Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inhibiting and rejuvenating dead lithium in battery materials

Subjects

Abstract

Lithium and other alkali-metal-based batteries are promising candidates for next-generation energy-storage technologies. However, such batteries suffer from limited lifespans caused by the continuous inactivation of their electrodes during operation and even storage, creating inactivated or ‘dead’ Li, which is a combination of electrically insulated metallic Li and solid–electrolyte interphases (SEIs). Numerous efforts have been devoted to uncovering the origins of this inactivation and how it could be mitigated. Given that dead Li cannot be entirely prevented, rejuvenating it has emerged as a solution for prolonging the lifetimes of batteries and energy-storage systems. Here, we discuss the origins of dead Li and its effects on battery operations. We summarize the emerging challenges related to dead Li, such as SEI dissolution, dead Li migration and Li corrosion. We evaluate the limitations of the present strategies devoted to reducing the formation of dead Li, and how to recover and rejuvenate dead Li through redox chemistry and electrochemical protocols. We conclude with development opportunities in operando diagnoses and the rejuvenation of other inactivated electrode materials beyond Li chemistry in cells and large-scale systems already on the market.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The nature and influence of dead Li on batteries.
Fig. 2: Emerging challenges triggered dead Li issues.
Fig. 3: Inhibition solutions to dead Li.
Fig. 4: Capacity loss and recovery in Li-ion batteries.
Fig. 5: Rejuvenating strategies for taming dead Li and beyond.
Fig. 6: The future focus of research on inactivated electrode materials.

Similar content being viewed by others

References

  1. Li, M., Lu, J., Chen, Z. & Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 30, 1800561 (2018).

    Article  Google Scholar 

  2. Cheng, X. B., Zhang, R., Zhao, C. Z. & Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017).

    Article  CAS  PubMed  Google Scholar 

  3. Li, Q. et al. Recent advances and opportunities in reactivating inactive lithium in batteries. Angew. Chem. Int. Ed. 63, e202404554 (2024).

    Article  CAS  Google Scholar 

  4. Tao, M. et al. Recent advances in quantifying the inactive lithium and failure mechanism of Li anodes in rechargeable lithium metal batteries. J. Energy Chem. 96, 226–248 (2024).

    Article  CAS  Google Scholar 

  5. Fang, C. et al. Quantifying inactive lithium in lithium metal batteries. Nature 572, 511–515 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Yang, C. P., Yin, Y. X., Zhang, S. F., Li, N. W. & Guo, Y. G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 6, 8058 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Tikekar, M. D., Choudhury, S., Tu, Z. & Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1, 16114 (2016).

    Article  CAS  Google Scholar 

  9. Zhang, R. et al. Dead lithium formation in lithium metal batteries: a phase field model. J. Energy Chem. 71, 29–35 (2022).

    Article  CAS  Google Scholar 

  10. Sayavong, P. et al. Dissolution of the solid electrolyte interphase and its effects on lithium metal anode cyclability. J. Am. Chem. Soc. 145, 12342–12350 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Liu, F. et al. Dynamic spatial progression of isolated lithium during battery operations. Nature 600, 659–663 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Palacin, M. R. Understanding ageing in Li-ion batteries: a chemical issue. Chem. Soc. Rev. 47, 4924–4933 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Palanisamy, M., Parekh, M. H. & Pol, V. G. In situ replenishment of formation cycle lithium‐ion loss for enhancing battery life. Adv. Funct. Mater. 30, 2003668 (2020).

    Article  CAS  Google Scholar 

  14. Zhang, W. et al. Recovery of isolated lithium through discharged state calendar ageing. Nature 626, 306–312 (2024).

    Article  CAS  PubMed  Google Scholar 

  15. Jin, C. et al. Rejuvenating dead lithium supply in lithium metal anodes by iodine redox. Nat. Energy 6, 378–387 (2021).

    Article  CAS  Google Scholar 

  16. McBrayer, J. D. et al. Calendar aging of silicon-containing batteries. Nat. Energy 6, 866–872 (2021).

    Article  CAS  Google Scholar 

  17. Qian, X. et al. Revitalizing dead zinc with ferrocene/ferrocenium redox chemistry for deep-cycle zinc metal batteries. Angew. Chem. Int. Ed. 64, e202412989 (2025).

    Article  CAS  Google Scholar 

  18. Lin, J. et al. Salt-assisted recovery of sodium metal anodes for high-rate capability sodium batteries. Adv. Mater. 36, 2409976 (2024).

    Article  CAS  Google Scholar 

  19. Zhao, Y., Wu, Y., Liu, H., Chen, S. L. & Bo, S. H. Accelerated growth of electrically isolated lithium metal during battery cycling. ACS Appl. Mater. Interfaces 13, 35750–35758 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Gervillié-Mouravieff, C., Ah, L., Liu, A., Huang, C.-J. & Meng, Y. S. Deciphering the impact of the active lithium reservoir in anode-free pouch cells. ACS Energy Lett. 9, 1693–1700 (2024).

    Article  Google Scholar 

  21. Deng, W. et al. Quantification of reversible and irreversible lithium in practical lithium-metal batteries. Nat. Energy 7, 1031–1041 (2022).

    Article  CAS  Google Scholar 

  22. Hsieh, Y.-C. et al. Quantification of dead lithium via in situ nuclear magnetic resonance spectroscopy. Cell Rep. Phys. Sci. 1, 100139 (2020).

