lithium metal batteries. Phys. Chem. Chem. Phys. 16, 24965–24970 (2014).
Dutoit, C. E. et al. Monitoring metallic sub-micrometric lithium structures in Li-ion batteries by in situ electron paramagnetic resonance correlated spectroscopy and imaging. Nat. Commun. 12, 1410 (2021).
Geng, F. et al. Mapping the distribution and the microstructural dimensions of metallic lithium deposits in an anode-free battery by in situ EPR imaging. Chem. Mater. 33, 8223–8234 (2021).
Xu, G. et al. The formation/decomposition equilibrium of LiH and its contribution on anode failure in practical lithium metal batteries. Angew. Chem. Int. Ed. 60, 7770–7776 (2021).
Shadike, Z. et al. Identification of LiH and nanocrystalline LiF in the solid-electrolyte interphase of lithium metal anodes. Nat. Nanotechnol. 16, 549–554 (2021).
Xiang, Y. et al. Quantitatively analyzing the failure processes of rechargeable Li metal batteries. Sci. Adv. 7, eabj3423 (2021).
Yan, C. et al. An armored mixed conductor interphase on a dendrite-free lithium-metal anode. Adv. Mater. 30, 1804461 (2018).
Acknowledgements
The authors acknowledge the funding support of the National Natural Science Foundation of China (grant 52225208 to X.T.; grant 22209032 to O.S.; grants 52103342 and 22479134 to C.J.), Natural Science Foundation of Zhejiang Province (grant LY24B030008 to O.S.), and Fundamental Research Funds for the Provincial Universities of Zhejiang (grant GK249909299001-019 to O.S.).
Author information
Authors and Affiliations
Contributions
C.J. and O.S. conceived the idea, wrote the draft, and contributed equally to this work. All the authors edited and revised the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Jin, C., Sheng, O., Wei, G. et al. Inhibiting and rejuvenating dead lithium in battery materials. Nat Rev Chem 9, 553–568 (2025). https://doi.org/10.1038/s41570-025-00722-6
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41570-025-00722-6