Abstract
Chiral medium-sized rings (MSRs), cyclic molecular structures comprising 7–11-membered rings, are prevalent in bioactive molecules owing to their unique three-dimensional structures and pharmacological properties. Compared with the extensively studied central chirality, MSRs with unconventional chirality — that is, axial chirality, inherent chirality and planar chirality — remain underexplored. The past decade has witnessed rapid advances in this field, with breakthroughs in their synthesis and applications. This Review is structured around the three underexplored types of chirality exhibited in MSRs detailing their key synthetic strategies, with a critical evaluation of their advantages and limitations. Additionally, the factors that influence the conformational stability of chiral MSRs are discussed using structure and energy analysis.

This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout







Similar content being viewed by others
References
Reyes, R. L., Iwai, T. & Sawamura, M. Construction of medium-sized rings by gold catalysis. Chem. Rev. 121, 8926–8947 (2021).
Shiina, I. Total synthesis of natural 8- and 9-membered lactones: recent advancements in medium-sized ring formation. Chem. Rev. 107, 239–273 (2007).
Yet, L. Metal-mediated synthesis of medium-sized rings. Chem. Rev. 100, 2963–3008 (2000).
Sirindil, F., Weibel, J.-M., Pale, P. & Blanc, A. Rhazinilam-leuconolam family of natural products: a half century of total synthesis. Nat. Prod. Rep. 39, 1574–1590 (2022).
Zeng, T. et al. Monoterpenoid indole alkaloids from Kopsia officinalis and the immunosuppressive activity of rhazinilam. J. Nat. Prod. 80, 864–871 (2017).
Cook, J. W. Structure of colchicine. Nature 155, 479–479 (1945).
Otevrel, J., Eugui, M., Ričko, S. & Jørgensen, K. A. Enantioselective organocatalytic cycloadditions for the synthesis of medium-sized rings. Nat. Synth. 2, 1142–1158 (2023).
Yao, T., Li, J., Jiang, C. & Zhao, C. Recent advances for the catalytic asymmetric construction of medium-sized rings. Chem Catal. 2, 2929–2964 (2022).
Schmidt, T. A., Hutskalova, V. & Sparr, C. Atroposelective catalysis. Nat. Rev. Chem. 8, 497–517 (2024).
Xiang, S.-H., Ding, W.-Y., Wang, Y.-B. & Tan, B. Catalytic atroposelective synthesis. Nat. Catal. 7, 483–498 (2024).
Tan, B. Axially Chiral Compounds: Asymmetric Synthesis and Applications (Wiley, 2021).
Cheng, J. K., Xiang, S.-H., Li, S., Ye, L. & Tan, B. Recent advances in catalytic asymmetric construction of atropisomers. Chem. Rev. 121, 4805–4902 (2021).
Bao, X., Rodriguez, J. & Bonne, D. Enantioselective synthesis of atropisomers with multiple stereogenic axes. Angew. Chem. Int. Ed. 59, 12623–12634 (2020).
Kumarasamy, E., Raghunathan, R., Sibi, M. P. & Sivaguru, J. Nonbiaryl and heterobiaryl atropisomers: molecular templates with promise for atropselective chemical transformations. Chem. Rev. 115, 11239–11300 (2015).
Maitland, P. & Mills, W. H. Experimental demonstration of the allene asymmetry. Nature 135, 994 (1935).
Cope, A. C., Bach, R. D. & Winkler, H. J. S. Molecular asymmetry. IX. Partial resolution andasymmetric synthesis of 1,2-cyclononadiene. J. Am. Chem. Soc. 92, 1243–1247 (1970).
Christl, M. in Modern Allene Chemistry 141–181 (Wiley, 2004).
Ma, S. Some typical advances in the synthetic applications of allenes. Chem. Rev. 105, 2829–2872 (2005).
Han, J.-W., Peng, X.-S. & Wong, H. N. C. Synthesis of tetraphenylene derivatives and their recent advances. Natl Sci. Rev. 4, 892–916 (2017).
Szumna, A. Inherently chiral concave molecules — from synthesis to applications. Chem. Soc. Rev. 39, 4274–4285 (2010).
Han, J.-W., Li, X. & Wong, H. N. C. Our expedition in eight-membered ring compounds: from planar dehydrocyclooctenes to tub-shaped chiral tetraphenylenes. Chem. Rec. 15, 107–131 (2015).
Marshall, J. A. & Lebreton, J. [2,3] Wittig ring contraction: synthesis of p-menthane derivatives. J. Org. Chem. 53, 4108–4112 (1988).