    Article  CAS  Google Scholar 

  23. Gunnarsdottir, A. B., Amanchukwu, C. V., Menkin, S. & Grey, C. P. Noninvasive in situ NMR study of “dead lithium” formation and lithium corrosion in full-cell lithium metal batteries. J. Am. Chem. Soc. 142, 20814–20827 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Geise, N. R., Kasse, R. M., Nelson Weker, J., Steinrück, H.-G. & Toney, M. F. Quantification of efficiency in lithium metal negative electrodes via operando X-ray diffraction. Chem. Mater. 33, 7537–7545 (2021).

    Article  CAS  Google Scholar 

  25. Lv, S. et al. Operando monitoring the lithium spatial distribution of lithium metal anodes. Nat. Commun. 9, 2152 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tao, M. et al. Quantifying the evolution of inactive Li/lithium hydride and their correlations in rechargeable anode-free Li batteries. Nano Lett. 22, 6775–6781 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Zhou, M.-Y. et al. Quantifying the apparent electron transfer number of electrolyte decomposition reactions in anode-free batteries. Joule 6, 2122–2137 (2022).

    Article  CAS  Google Scholar 

  28. Xu, H., Han, C., Li, W., Li, H. & Qiu, X. Quantification of lithium dendrite and solid electrolyte interphase (SEI) in lithium-ion batteries. J. Power Sources 529, 231219 (2022).

    Article  CAS  Google Scholar 

  29. Zhang, H. et al. Titration mass spectroscopy (TMS): a quantitative analytical technology for rechargeable batteries. Nano Lett. 22, 9972–9981 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Kwon, H. et al. Borate–pyran lean electrolyte-based Li-metal batteries with minimal Li corrosion. Nat. Energy 9, 57–69 (2023).

    Article  Google Scholar 

  31. Tao, M. et al. Clarifying the temperature-dependent lithium deposition/stripping process and the evolution of inactive Li in lithium metal batteries. ACS Nano 17, 24104–24114 (2023).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, J. G., Xu, W., Xiao, J., Cao, X. & Liu, J. Lithium metal anodes with nonaqueous electrolytes. Chem. Rev. 120, 13312–13348 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Li, Z., Huang, J., Yann Liaw, B., Metzler, V. & Zhang, J. A review of lithium deposition in lithium-ion and lithium metal secondary batteries. J. Power Sources 254, 168–182 (2014).

    Article  CAS  Google Scholar 

  34. Dachraoui, W., Kühnel, R.-S., Battaglia, C. & Erni, R. Nucleation, growth and dissolution of Li metal dendrites and the formation of dead Li in Li-ion batteries investigated by operando electrochemical liquid cell scanning transmission electron microscopy. Nano Energy 130, 110086 (2024).

    Article  CAS  Google Scholar 

  35. Chen, H. et al. Tortuosity effects in lithium-metal host anodes. Joule 4, 938–952 (2020).

    Article  CAS  Google Scholar 

  36. Wood, K. N. et al. Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Cent. Sci. 2, 790–801 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen, K.-H. et al. Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. J. Mater. Chem. A 5, 11671–11681 (2017).

    Article  CAS  Google Scholar 

  38. Zhang, S. et al. Spatially hierarchical carbon enables superior long-term cycling of ultrahigh areal capacity lithium metal anodes. Matter 5, 1263–1276 (2022).

    Article  CAS  Google Scholar 

  39. Zhang, S.-J. et al. Achievement of high-cyclability and high-voltage Li-metal batteries by heterogeneous SEI film with internal ionic conductivity/external electronic insulativity hybrid structure. Energy Storage Mater. 40, 337–346 (2021).

    Article  Google Scholar 

  40. Lee, D. et al. Copper nitride nanowires printed Li with stable cycling for Li metal batteries in carbonate electrolytes. Adv. Mater. 32, 1905573 (2020).

    Article  CAS  Google Scholar 

  41. Zhu, Y. et al. Design principles for self-forming interfaces enabling stable lithium-metal anodes. Proc. Natl Acad. Sci. USA 117, 27195–27203 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cao, J. et al. Hierarchical Li electrochemistry using alloy-type anode for high-energy-density Li metal batteries. Nat. Commun. 15, 1354 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mao, M. et al. Anion-enrichment interface enables high-voltage anode-free lithium metal batteries. Nat. Commun. 14, 1082 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xiao, J. et al. Understanding and applying coulombic efficiency in lithium metal batteries. Nat. Energy 5, 561–568 (2020).

    Article  CAS  Google Scholar 

  45. Zhang, W. et al. Engineering wavy‐nanostructured anode interphases with fast ion transfer kinetics: toward practical Li‐metal full batteries. Adv. Funct. Mater. 30, 2003800 (2020).

    Article  CAS  Google Scholar 

  46. Xue, W. et al. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat. Energy 6, 495–505 (2021).

    Article  CAS  Google Scholar 

  47. Zhang, G. et al. A monofluoride ether-based electrolyte solution for fast-charging and low-temperature non-aqueous lithium metal batteries. Nat. Commun. 14, 1081 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lee, J. A. et al. Compositionally sequenced interfacial layers for high-energy Li-metal batteries. Adv. Sci. 11, 2310094 (2024).

    Article  CAS  Google Scholar 

  49. Li, C. et al. Self-assembly monolayer inspired stable artificial solid electrolyte interphase design for next-generation lithium metal batteries. Nano Lett. 23, 4014–4022 (2023).

    Article  CAS  PubMed  Google Scholar 

  50. Shi, P. et al. A successive conversion-deintercalation delithiation mechanism for practical composite lithium anodes. J. Am. Chem. Soc. 144, 212–218 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Chen, X., Shang, M. & Niu, J. Inter-layer-calated thin Li metal electrode with improved battery capacity retention and dendrite suppression. Nano Lett. 20, 2639–2646 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Yan, C. et al. Dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition. Adv. Mater. 30, 1707629 (2018).