Oki, M. Isolation of rotational isomers and developments derived therefrom. Proc. Jpn Acad. B 86, 867–883 (2010).
David J. A. Handbook of Chiral Chemicals (CRC, 2005).
Patrick J. W. & Marisa C. K. Fundamentals of Asymmetric Catalysis (Wiley, 2009).
Lin G.-Q., You Q.-D. & Cheng J.-F. Chiral Drugs: Chemistry and Biological Action (Wiley, 2011).
Yoneda, T. et al. N-Benzoyl- and N-sulfonyl-1,5-benzodiazepines: comparison of their atropisomeric and conformational properties. J. Org. Chem. 79, 5717–5727 (2014).
Chobanian, H. R. et al. The design and synthesis of potent, selective benzodiazepine sulfonamide bombesin receptor subtype 3 (BRS-3) agonists with an increased barrier of atropisomerization. Bioorg. Med. Chem. 20, 2845–2849 (2012).
Viladomat, F., Bastida, J., Codina, C., Campbell, W. E. & Mathee, S. Alkaloids from Boophane flava. Phytochemistry 40, 307–311 (1995).
Jiang, H.-L. et al. New isocoumarins and alkaloid from Chinese insect medicine, Eupolyphaga sinensis Walker. Fitoterapia 83, 1275–1280 (2012).
Yang, H. et al. Coplanar atropochiral 5H-cyclopenta[2,1-b:3,4-b′]dipyridine ligands: synthesis and applications in asymmetric ring-opening reaction. Angew. Chem. Int. Ed. 64, e202416839 (2025).
Guo, J. et al. Optical resolution of 1,16-dihydroxytetraphenylene by chiral gold(III) complexation and its applications as chiral ligands in asymmetric catalysis. Chem. Sci. 13, 4608–4615 (2022).
Chai, G.-L. et al. Chiral hydroxytetraphenylene-boron complex catalyzed asymmetric Diels-Alder cycloaddition of 2′-hydroxychalcones. Org. Lett. 22, 8023–8027 (2020).
Gao, X., Wu, B., Huang, W.-X., Chen, M.-W. & Zhou, Y.-G. Enantioselective palladium-catalyzed C-H functionalization of indoles using an axially chiral 2,2′-bipyridine ligand. Angew. Chem. Int. Ed. 54, 11956–11960 (2015).
Tanaka, K., Hori, T., Osaka, T., Noguchi, K. & Hirano, M. Rhodium-catalyzed reactions of dithiols and 1,4-bis(bromomethyl)benzenes leading to enantioenriched dithiaparacyclophanes. Org. Lett. 9, 4881–4884 (2007).
Peng, H.-Y. et al. Chiral rodlike platinum complexes, double helical chains, and potential asymmetric hydrogenation ligand based on “linear” building blocks: 1,8,9,16-tetrahydroxytetraphenylene and 1,8,9,16-tetrakis(diphenylphosphino)tetraphenylene. J. Am. Chem. Soc. 127, 9603–9611 (2005).
Huang, Z. et al. Modified intramolecular-lock strategy enables efficient thermally activated delayed fluorescence emitters for non-doped OLEDs. Angew. Chem. Int. Ed. 134, e202213157 (2022).
Lei, B. et al. Medium-ring strategy enables multiple resonance emitters with twisted geometry and fast spin-flip to suppress efficiency roll-off. Angew. Chem. Int. Ed. 135, e202218405 (2023).
Yoshina, R. et al. Inner-bond-cleavage approach to figure-eight macrocycles from planar aromatic hydrocarbons. J. Am. Chem. Soc. 146, 29383–29390 (2024). This work establishes a catalytic enantioselective method for the synthesis of inherently chiral ten-membered ring compounds via an inner-bond cleavage strategy and demonstrates their remarkable potential for applications in the field of optoelectronic materials.
Takaishi, K., Hinoide, S., Matsumoto, T. & Ema, T. Axially chiral peri-xanthenoxanthenes as a circularly polarized luminophore. J. Am. Chem. Soc. 141, 11852–11857 (2019).
Tian, J. et al. Fast, real-time, in situ monitoring of solar ultraviolet radiation using sunlight-driven photoresponsive liquid crystals. Adv. Opt. Mater. 6, 1701337 (2018).
Liu, L., Fang, W.-H. & Martinez, T. J. A nitrogen out-of-plane (noop) mechanism for imine-based light-driven molecular motors. J. Am. Chem. Soc. 145, 6888–6898 (2023).