    Article  Google Scholar 

  53. Zhang, J. et al. Weakly solvating cyclic ether electrolyte for high-voltage lithium metal batteries. ACS Energy Lett. 8, 1752–1761 (2023).

    Article  CAS  Google Scholar 

  54. Zhang, Q. K. et al. Reforming the uniformity of solid electrolyte interphase by nanoscale structure regulation for stable lithium metal batteries. Angew. Chem. Int. Ed. 62, e202306889 (2023).

    Article  CAS  Google Scholar 

  55. Shi, X. et al. Stable electrode/electrolyte interface for high-voltage NCM 523 cathode constructed by synergistic positive and passive approaches. ACS Appl. Mater. Interfaces 13, 57107–57117 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Bae, J. et al. Polar polymer–solvent interaction derived favorable interphase for stable lithium metal batteries. Energy Environ. Sci. 12, 3319–3327 (2019).

    Article  CAS  Google Scholar 

  57. Lee, H. et al. Electrode edge effects and the failure mechanism of lithium-metal batteries. ChemSusChem 11, 3821–3828 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Yu, L. et al. A localized high-concentration electrolyte with optimized solvents and lithium difluoro(oxalate)borate additive for stable lithium metal batteries. ACS Energy Lett. 3, 2059–2067 (2018).

    Article  CAS  Google Scholar 

  59. Jiao, S. et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 3, 739–746 (2018).

    Article  CAS  Google Scholar 

  60. Zhou, Y. et al. Redistributing Li-ion flux by parallelly aligned holey nanosheets for dendrite-free Li metal anodes. Adv. Mater. 32, 2003920 (2020).

    Article  CAS  Google Scholar 

  61. Xu, G.-L. et al. Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nat. Energy 4, 484–494 (2019).

    Article  CAS  Google Scholar 

  62. Wang, H. et al. Electrolytes enriched by crown ethers for lithium metal batteries. Adv. Funct. Mater. 31, 2002578 (2020).

    Article  Google Scholar 

  63. Yin, Y. et al. Fire-extinguishing, recyclable liquefied gas electrolytes for temperature-resilient lithium-metal batteries. Nat. Energy 7, 548–559 (2022).

    Article  CAS  Google Scholar 

  64. Niu, C. et al. Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions. Nat. Nanotechnol. 14, 594–601 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Wang, X. et al. Hybrid electrolyte with dual-anion-aggregated solvation sheath for stabilizing high-voltage lithium-metal batteries. Adv. Mater. 33, 2007945 (2021).

    Article  CAS  Google Scholar 

  66. Wang, X. et al. Dynamic concentration of alloying element on anode surface enabling cycle‐stable Li metal batteries. Adv. Funct. Mater. 33, 2307281 (2023).

    Article  CAS  Google Scholar 

  67. Zhang, B. et al. A dielectric MXene‐induced self‐built electric field in polymer electrolyte triggering fast lithium‐ion transport and high‐voltage cycling stability. Angew. Chem. Int. Ed. 63, e202403949 (2024).

    Article  CAS  Google Scholar 

  68. Tan, Y. H. et al. Lithium fluoride in electrolyte for stable and safe lithium-metal batteries. Adv. Mater. 33, 2102134 (2021).

    Article  CAS  Google Scholar 

  69. Yan, C. et al. Lithium nitrate solvation chemistry in carbonate electrolyte sustains high-voltage lithium metal batteries. Angew. Chem. Int. Ed. 57, 14055–14059 (2018).

    Article  CAS  Google Scholar 

  70. Chang, Z., Yang, H., Pan, A., He, P. & Zhou, H. An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell. Nat. Commun. 13, 6788 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu, S. et al. Salt-in-salt reinforced carbonate electrolyte for Li metal batteries. Angew. Chem. Int. Ed. 61, e202210522 (2022).

    Article  CAS  Google Scholar 

  72. Qin, Y. et al. Binding FSI to construct a self-healing sei film for Li-metal batteries by in situ crosslinking vinyl ionic liquid. Angew. Chem. Int. Ed. 63, e202402456 (2024).

    Article  CAS  Google Scholar 

  73. Wang, Z. Y. et al. A dendrite-free lithium/carbon nanotube hybrid for lithium-metal batteries. Adv. Mater. 33, 2006702 (2021).

    Article  CAS  Google Scholar 

  74. Yue, X. Y. et al. In situ construction of lithium silicide host with unhindered lithium spread for dendrite‐free lithium metal anode. Adv. Funct. Mater. 31, 2008786 (2020).

    Article  Google Scholar 

  75. Chen, C., Zhang, J., Hu, B., Liang, Q. & Xiong, X. Dynamic gel as artificial interphase layer for ultrahigh-rate and large-capacity lithium metal anode. Nat. Commun. 14, 4018 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li, Z. et al. Construction of organic‐rich solid electrolyte interphase for long‐cycling lithium–sulfur batteries. Adv. Funct. Mater. 34, 2304541 (2023).

    Article  Google Scholar 

  77. Qin, J. et al. Sulfur vacancies and 1T phase-rich MoS2 nanosheets as an artificial solid electrolyte interphase for 400 Wh kg1 lithium metal batteries. Adv. Mater. 36, 2312773 (2024).

    Article  CAS  Google Scholar 

  78. Rahman, M. M., Ronne, A., Wang, N., Du, Y. & Hu, E. Spatial progression of polysulfide reactivity with lithium nitrate in Li–sulfur batteries. ACS Energy Lett. 9, 2024–2030 (2024).