Zhang, Y. et al. A chemically driven rotary molecular motor based on reversible lactone formation with perfect unidirectionality. Chem 6, 2420–2429 (2020).
Kassem, S. et al. Artificial molecular motors. Chem. Soc. Rev. 46, 2592–2621 (2017).
Greb, L. & Lehn, J.-M. Light-driven molecular motors: imines as four-step or two-step unidirectional rotors. J. Am. Chem. Soc. 136, 13114–13117 (2014).
Carmona, J. A., Rodríguez-Franco, C., Fernández, R., Hornillos, V. & Lassaletta, J. M. Atroposelective transformation of axially chiral (hetero) biaryls. From desymmetrization to modern resolution strategies. Chem. Soc. Rev. 50, 2968–2983 (2021).
Zeng, X.-P., Cao, Z.-Y., Wang, Y.-H., Zhou, F. & Zhou, J. Catalytic enantioselective desymmetrization reactions to all-carbon quaternary stereocenters. Chem. Rev. 116, 7330–7396 (2016).
Huang, M., Pan, T., Jiang, X. & Luo, S. Catalytic deracemization reactions. J. Am. Chem. Soc. 145, 10917–10929 (2023).
Buhse, T. et al. Spontaneous deracemizations. Chem. Rev. 121, 2147–2229 (2021).
Yus, M., Nájera, C., Foubelo, F. & Sansano, J. M. Metal-catalyzed enantioconvergent transformations. Chem. Rev. 123, 11817–11893 (2023).
Bhat, V., Welin, E. R., Guo, X. & Stoltz, B. M. Advances in stereoconvergent catalysis from 2005 to 2015: transition-metal-mediated stereoablative reactions, dynamic kinetic resolutions, and dynamic kinetic asymmetric transformations. Chem. Rev. 117, 4528–4561 (2017).
Xu, B., Wang, Q., Fang, C., Zhang, Z.-M. & Zhang, J. Recent advances in Pd-catalyzed asymmetric cyclization reactions. Chem. Soc. Rev. 53, 883–971 (2024).
Wang, N., Wu, Z., Wang, J., Ullah, N. & Lu, Y. Recent applications of asymmetric organocatalytic annulation reactions in natural product synthesis. Chem. Soc. Rev. 50, 9766–9793 (2021).
Xing, Y. & Wang, N.-X. Organocatalytic and metal-mediated asymmetric [3+2] cycloaddition reactions. Coord. Chem. Rev. 256, 938–952 (2012).
Kalinin, S. & Sapegin, A. Ring expansion reactions through intramolecular transamidation. Eur. J. Org. Chem. 26, e202300754 (2023).
Clarke, A. K. & Unsworth, W. P. A happy medium: the synthesis of medicinally important medium-sized rings via ring expansion. Chem. Sci. 11, 2876–2881 (2020).
Kotwal, N., Tamanna & Chauhan, P. Catalytic asymmetric synthesis of medium-sized bridged biaryls. Chem. Commun. 58, 11031–11044 (2022).
Bringmann, G., Gulder, T., Gulder, T. A. M. & Breuning, M. Atroposelective total synthesis of axially chiral biaryl natural products. Chem. Rev. 111, 563–639 (2011).
Bringmann, G. et al. Atroposelective synthesis of axially chiral biaryl compounds. Angew. Chem. Int. Ed. 44, 5384–5427 (2005).
Ogasawara, M., Okada, A., Nakajima, K. & Takahashi, T. Palladium-catalyzed synthesis of endocyclic allenes and their application in stereoselective [2+2] cycloaddition with ketenes. Org. Lett. 11, 177–180 (2009).
Soriano, E. & Fernández, I. Allenes and computational chemistry: from bonding situations to reaction mechanisms. Chem. Soc. Rev. 43, 3041–3105 (2014).
Liu, J. et al. Post-synthetic modifications of metal-organic cages. Nat. Rev. Chem. 6, 339–356 (2022).
Segura, J. L., Royuela, S. & Mar Ramos, M. Post-synthetic modification of covalent organic frameworks. Chem. Soc. Rev. 48, 3903–3945 (2019).
Guo, Y., Liu, M.-M., Zhu, X., Zhu, L. & He, C. Catalytic asymmetric synthesis of silicon-stereogenic dihydrodibenzosilines: silicon central-to-axial chirality relay. Angew. Chem. Int. Ed. 60, 13887–13891 (2021).
Antonov, L. Tautomerism: Methods and Theories (Wiley, 2013).