    Article  CAS  Google Scholar 

  79. Liu, Z., Chen, M., Zhou, D. & Xiao, Z. Scavenging of “dead sulfur” and “dead lithium” revealed by integrated–heterogeneous catalysis for advanced lithium–sulfur batteries. Adv. Funct. Mater. 33, 2306321 (2023).

    Article  CAS  Google Scholar 

  80. Adhitama, E. et al. Assessing key issues contributing to the degradation of NCM‐622||Cu cells: competition between transition metal dissolution and “dead Li” formation. Adv. Energy Mater. 14, 2303468 (2024).

    Article  CAS  Google Scholar 

  81. Wu, X. et al. Structural evolution upon delithiation/lithiation in prelithiated foil anodes: a case study of agli alloys with high Li utilization and marginal volume variation. Adv. Energy Mater. 11, 2003082 (2021).

    Article  CAS  Google Scholar 

  82. Wu, J. et al. Unique tridentate coordination tailored solvation sheath toward highly stable lithium metal batteries. Adv. Mater. 35, 2303347 (2023).

    Article  CAS  Google Scholar 

  83. Yao, S. et al. A dual−functional cationic covalent organic frameworks modified separator for high energy lithium metal batteries. Adv. Funct. Mater. 33, 2212466 (2023).

    Article  CAS  Google Scholar 

  84. Di, S. et al. A crystalline carbon nitride-based separator for high-performance lithium metal batteries. Proc. Natl Acad. Sci. USA 120, e2302375120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li, P., Zhang, H., Lu, J. & Li, G. Low concentration sulfolane-based electrolyte for high voltage lithium metal batteries. Angew. Chem. Int. Ed. 62, e202216312 (2023).

    Article  CAS  Google Scholar 

  86. Guo, C. et al. Inorganic filler enhanced formation of stable inorganic‐rich solid electrolyte interphase for high performance lithium metal batteries. Adv. Funct. Mater. 33, 2301111 (2023).

    Article  CAS  Google Scholar 

  87. Zhou, Y., Zhang, X., Ding, Y., Zhang, L. & Yu, G. Reversible deposition of lithium particles enabled by ultraconformal and stretchable graphene film for lithium metal batteries. Adv. Mater. 32, 2005763 (2020).

    Article  CAS  Google Scholar 

  88. Wang, K. et al. Self‐regulation seaweed‐like lithium metal anode enables stable cycle life of lithium battery. Adv. Funct. Mater. 31, 2009917 (2021).

    Article  CAS  Google Scholar 

  89. Huang, K. et al. Lithiophilic CuO nanoflowers on Ti‐mesh inducing lithium lateral plating enabling stable lithium‐metal anodes with ultrahigh rates and ultralong cycle life. Adv. Energy Mater. 9, 1900853 (2019).

    Article  Google Scholar 

  90. Hou, G. et al. Stable lithium metal anode enabled by an artificial multi-phase composite protective film. J. Power Sources 448, 227547 (2020).

    Article  CAS  Google Scholar 

  91. Niu, C. et al. Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries. Nat. Energy 6, 723–732 (2021).

    Article  CAS  Google Scholar 

  92. Qian, J. et al. Anode‐free rechargeable lithium metal batteries. Adv. Funct. Mater. 26, 7094–71023 (2016).

    Article  CAS  Google Scholar 

  93. Tang, K., Tian, L., Zhang, Y. & Xu, Z. J. Anode-free lithium metal batteries: a promising flexible energy storage system. J. Mater. Chem. A 12, 16268–16292 (2024).

    Article  CAS  Google Scholar 

  94. Lim, H.-S., Nguyen, D. T., Lochala, J. A., Cao, X. & Zhang, J.-G. Improving cycling performance of anode-free lithium batteries by pressure and voltage control. ACS Energy Lett. 9, 126–135 (2023).

    Article  Google Scholar 

  95. Lin, D. et al. Fast galvanic lithium corrosion involving a Kirkendall-type mechanism. Nat. Chem. 11, 382–389 (2019).

    Article  CAS  PubMed  Google Scholar 

  96. Louli, A. J. et al. Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nat. Energy 5, 693–702 (2020).

    Article  CAS  Google Scholar 

  97. Ren, X. et al. Enabling high-voltage lithium-metal batteries under practical conditions. Joule 3, 1662–16766 (2019).

    Article  CAS  Google Scholar 

  98. Ding, J. F. et al. Quantification of the dynamic interface evolution in high-efficiency working Li-metal batteries. Angew. Chem. Int. Ed. 61, e202115602 (2022).

    Article  CAS  Google Scholar 

  99. Jin, Y. et al. Low-solvation electrolytes for high-voltage sodium-ion batteries. Nat. Energy 7, 718–725 (2022).

    Article  CAS  Google Scholar 

  100. Zhang, Z. et al. Capturing the swelling of solid–electrolyte interphase in lithium metal batteries. Science 375, 66–70 (2022).

    Article  CAS  PubMed  Google Scholar 

  101. Hobold, G. M., Khurram, A. & Gallant, B. M. Operando gas monitoring of solid electrolyte interphase reactions on lithium. Chem. Mater. 32, 2341–2352 (2020).

    Article  CAS  Google Scholar 

  102. Xiang, Y. et al. Gas induced formation of inactive Li in rechargeable lithium metal batteries. Nat. Commun. 14, 177 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Liu, P. et al. Revealing lithium battery gas generation for safer practical applications. Adv. Funct. Mater. 32, 2208586 (2022).

    Article  CAS  Google Scholar 

  104. He, X. et al. The passivity of lithium electrodes in liquid electrolytes for secondary batteries. Nat. Rev. Mater. 6, 1036–1052 (2021).

    Article  CAS  Google Scholar 

  105. Wang, Y.-Y., Zhang, X.-Q., Zhou, M.-Y. & Huang, J.-Q. Mechanism, quantitative characterization, and inhibition of corrosion in lithium batteries. Nano Res. Energy 2, e9120046 (2023).

    Article  Google Scholar 

  106. Boyle, D. T. et al. Corrosion of lithium metal anodes during calendar ageing and its microscopic origins. Nat. Energy 6, 487–494 (2021).

    Article  CAS  Google Scholar 

  107. Leung, K., Merrill, L. C. & Harrison, K. L. Galvanic corrosion and electric field in lithium anode passivation films: effects on self-discharge. J. Phys. Chem. C 126, 8565–8580 (2022).

    Article  CAS  Google Scholar 

  108. Kolesnikov, A. et al. Galvanic corrosion of lithium‐powder‐based electrodes. Adv. Energy Mater. 10, 2000017 (2020).

    Article  CAS  Google Scholar 

  109. Shi, P. et al. Inhibiting intercrystalline reactions of anode with electrolytes for long-cycling lithium batteries. Sci. Adv. 8, eabq3445 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Jin, C. et al. A corrosion inhibiting layer to tackle the irreversible lithium loss in lithium metal batteries. Nat. Commun. 14, 8269 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sheng, O. et al. Stabilizing Li4SnS4 electrolyte from interface to bulk phase with a gradient lithium iodide/polymer layer in lithium metal batteries. Nano Lett. 22, 8346–8354 (2022).

    Article  CAS  PubMed  Google Scholar 

  112. Liu, X. et al. Local electronic structure variation resulting in Li ‘filament’ formation within solid electrolytes. Nat. Mater. 20, 1485–1490 (2021).

    Article  CAS  PubMed  Google Scholar 

  113. Liang, Z. et al. Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy. Nat. Commun. 14, 259 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Huang, Y. K., Pan, R., Rehnlund, D., Wang, Z. & Nyholm, L. First‐cycle oxidative generation of lithium nucleation sites stabilizes lithium‐metal electrodes. Adv. Energy Mater. 11, 2003674 (2021).

    Article  CAS  Google Scholar 

  115. Wang, D. et al. Synchronous healing of Li metal anode via asymmetrical bidirectional current. iScience 23, 100781 (2020).

    Article  CAS  PubMed  Google Scholar 

  116. Zhang, S. et al. The lasting impact of formation cycling on the Li-ion kinetics between SEI and the Li-metal anode and its correlation with efficiency. Sci. Adv. 10, eadj8889 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Louli, A. J. et al. Optimizing cycling conditions for anode-free lithium metal cells. J. Electrochem. Soc. 168, 020515 (2021).

    Article  CAS  Google Scholar 

  118. Ding, J. F. et al. Dynamic galvanic corrosion of working lithium metal anode under practical conditions. Adv. Energy Mater. 13, 2204305 (2023).

    Article  CAS  Google Scholar 

  119. He, X., Zhang, K., Zhu, Z., Tong, Z. & Liang, X. 3D-hosted lithium metal anodes. Chem. Soc. Rev. 53, 9–24 (2024).

    Article  CAS  PubMed  Google Scholar 

  120. Jin, C. et al. Armed lithium metal anodes with functional skeletons. Mater. Today Nano 13, 100103 (2021).

    Article  CAS  Google Scholar 

  121. Wan, H., Xu, J. & Wang, C. Designing electrolytes and interphases for high-energy lithium batteries. Nat. Rev. Chem. 8, 30–44 (2024).

    Article  CAS  PubMed  Google Scholar 

  122. Yu, Z. et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 7, 94–106 (2022).

    Article  CAS  Google Scholar 

  123. Liu, Y. et al. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 375, 739–745 (2022).

    Article  CAS  PubMed  Google Scholar 

  124. Lu, G., Nai, J., Luan, D., Tao, X. & Lou, X. W. D. Surface engineering toward stable lithium metal anodes. Sci. Adv. 9, eadf1550 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yu, Z., Cui, Y. & Bao, Z. Design principles of artificial solid electrolyte interphases for lithium-metal anodes. Cell Rep. Phys. Sci. 1, 100119 (2020).

    Article  Google Scholar 

  126. Lee, Y.-G. et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat. Energy 5, 299–308 (2020).

    Article  CAS  Google Scholar 

  127. Wang, Z. et al. Lithium anode interlayer design for all-solid-state lithium-metal batteries. Nat. Energy 9, 251–262 (2024).

    Article  CAS  Google Scholar 

  128. Jin, S. et al. Solid-solution-based metal alloy phase for highly reversible lithium metal anode. J. Am. Chem. Soc. 142, 8818–8826 (2020).

    Article  PubMed  Google Scholar 

  129. Deng, Y. et al. Refining grains and optimizing grain boundaries by Al2Yb to enable a dendrite-free lithium anode. Energy Environ. Sci. 17, 5901–5910 (2024).

    Article  CAS  Google Scholar 

  130. Gu, X., Dong, J. & Lai, C. Li‐containing alloys beneficial for stabilizing lithium anode: a review. Eng. Rep. 3, e12339 (2020).

    Article  Google Scholar 

  131. Ye, Y. et al. Solid-solution or intermetallic compounds: phase dependence of the Li-alloying reactions for Li-metal batteries. J. Am. Chem. Soc. 145, 24775–24784 (2023).