Ohkuma, T. & Arai, N. Advancement in catalytic asymmetric hydrogenation of ketones and imines, and development of asymmetric isomerization of allylic alcohols. Chem. Rec. 16, 2801–2819 (2016).
Wu, Y. & Deng, L. Asymmetric synthesis of trifluoromethylated amines via catalytic enantioselective isomerization of imines. J. Am. Chem. Soc. 134, 14334–14337 (2012).
Fu, N., Zhang, L., Li, J., Luo, S. & Cheng, J.-P. Chiral primary amine catalyzed enantioselective protonation via an enamine intermediate. Angew. Chem. Int. Ed. 50, 11451–11455 (2011).
Liu, J. et al. Catalytic enantioselective tautomerization of metastable enamines. Org. Lett. 20, 244–247 (2018).
Hu, W. et al. Synthesis of 7-arylthiomethyl dibenzo[b,d]azepines through imidoylative Heck cyclization and CPA-catalyzed thio-Michael addition/enantioselective protonation. Org. Lett. 24, 3642–3646 (2022).
Zhang, S., Chen, F., He, Y.-M. & Fan, Q.-H. Asymmetric hydrogenation of dibenzo[c,e]azepine derivatives with chiral cationic ruthenium diamine catalysts. Org. Lett. 21, 5538–5541 (2019).
Yang, T., Guo, X., Yin, Q. & Zhang, X. Intramolecular asymmetric reductive amination: synthesis of enantioenriched dibenz[c,e]azepines. Chem. Sci. 10, 2473–2477 (2019).
Li, J. & Shi, Y. Progress on transition metal catalyzed asymmetric hydroesterification, hydrocarboxylation, and hydroamidation reactions of olefins. Chem. Soc. Rev. 51, 6757–6773 (2022).
Egorov, I. N. et al. Direct asymmetric addition of heteroatom nucleophiles to imines. Adv. Synth. Catal. 364, 2092–2112 (2022).
Kennemur, J. L., Maji, R., Scharf, M. J. & List, B. Catalytic asymmetric hydroalkoxylation of C-C multiple bonds. Chem. Rev. 121, 14649–14681 (2021).
Hopmann, K. H. & Bayer, A. On the mechanism of iridium-catalyzed asymmetric hydrogenation of imines and alkenes: a theoretical study. Organometallics 30, 2483–2497 (2011).
Zhao, Z.-B., Shi, L., Meng, F.-J., Li, Y. & Zhou, Y.-G. Synthesis of chiral seven-membered cyclic sulfonamides through palladium-catalyzed arylation of cyclic imines. Org. Chem. Front. 6, 1572–1576 (2019).
Zhao, Z.-B., Shi, L., Li, Y., Meng, F.-J. & Zhou, Y.-G. Facile synthesis of chiral ε-sultams via an organocatalytic aza-Friedel-Crafts reaction. Org. Biomol. Chem. 17, 6364–6368 (2019).
Zhang, S. et al. Highly enantioselective synthesis of phosphorus-containing ϵ-benzosultams by bifunctional phosphonium salt-promoted hydrophosphonylation. Chem. Eur. J. 27, 11285–11290 (2021).
Fang, Y. et al. Axially chiral bridged biaryls by Ni-catalyzed kinetic asymmetric C-O bond cleavage. ACS Catal. 14, 8176–8183 (2024).
Wei, Z. et al. Bridged biaryl atropisomers by organocatalyzed kinetic asymmetric alcoholysis. Org. Lett. 26, 7110–7115 (2024).
Chen, P.-H., Billett, B. A., Tsukamoto, T. & Dong, G. “Cut and sew” transformations via transition-metal-catalyzed carbon–carbon bond activation. ACS Catal. 7, 1340–1360 (2017).
Xue, X. & Gu, Z. Synthesis of bridged biaryl atropisomers via sequential Cu- and Pd-catalyzed asymmetric ring opening and cyclization. Org. Lett. 21, 3942–3945 (2019).
Tao, L.-F., Huang, F., Zhao, X., Qian, L. & Liao, J.-Y. Atroposelective synthesis of eight-membered lactam-bridged n-arylindoles via stepwise cut-and-sew strategy. Cell Rep. Phys. Sci. 4, 101697 (2023).
Jia, S. et al. Atroposelective construction of nine-membered carbonate-bridged biaryls. Angew. Chem. Int. Ed. 134, e202206501 (2022). This work describes the synthesis of axially chiral nine-membered ring compounds via an organocatalytic ring expansion strategy.
Qin, W., Liu, Y. & Yan, H. Enantioselective synthesis of atropisomers via vinylidene ortho-quinone methides (VQMs). Acc. Chem. Res. 55, 2780–2795 (2022).
Molander, G. A. Diverse methods for medium ring synthesis. Acc. Chem. Res. 31, 603–609 (1998).
Illuminati, G. & Mandolini, L. Ring closure reactions of bifunctional chain molecules. Acc. Chem. Res. 14, 95–102 (1981).
Zhang, D. & Wang, Q. Palladium catalyzed asymmetric Suzuki–Miyaura coupling reactions to axially chiral biaryl compounds: chiral ligands and recent advances. Coord. Chem. Rev. 286, 1–16 (2015).
Wencel-Delord, J., Panossian, A., Leroux, F. R. & Colobert, F. Recent advances and new concepts for the synthesis of axially stereoenriched biaryls. Chem. Soc. Rev. 44, 3418–3430 (2015).
Yamaguchi, K., Yamaguchi, J., Studer, A. & Itami, K. Hindered biaryls by C-H coupling: bisoxazoline-Pd catalysis leading to enantioselective C-H coupling. Chem. Sci. 3, 2165–2169 (2012).
Kozlowski, M. C., Morgan, B. J. & Linton, E. C. Total synthesis of chiral biaryl natural products by asymmetric biaryl coupling. Chem. Soc. Rev. 38, 3193–3207 (2009).
Saget, T. & Cramer, N. Enantioselective C-H arylation strategy for functionalized dibenzazepinones with quaternary stereocenters. Angew. Chem. Int. Ed. 52, 7865–7868 (2013). This study represents the successful synthesis of biaryl-type axial MSRs via an enantioselective C–H arylation strategy.
Newton, C. G., Braconi, E., Kuziola, J., Wodrich, M. D. & Cramer, N. Axially chiral dibenzazepinones by a palladium(0)-catalyzed atropo-enantioselective C-H arylation. Angew. Chem. Int. Ed. 57, 11040–11044 (2018).
Kumar, A., Sasai, H. & Takizawa, S. Atroposelective synthesis of C-C axially chiral compounds via mono- and dinuclear vanadium catalysis. Acc. Chem. Res. 55, 2949–2965 (2022).
Bansal, S., Shabade, A. B. & Punji, B. Advances in C(sp2)-H/C(sp2)-H oxidative coupling of (hetero)arenes using 3d transition metal catalysts. Adv. Synth. Catal. 363, 1998–2022 (2021).
Yeung, C. S. & Dong, V. M. Catalytic dehydrogenative cross-coupling: forming carbon–carbon bonds by oxidizing two carbon-hydrogen bonds. Chem. Rev. 111, 1215–1292 (2011).
Wang, S.-H. et al. Atroposelective synthesis of biaxial bridged eight-membered terphenyls via a Co/SPDO-catalyzed aerobic oxidative coupling/desymmetrization of phenols. Nat. Commun. 15, 4591 (2024).
Bellotti, P., Koy, M., Hopkinson, M. N. & Glorius, F. Recent advances in the chemistry and applications of N-heterocyclic carbenes. Nat. Rev. Chem. 5, 711–725 (2021).
Lu, S. et al. Diastereo- and atroposelective synthesis of bridged biaryls bearing an eight-membered lactone through an organocatalytic cascade. J. Am. Chem. Soc. 141, 17062–17067 (2019). This work demonstrates NHC-catalysed intramolecular nucleophilic substitution for synthesizing axially chiral benzofuran-fused eight-membered lactones.
Yang, X. et al. Atroposelective access to 1,3-oxazepine-containing bridged biaryls via carbene-catalyzed desymmetrization of imines. Angew. Chem. Int. Ed. 62, e202211977 (2023).
Zhang, Y., Liu, Y.-Q., Hu, L. A., Zhang, X. & Yin, Q. Asymmetric reductive amination/ring-closing cascade: direct synthesis of enantioenriched biaryl-bridged NH lactams. Org. Lett. 22, 6479–6483 (2020).
Song, J. et al. Highly efficient and enantioselective synthesis of chiral lactones via Ir-catalysed asymmetric hydrogenation of ketoesters. Chem. Commun. 58, 8408–8411 (2022).
Lee, H.-J. & Maruoka, K. Asymmetric phase-transfer catalysis. Nat. Rev. Chem. 8, 851–869 (2024).
Tian, S.-K. et al. Asymmetric organic catalysis with modified cinchona alkaloids. Acc. Chem. Res. 37, 621–631 (2004).
Song, C. E. Cinchona Alkaloids in Synthesis and Catalysis (Wiley, 2009).