    CAS  Google Scholar 

  132. Fu, L. et al. A lithium metal anode surviving battery cycling above 200 oC. Adv. Mater. 32, 2000952 (2020).

    Article  CAS  Google Scholar 

  133. Tan, J. et al. Scalable customization of crystallographic plane controllable lithium metal anodes for ultralong-lasting lithium metal batteries. Adv. Mater. 36, 2403570 (2024).

    Article  CAS  Google Scholar 

  134. Niu, C. et al. High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nat. Energy 4, 551–559 (2019).

    Article  CAS  Google Scholar 

  135. Fang, C. et al. Pressure-tailored lithium deposition and dissolution in lithium metal batteries. Nat. Energy 6, 987–994 (2021).

    Article  CAS  Google Scholar 

  136. Lu, B. et al. Suppressing chemical corrosions of lithium metal anodes. Adv. Energy Mater. 12, 2202012 (2022).

    Article  CAS  Google Scholar 

  137. Shen, K., Xu, X. & Tang, Y. Recent progress of magnetic field application in lithium-based batteries. Nano Energy 92, 106703 (2022).

    Article  CAS  Google Scholar 

  138. Ma, L., Li, N., Zhou, S., Zhang, X. & Xie, K. Lithium battery‐powered extreme environments exploring: principle, progress, and perspective. Adv. Energy Mater. 14, 2401157 (2024).

    Article  CAS  Google Scholar 

  139. Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019).

    Article  CAS  Google Scholar 

  140. Wang, Q. et al. Dendrite-free lithium deposition via a superfilling mechanism for high-performance Li-metal batteries. Adv. Mater. 31, 1903248 (2019).

    Article  CAS  Google Scholar 

  141. Lee, S. H., Hwang, J. Y., Park, S. J., Park, G. T. & Sun, Y. K. Adiponitrile (C6H8N2): a new Bi‐functional additive for high‐performance Li‐metal batteries. Adv. Funct. Mater. 29, 1902496 (2019).

    Article  Google Scholar 

  142. Li, G.-X. et al. Enhancing lithium-metal battery longevity through minimized coordinating diluent. Nat. Energy 9, 817–827 (2024).

    Article  CAS  Google Scholar 

  143. Wan, M. et al. Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode. Nat. Commun. 11, 829 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wang, Z. et al. Li–Ca alloy composite anode with ant-nest-like lithiophilic channels in carbon cloth enabling high-performance Li metal batteries. Research 2022, 9843093 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yin, Q. et al. General fabrication of robust alloyed metal anodes for high-performance metal batteries. Adv. Mater. 36, 2404689 (2024).

    Article  CAS  Google Scholar 

  146. Ma, C. et al. Superdense lithium deposition via mixed ionic/electronic conductive interfaces implanted in vivo/vitro for stable lithium metal batteries. Adv. Energy Mater. 14, 2400202 (2024).

    Article  CAS  Google Scholar 

  147. Zhang, H., Ju, S., Xia, G. & Yu, X. Identifying the positive role of lithium hydride in stabilizing Li metal anodes. Sci. Adv. 8, eabl8245 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Li, G. et al. Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects. Nat. Energy 3, 1076–1083 (2018).

    Article  CAS  Google Scholar 

  149. Zhang, R. et al. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule 2, 764–7771 (2018).

    Article  CAS  Google Scholar 

  150. Ye, H. et al. Guiding uniform Li plating/stripping through lithium–aluminum alloying medium for long-life Li metal batteries. Angew. Chem. Int. Ed. 58, 1094–1099 (2019).

    Article  CAS  Google Scholar 

  151. Wang, S. et al. 3D self-supporting core-shell silicon–carbon nanofibers-based host enables confined Li+ deposition for lithium metal battery. Nano Energy 131, 110255 (2024).

    Article  CAS  Google Scholar 

  152. Zhang, Y., Yao, M., Wang, T., Wu, H. & Zhang, Y. A 3D hierarchical host with gradient-distributed dielectric properties toward dendrite-free lithium metal anode. Angew. Chem. Int. Ed. 63, e202403399 (2024).

    Article  CAS  Google Scholar 

  153. Bae, M. et al. Synergistic regulation of intrinsic lithiophilicity and mass transport kinetics of non‐lithium‐alloying nucleation sites for stable operation of low N/P ratio lithium metal batteries. Adv. Energy Mater. 14, 2304101 (2024).

    Article  CAS  Google Scholar 

  154. Jiang, G. et al. Robust artificial solid–electrolyte interfaces with biomimetic ionic channels for dendrite‐free Li metal anodes. Adv. Energy Mater. 11, 2003496 (2020).

    Article  Google Scholar 

  155. Lu, G. et al. In-situ electrodeposition of nanostructured carbon strengthened interface for stabilizing lithium metal anode. ACS Nano 16, 9883–9893 (2022).

    Article  CAS  PubMed  Google Scholar 

  156. Shen, X. et al. Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery. Nat. Commun. 10, 900 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Zhang, Q.-K. et al. Homogeneous and mechanically stable solid–electrolyte interphase enabled by trioxane-modulated electrolytes for lithium metal batteries. Nat. Energy 8, 725–735 (2023).

    Article  CAS  Google Scholar 

  158. Luo, D. et al. Constructing multifunctional solid electrolyte interface via in-situ polymerization for dendrite-free and low N/P ratio lithium metal batteries. Nat. Commun. 12, 186 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Xie, Y. et al. Surface modification using heptafluorobutyric acid to produce highly stable Li metal anodes. Nat. Commun. 14, 2883 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Dai, H. et al. Stabilizing lithium metal anode by octaphenyl polyoxyethylene-lithium complexation. Nat. Commun. 11, 643 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Liao, C. et al. Non‐flammable electrolyte with lithium nitrate as the only lithium salt for boosting ultra‐stable cycling and fire‐safety lithium metal batteries. Adv. Funct. Mater. 33, 2212605 (2023).