Du, J.-Y., Balan, T., Claridge, T. D. W. & Smith, M. D. Counterion-mediated enantioconvergent synthesis of axially chiral medium rings. J. Am. Chem. Soc. 144, 14790–14797 (2022).
Kotwal, N., Tamanna, Changotra, A. & Chauhan, P. Organocatalytic asymmetric synthesis of carbo- and oxacyclic seven-membered bridged biaryls via nucleophile-dependent switchable domino processes. Org. Lett. 25, 7523–7528 (2023).
Rodríguez-Salamanca, P. et al. Asymmetric synthesis of dibenzo[b,d]azepines by Cu-catalyzed reductive or borylative cyclization. Chem. Sci. 12, 15291–15297 (2021).
Hu, H. et al. Palladium-catalyzed enantioselective 7-exo-trig carbopalladation/carbonylation: cascade reactions to achieve atropisomeric dibenzo[b,d]azepin-6-ones. Org. Lett. 23, 3636–3640 (2021).
McLeod, D. et al. Expanding the frontiers of higher-order cycloadditions. Acc. Chem. Res. 52, 3488–3501 (2019).
Shi, B. et al. Synthesis of chiral endocyclic allenes by palladium-catalyzed asymmetric annulation followed by Cope rearrangement. Angew. Chem. Int. Ed. 134, e202117215 (2022).
Shi, B. et al. Synthesis of chiral endocyclic allenes and alkynes via Pd-catalyzed asymmetric higher-order dipolar cycloaddition. J. Am. Chem. Soc. 146, 26622–26629 (2024). This work demonstrates the synthesis of allene-type axially chiral ten-membered ring compounds via Pd-catalysed asymmetric higher-order dipolar cycloaddition.
Tang, M. & Yang, X. Catalytic enantioselective synthesis of inherently chiral molecules: recent advances. Eur. J. Org. Chem. 26, e202300738 (2023).
Böhmer, V., Kraft, D. & Tabatabai, M. Inherently chiral calixarenes. J. Incl. Phenom. Mol. Recognit. Chem. 19, 17–39 (1994).
Dalla Cort, A., Mandolini, L., Pasquini, C. & Schiaffino, L. “Inherent chirality” and curvature. N. J. Chem. 28, 1198–1199 (2004).
Rajca, A., Wang, H., Bolshov, P. & Rajca, S. A Greek cross dodecaphenylene: sparteine-mediated asymmetric synthesis of chiral D2-symmetric π-conjugated tetra-o-phenylenes. Tetrahedron 57, 3725–3735 (2001).
Roglans, A., Pla-Quintana, A. & Solà, M. Mechanistic studies of transition-metal-catalyzed [2+2+2] cycloaddition reactions. Chem. Rev. 121, 1894–1979 (2021).
Lledó, A., Pla-Quintana, A. & Roglans, A. Allenes, versatile unsaturated motifs in transition-metal-catalysed [2+2+2] cycloaddition reactions. Chem. Soc. Rev. 45, 2010–2023 (2016).
Domínguez, G. & Pérez-Castells, J. Recent advances in [2+2+2] cycloaddition reactions. Chem. Soc. Rev. 40, 3430–3444 (2011).
Shibata, T., Chiba, T., Hirashima, H., Ueno, Y. & Endo, K. Catalytic enantioselective synthesis of chiral tetraphenylenes: consecutive inter- and intramolecular cycloadditions of two triynes. Angew. Chem. Int. Ed. 48, 8066–8069 (2009). This work represents the successful realization of the highly enantioselective synthesis of inherently chiral MSRs through [2 + 2 + 2] cycloaddition strategy.
Tahara, Y.-K. et al. Catalytic and enantioselective synthesis of chiral multisubstituted tribenzothiepins by intermolecular cycloadditions. Angew. Chem. Int. Ed. 55, 4552–4556 (2016).
Mitake, A., Fusamae, T., Kanyiva, K. S. & Shibata, T. Enantioselective synthesis of sulfur-containing medium-ring heterocycles with axial chiralities by catalytic intramolecular [2+2+2] cycloaddition. Eur. J. Org. Chem. 2017, 7266–7270 (2017).
Luo, Y. et al. A new saddle-shaped aza analog of tetraphenylene: atroposelective synthesis and application as a chiral acylating reagent. CCS Chem. 4, 2897–2905 (2022).
Luo, Y. et al. Inherently chiral 6,7-diphenyldibenzo[e,g][1,4]diazocine: enantioselective synthesis and application as a ligand platform. CCS Chem. 5, 982–993 (2023). This work establishes a catalytic enantioselective method for the synthesis of simplified inherently chiral diazocine and demonstrates their remarkable potential for applications in the field of asymmetric catalysis.
Zhou, J., Tang, M. & Yang, X. Catalytic asymmetric synthesis of inherently chiral saddle-shaped dibenzo[b,f][1,5]diazocines. Chin. J. Chem. 42, 1953–1959 (2024).
Huang, S. et al. Organocatalytic enantioselective construction of chiral azepine skeleton bearing multiple-stereogenic elements. Angew. Chem. Int. Ed. 60, 21486–21493 (2021).
Tampellini, N., Mercado, B. Q. & Miller, S. J. Enantiocontrolled cyclization to form chiral 7- and 8-membered rings unified by the same catalyst operating with different mechanisms. J. Am. Chem. Soc. 147, 4624–4630 (2025).
Xu, D. et al. Catalytic asymmetric synthesis of inherently chiral eight-membered o-heterocycles through cross-[4+4] cycloaddition of quinone methides. Angew. Chem. Int. Ed. 64, e202416873 (2025). This work represents the synthesis of dioxo-containing inherently chiral eight-membered ring compounds through a VQM-mediated [4+4] cycloaddition strategy.
Shi, S.-Q. et al. Enantioselective synthesis of saddle-shaped eight-membered lactones with inherent chirality via organocatalytic high-order annulation. Nat. Commun. 15, 8474 (2024).
Jones, A. M. et al. Asymmetric catalytic oxidative cleavage of polycyclic systems: the synthesis of atropisomeric diazonanes and diazecanes. Chem. Eur. J. 17, 5714–5718 (2011).
Zhang, D., Zhou, J., Qin, T. & Yang, X. Asymmetric synthesis of saddle-shaped eight-membered azaheterocycles via (dynamic) kinetic resolution. Chem Catal. 4, 100827 (2024).
Guan, C.-Y. et al. Catalytic asymmetric synthesis of planar-chiral dianthranilides via (dynamic) kinetic resolution. Nat. Commun. 15, 4580 (2024).
Zhang, H. et al. Palladium-catalyzed asymmetric carbene coupling en route to inherently chiral heptagon-containing polyarenes. Nat. Commun. 15, 3353 (2024).
Wang, X. et al. Enantioselective synthesis of inherently chiral 9-benzylidene-9H-tribenzo[a,c,e][7]annulene and its application as a ligand platform. Chem Catal. 4, 100904 (2024).
Li, J.-H. et al. Organocatalytic enantioselective synthesis of seven-membered ring with inherent chirality. Angew. Chem. Int. Ed. 63, e202319289 (2024).
Cahn, R. S., Ingold, C. K. & Prelog, V. The specification of asymmetric configuration in organic chemistry. Experientia 12, 81–94 (1956).
Gao, D.-W., Gu, Q., Zheng, C. & You, S.-L. Synthesis of planar chiral ferrocenes via transition-metal-catalyzed direct C-H bond functionalization. Acc. Chem. Res. 50, 351–365 (2017).
Zhu, K., Yang, L., Yang, Y., Wu, Y. & Zhang, F. Recent advances toward the catalytic enantioselective synthesis of planar chiral cyclophanes. Chin. Chem. Lett. https://doi.org/10.1016/j.cclet.2024.110678 (2024).
Hassan, Z., Spuling, E., Knoll, D. M., Lahann, J. & Bräse, S. Planar chiral [2.2]paracyclophanes: from synthetic curiosity to applications in asymmetric synthesis and materials. Chem. Soc. Rev. 47, 6947–6963 (2018).
Blomquist, A. T., Liu, L. H. & Bohrer, J. C. Many-membered carbon rings. VI. Unsaturated nine-membered cyclic hydrocarbons. J. Am. Chem. Soc. 74, 3643–3647 (1952).
Tomooka, K., Komine, N., Fujiki, D., Nakai, T. & Yanagitsuru, S.-I. Planar chiral cyclic ether: asymmetric resolution and chirality transformation. J. Am. Chem. Soc. 127, 12182–12183 (2005).
Tomooka, K., Ezawa, T., Inoue, H., Uehara, K. & Igawa, K. Dynamic chirality of (E)-5-cyclononen-1-one and its enolate. J. Am. Chem. Soc. 133, 1754–1756 (2011). This work represents the first application of enzymatic catalysis in the asymmetric synthesis of planar chiral medium-sized ring compounds.