    Article  CAS  Google Scholar 

  162. Ma, B. et al. Molecular-docking electrolytes enable high-voltage lithium battery chemistries. Nat. Chem. 16, 1427–1435 (2024).

    Article  CAS  PubMed  Google Scholar 

  163. Xu, Q. et al. Li2ZrF6-based electrolytes for durable lithium metal batteries. Nature 637, 339–346 (2025).

    Article  CAS  PubMed  Google Scholar 

  164. Birkl, C. R., Roberts, M. R., McTurk, E., Bruce, P. G. & Howey, D. A. Degradation diagnostics for lithium ion cells. J. Power Sources 341, 373–386 (2017).

    Article  CAS  Google Scholar 

  165. Wang, J. et al. Active lithium replenishment to extend the life of a cell employing carbon and iron phosphate electrodes. J. Power Sources 196, 5966–5969 (2011).

    Article  CAS  Google Scholar 

  166. Waldmann, T. & Wohlfahrt-Mehrens, M. Effects of rest time after Li plating on safety behavior — ARC tests with commercial high-energy 18650 Li-ion cells. Electrochim. Acta 230, 454–460 (2017).

    Article  CAS  Google Scholar 

  167. Atkinson, R. W., Carter, R. & Love, C. T. Operational strategy to stabilize lithium metal anodes by applied thermal gradient. Energy Storage Mater. 22, 18–28 (2019).

    Article  Google Scholar 

  168. Kim, N., Kim, Y., Sung, J. & Cho, J. Issues impeding the commercialization of laboratory innovations for energy-dense Si-containing lithium-ion batteries. Nat. Energy 8, 921–933 (2023).

    Article  CAS  Google Scholar 

  169. Made, R. I. et al. Health diagnosis and recuperation of aged Li-ion batteries with data analytics and equivalent circuit modeling. iScience 27, 109416 (2024).

    Article  Google Scholar 

  170. Kang, S., Lee, S., Lee, H. & Kang, Y. M. Manipulating disorder within cathodes of alkali-ion batteries. Nat. Rev. Chem. 8, 587–604 (2024).

    Article  CAS  PubMed  Google Scholar 

  171. Spingler, F. B., Naumann, M. & Jossen, A. Capacity recovery effect in commercial LiFePO4/graphite cells. J. Electrochem. Soc. 167, 040526 (2020).

    Article  CAS  Google Scholar 

  172. Zhao, X., Chen, H., Wu, H., Zhao, Y. & Luo, J. Nondisassembly repair of degraded LiFePO4 cells via lithium restoration from the solid electrolyte interphase. ACS Nano 18, 21125–21134 (2024).

    Article  CAS  PubMed  Google Scholar 

  173. Ogihara, N. et al. Direct capacity regeneration for spent Li-ion batteries. Joule 8, 1364–1379 (2024).

    Article  CAS  Google Scholar 

  174. Chen, S. et al. External Li supply reshapes Li deficiency and lifetime limit of batteries. Nature 638, 676–683 (2025).

    Article  CAS  PubMed  Google Scholar 

  175. Dong, L. et al. Reconstruction of solid electrolyte interphase with SrI2 reactivates dead Li for durable anode-free Li-metal batteries. Angew. Chem. Int. Ed. 62, e202301073 (2023).

    Article  CAS  Google Scholar 

  176. Wen, Z. et al. High‐concentration additive and triiodide/iodide redox couple stabilize lithium metal anode and rejuvenate the inactive lithium in carbonate‐based electrolyte. Adv. Funct. Mater. 32, 2204768 (2022).

    Article  CAS  Google Scholar 

  177. Chen, J. et al. Reactivating dead Li by shuttle effect for high-performance anode-free Li metal batteries. J. Electrochem. Soc. 168, 120535 (2021).

    Article  CAS  Google Scholar 

  178. Zhang, Y. et al. Reactivating the dead lithium by redox shuttle to promote the efficient utilization of lithium for anode free lithium metal batteries. Adv. Funct. Mater. 33, 2301332 (2023).

    Article  CAS  Google Scholar 

  179. Chen, J. et al. Selection of redox mediators for reactivating dead Li in lithium metal batteries. Adv. Energy Mater. 12, 2201800 (2022).

    Article  CAS  Google Scholar 

  180. Jin, C. B. et al. Reclaiming inactive lithium with a triiodide/iodide redox couple for practical lithium metal batteries. Angew. Chem. Int. Ed. 60, 22990–22995 (2021).

    Article  CAS  Google Scholar 

  181. Liu, Z., Dong, X., Wen, J., Hu, P. & Shang, C. The inducement and “rejuvenation” of Li dendrites by space confinement and positive Fe/Co-sites. Small 19, 2300106 (2023).

    Article  CAS  Google Scholar 

  182. Gao, L. T., Huang, P. & Guo, Z. S. Elucidating the role of rational separator microstructures in guiding dendrite growth and reviving dead Li. ACS Appl. Mater. Interfaces 14, 41957–41968 (2022).

    Article  CAS  PubMed  Google Scholar 

  183. Ma, C. et al. Chemically induced activity recovery of isolated lithium in anode-free lithium metal batteries. Nano Lett. 22, 9268–9274 (2022).

    Article  CAS  PubMed  Google Scholar 

  184. Zhang, X. et al. Rethinking how external pressure can suppress dendrites in lithium metal batteries. J. Electrochem. Soc. 166, A3639–A3652 (2019).