Onneken, C. et al. Light-enabled deracemization of cyclopropanes by Al-salen photocatalysis. Nature 621, 753–759 (2023).
Huang, M., Zhang, L., Pan, T. & Luo, S. Deracemization through photochemical E/Z isomerization of enamines. Science 375, 869–874 (2022).
Shin, N. Y., Ryss, J. M., Zhang, X., Miller, S. J. & Knowles, R. R. Light-driven deracemization enabled by excited-state electron transfer. Science 366, 364–369 (2019).
Hölzl-Hobmeier, A. et al. Catalytic deracemization of chiral allenes by sensitized excitation with visible light. Nature 564, 240–243 (2018).
Maeda, R. et al. Planar-to-planar chirality transfer in the excited state. Enantiodifferentiating photoisomerization of cyclooctenes sensitized by planar-chiral paracyclophane. J. Am. Chem. Soc. 133, 10379–10381 (2011).
Tomooka, K., Uehara, K., Nishikawa, R., Suzuki, M. & Igawa, K. Enantioselective synthesis of planar chiral organonitrogen cycles. J. Am. Chem. Soc. 132, 9232–9233 (2010).
Igawa, K. et al. Catalytic enantioselective synthesis of planar-chiral cyclic amides based on a Pd-catalyzed asymmetric allylic substitution reaction. J. Am. Chem. Soc. 137, 7294–7297 (2015).
Zhou, Z.-X. et al. Modular synthesis of planar-chiral cyclononenes via trans-retentive trapping of π-allyl-Pd dipoles. J. Am. Chem. Soc. 147, 3223–3232 (2025). This work highlights the cycloaddition strategies in the synthesis of planar chiral MSRs and underscores the important bioorthogonal applications.
Bachrach, S. M. Tetraphenylene ring flip revisited. J. Org. Chem. 74, 3609–3611 (2009).
Zhang, Z. & Dai, L. Construction of axially chiral molecules enabled by photoinduced enantioselective reactions. Chem. Sci. 15, 12636–12643 (2024).
Song, L., Cai, L., Gong, L. & Van der Eycken, E. V. Photoinduced copper-catalyzed enantioselective coupling reactions. Chem. Soc. Rev. 52, 2358–2376 (2023).
Romero, N. A. & Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 116, 10075–10166 (2016).
Jiang, X. et al. Asymmetric electrosynthesis: emerging catalytic strategies and mechanistic insights. Green Chem. 27, 915–945 (2025).
Huang, C., Xiong, P., Lai, X.-L. & Xu, H.-C. Photoelectrochemical asymmetric catalysis. Nat. Catal. 7, 1250–1254 (2024).
Rein, J., Zacate, S. B., Mao, K. & Lin, S. A tutorial on asymmetric electrocatalysis. Chem. Soc. Rev. 52, 8106–8125 (2023).
Gagnon, C. et al. Biocatalytic synthesis of planar chiral macrocycles. Science 367, 917–921 (2020).
Chen, K., Huang, X., Kan, S. B. J., Zhang, R. K. & Arnold, F. H. Enzymatic construction of highly strained carbocycles. Science 360, 71–75 (2018).
Pinus, S., Genzling, J., Burai-Patrascu, M. & Moitessier, N. Computational methods for asymmetric catalysis. Nat. Catal. 7, 1272–1287 (2024).
Zahrt, A. F., Athavale, S. V. & Denmark, S. E. Quantitative structure-selectivity relationships in enantioselective catalysis: past, present, and future. Chem. Rev. 120, 1620–1689 (2020).
Acknowledgements
We acknowledge the China Postdoctoral Science Foundation (grant number 2023M733212), Henan Provincial Science and Technology Research and Development Program Joint Fund (Advantageous Discipline Cultivation Category) Project (242301420049), the Ministry of Science and Technology of the People’s Republic of China, and the Open Research Fund of State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University. We deeply appreciate the invaluable guidance and support provided by G. Yin from Wuhan University during the preparation of this manuscript.
Author information
Authors and Affiliations
Contributions
S.J., Y.H. and Y. Li contributed to the literature search and the preparation of figures. S.J. conceived and wrote the project under the guidance of Y. Lan. All authors contributed to editing the manuscript before submission.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Chemistry thanks Jeanne Crassous, Martin Smith, Osamu Kitagawa and Yonggui Robin Chi for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Jia, S., Hao, Y., Li, Y. et al. Chiral medium-sized rings beyond central chirality. Nat Rev Chem 9, 617–633 (2025). https://doi.org/10.1038/s41570-025-00735-1
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41570-025-00735-1