    Article  CAS  Google Scholar 

  185. Huang, S. et al. A redox-mediated zinc electrode for ultra-robust deep-cycle redox flow batteries. Energy Environ. Sci. 16, 438–445 (2023).

    Article  CAS  Google Scholar 

  186. Zhao, Y. et al. Zn‐rejuvenated and SEI‐regulated additive in zinc metal battery via the iodine post‐functionalized zeolitic imidazolate framework‐90. Adv. Energy Mater. 13, 2300627 (2023).

    Article  CAS  Google Scholar 

  187. Weret, M. A. et al. Reviving inactive lithium and stabilizing lithium deposition for improving the performance of anode-free lithium–sulfur batteries. ACS Energy Lett. 8, 2817–2823 (2023).

    Article  CAS  Google Scholar 

  188. Chen, Q., Guo, W., Wang, D. & Fu, Y. A self-healing Li–S redox flow battery with alternative reaction pathways. J. Mater. Chem. A 9, 12652–12658 (2021).

    Article  CAS  Google Scholar 

  189. Qi, X. et al. Electrochemical reactivation of dead Li2S for Li–S batteries in non-solvating electrolytes. Angew. Chem. Int. Ed. 62, e202218803 (2023).

    Article  CAS  Google Scholar 

  190. Hu, X. et al. External-pressure–electrochemistry coupling in solid-state lithium metal batteries. Nat. Rev. Mater. 9, 305–320 (2024).

    Article  Google Scholar 

  191. Wang, C. Y. et al. Lithium-ion battery structure that self-heats at low temperatures. Nature 529, 515–518 (2016).

    Article  CAS  PubMed  Google Scholar 

  192. Yang, Y. et al. Capacity recovery by transient voltage pulse in silicon anode batteries. Science 386, 322–327 (2024).

    Article  CAS  PubMed  Google Scholar 

  193. Ma, Y., Li, H., Liu, J. & Zhao, D. Understanding the chemistry of mesostructured porous nanoreactors. Nat. Rev. Chem. 8, 915–931 (2024).

    Article  PubMed  Google Scholar 

  194. Li, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358, 506–510 (2017).

    Article  CAS  PubMed  Google Scholar 

  195. Han, B. et al. Cryo-electron tomography of highly deformable and adherent solid-electrolyte interphase exoskeleton in Li-metal batteries with ether-based electrolyte. Adv. Mater. 34, 2108252 (2022).

    Article  CAS  Google Scholar 

  196. Han, B. et al. Conformal three-dimensional interphase of Li metal anode revealed by low-dose cryoelectron microscopy. Matter 4, 3741–3752 (2021).

    Article  CAS  Google Scholar 

  197. Zhan, Y. X. et al. Regulating the two‐stage accumulation mechanism of inactive lithium for practical composite lithium metal anodes. Adv. Funct. Mater. 32, 2206834 (2022).

    Article  CAS  Google Scholar 

  198. Cheng, X. et al. Fluorescence probing of active lithium distribution in lithium metal anodes. Angew. Chem. Int. Ed. 58, 5936–5940 (2019).

    Article  CAS  Google Scholar 

  199. Aryanfar, A., Brooks, D. J., Colussi, A. J. & Hoffmann, M. R. Quantifying the dependence of dead lithium losses on the cycling period in lithium metal batteries. Phys. Chem. Chem. Phys. 16, 24965–24970 (2014).

    Article  CAS  PubMed  Google Scholar 

  200. Dutoit, C. E. et al. Monitoring metallic sub-micrometric lithium structures in Li-ion batteries by in situ electron paramagnetic resonance correlated spectroscopy and imaging. Nat. Commun. 12, 1410 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Geng, F. et al. Mapping the distribution and the microstructural dimensions of metallic lithium deposits in an anode-free battery by in situ EPR imaging. Chem. Mater. 33, 8223–8234 (2021).

    Article  CAS  Google Scholar 

  202. Xu, G. et al. The formation/decomposition equilibrium of LiH and its contribution on anode failure in practical lithium metal batteries. Angew. Chem. Int. Ed. 60, 7770–7776 (2021).

    Article  CAS  Google Scholar 

  203. Shadike, Z. et al. Identification of LiH and nanocrystalline LiF in the solid-electrolyte interphase of lithium metal anodes. Nat. Nanotechnol. 16, 549–554 (2021).

    Article  CAS  PubMed  Google Scholar 

  204. Xiang, Y. et al. Quantitatively analyzing the failure processes of rechargeable Li metal batteries. Sci. Adv. 7, eabj3423 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Yan, C. et al. An armored mixed conductor interphase on a dendrite-free lithium-metal anode. Adv. Mater. 30, 1804461 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding support of the National Natural Science Foundation of China (grant 52225208 to X.T.; grant 22209032 to O.S.; grants 52103342 and 22479134 to C.J.), Natural Science Foundation of Zhejiang Province (grant LY24B030008 to O.S.), and Fundamental Research Funds for the Provincial Universities of Zhejiang (grant GK249909299001-019 to O.S.).

Author information

Authors and Affiliations

Authors

Contributions

C.J. and O.S. conceived the idea, wrote the draft, and contributed equally to this work. All the authors edited and revised the manuscript.

Corresponding authors

Correspondence to Chengbin Jin, Ouwei Sheng, Qiang Zhang or Xinyong Tao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, C., Sheng, O., Wei, G. et al. Inhibiting and rejuvenating dead lithium in battery materials. Nat Rev Chem 9, 553–568 (2025). https://doi.org/10.1038/s41570-025-00722-6

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41570-025-00722-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing