Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chiral medium-sized rings beyond central chirality

Abstract

Chiral medium-sized rings (MSRs), cyclic molecular structures comprising 7–11-membered rings, are prevalent in bioactive molecules owing to their unique three-dimensional structures and pharmacological properties. Compared with the extensively studied central chirality, MSRs with unconventional chirality — that is, axial chirality, inherent chirality and planar chirality — remain underexplored. The past decade has witnessed rapid advances in this field, with breakthroughs in their synthesis and applications. This Review is structured around the three underexplored types of chirality exhibited in MSRs detailing their key synthetic strategies, with a critical evaluation of their advantages and limitations. Additionally, the factors that influence the conformational stability of chiral MSRs are discussed using structure and energy analysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: General strategies in the synthesis of chiral MSRs and their importance.
Fig. 2: Construction of axially chiral medium-sized rings (MSRs) derived from cyclic substrates.
Fig. 3: Construction of axially chiral medium-sized rings (MSRs) via cyclization strategy.
Fig. 4: Construction of allene-type axially chiral medium-sized rings (MSRs).
Fig. 5: Construction of inherently chiral medium-sized rings (MSRs) via a de novo cyclization strategy.
Fig. 6: Asymmetric synthesis of inherently chiral medium-sized rings (MSRs) through cyclic substrate transformation.
Fig. 7: Asymmetric synthesis of planar chiral medium-sized rings (MSRs).

Similar content being viewed by others

References

  1. Reyes, R. L., Iwai, T. & Sawamura, M. Construction of medium-sized rings by gold catalysis. Chem. Rev. 121, 8926–8947 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Shiina, I. Total synthesis of natural 8- and 9-membered lactones: recent advancements in medium-sized ring formation. Chem. Rev. 107, 239–273 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Yet, L. Metal-mediated synthesis of medium-sized rings. Chem. Rev. 100, 2963–3008 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Sirindil, F., Weibel, J.-M., Pale, P. & Blanc, A. Rhazinilam-leuconolam family of natural products: a half century of total synthesis. Nat. Prod. Rep. 39, 1574–1590 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Zeng, T. et al. Monoterpenoid indole alkaloids from Kopsia officinalis and the immunosuppressive activity of rhazinilam. J. Nat. Prod. 80, 864–871 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Cook, J. W. Structure of colchicine. Nature 155, 479–479 (1945).

    Article  Google Scholar 

  7. Otevrel, J., Eugui, M., Ričko, S. & Jørgensen, K. A. Enantioselective organocatalytic cycloadditions for the synthesis of medium-sized rings. Nat. Synth. 2, 1142–1158 (2023).

    Article  CAS  Google Scholar 

  8. Yao, T., Li, J., Jiang, C. & Zhao, C. Recent advances for the catalytic asymmetric construction of medium-sized rings. Chem Catal. 2, 2929–2964 (2022).

    CAS  Google Scholar 

  9. Schmidt, T. A., Hutskalova, V. & Sparr, C. Atroposelective catalysis. Nat. Rev. Chem. 8, 497–517 (2024).

    Article  PubMed  Google Scholar 

  10. Xiang, S.-H., Ding, W.-Y., Wang, Y.-B. & Tan, B. Catalytic atroposelective synthesis. Nat. Catal. 7, 483–498 (2024).

    Article  CAS  Google Scholar 

  11. Tan, B. Axially Chiral Compounds: Asymmetric Synthesis and Applications (Wiley, 2021).

  12. Cheng, J. K., Xiang, S.-H., Li, S., Ye, L. & Tan, B. Recent advances in catalytic asymmetric construction of atropisomers. Chem. Rev. 121, 4805–4902 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Bao, X., Rodriguez, J. & Bonne, D. Enantioselective synthesis of atropisomers with multiple stereogenic axes. Angew. Chem. Int. Ed. 59, 12623–12634 (2020).

    Article  CAS  Google Scholar 

  14. Kumarasamy, E., Raghunathan, R., Sibi, M. P. & Sivaguru, J. Nonbiaryl and heterobiaryl atropisomers: molecular templates with promise for atropselective chemical transformations. Chem. Rev. 115, 11239–11300 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Maitland, P. & Mills, W. H. Experimental demonstration of the allene asymmetry. Nature 135, 994 (1935).

    Article  CAS  Google Scholar 

  16. Cope, A. C., Bach, R. D. & Winkler, H. J. S. Molecular asymmetry. IX. Partial resolution andasymmetric synthesis of 1,2-cyclononadiene. J. Am. Chem. Soc. 92, 1243–1247 (1970).

    Article  CAS  Google Scholar 

  17. Christl, M. in Modern Allene Chemistry 141–181 (Wiley, 2004).

  18. Ma, S. Some typical advances in the synthetic applications of allenes. Chem. Rev. 105, 2829–2872 (2005).

    Article  PubMed  Google Scholar 

  19. Han, J.-W., Peng, X.-S. & Wong, H. N. C. Synthesis of tetraphenylene derivatives and their recent advances. Natl Sci. Rev. 4, 892–916 (2017).

    Article  CAS  Google Scholar 

  20. Szumna, A. Inherently chiral concave molecules — from synthesis to applications. Chem. Soc. Rev. 39, 4274–4285 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Han, J.-W., Li, X. & Wong, H. N. C. Our expedition in eight-membered ring compounds: from planar dehydrocyclooctenes to tub-shaped chiral tetraphenylenes. Chem. Rec. 15, 107–131 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Marshall, J. A. & Lebreton, J. [2,3] Wittig ring contraction: synthesis of p-menthane derivatives. J. Org. Chem. 53, 4108–4112 (1988).

    Article  CAS  Google Scholar 

  23. Oki, M. Isolation of rotational isomers and developments derived therefrom. Proc. Jpn Acad. B 86, 867–883 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. David J. A. Handbook of Chiral Chemicals (CRC, 2005).

  25. Patrick J. W. & Marisa C. K. Fundamentals of Asymmetric Catalysis (Wiley, 2009).

  26. Lin G.-Q., You Q.-D. & Cheng J.-F. Chiral Drugs: Chemistry and Biological Action (Wiley, 2011).

  27. Yoneda, T. et al. N-Benzoyl- and N-sulfonyl-1,5-benzodiazepines: comparison of their atropisomeric and conformational properties. J. Org. Chem. 79, 5717–5727 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Chobanian, H. R. et al. The design and synthesis of potent, selective benzodiazepine sulfonamide bombesin receptor subtype 3 (BRS-3) agonists with an increased barrier of atropisomerization. Bioorg. Med. Chem. 20, 2845–2849 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Viladomat, F., Bastida, J., Codina, C., Campbell, W. E. & Mathee, S. Alkaloids from Boophane flava. Phytochemistry 40, 307–311 (1995).

    Article  CAS  Google Scholar 

  30. Jiang, H.-L. et al. New isocoumarins and alkaloid from Chinese insect medicine, Eupolyphaga sinensis Walker. Fitoterapia 83, 1275–1280 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Yang, H. et al. Coplanar atropochiral 5H-cyclopenta[2,1-b:3,4-b′]dipyridine ligands: synthesis and applications in asymmetric ring-opening reaction. Angew. Chem. Int. Ed. 64, e202416839 (2025).

    Article  CAS  Google Scholar 

  32. Guo, J. et al. Optical resolution of 1,16-dihydroxytetraphenylene by chiral gold(III) complexation and its applications as chiral ligands in asymmetric catalysis. Chem. Sci. 13, 4608–4615 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chai, G.-L. et al. Chiral hydroxytetraphenylene-boron complex catalyzed asymmetric Diels-Alder cycloaddition of 2′-hydroxychalcones. Org. Lett. 22, 8023–8027 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Gao, X., Wu, B., Huang, W.-X., Chen, M.-W. & Zhou, Y.-G. Enantioselective palladium-catalyzed C-H functionalization of indoles using an axially chiral 2,2′-bipyridine ligand. Angew. Chem. Int. Ed. 54, 11956–11960 (2015).

    Article  CAS  Google Scholar 

  35. Tanaka, K., Hori, T., Osaka, T., Noguchi, K. & Hirano, M. Rhodium-catalyzed reactions of dithiols and 1,4-bis(bromomethyl)benzenes leading to enantioenriched dithiaparacyclophanes. Org. Lett. 9, 4881–4884 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Peng, H.-Y. et al. Chiral rodlike platinum complexes, double helical chains, and potential asymmetric hydrogenation ligand based on “linear” building blocks: 1,8,9,16-tetrahydroxytetraphenylene and 1,8,9,16-tetrakis(diphenylphosphino)tetraphenylene. J. Am. Chem. Soc. 127, 9603–9611 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Huang, Z. et al. Modified intramolecular-lock strategy enables efficient thermally activated delayed fluorescence emitters for non-doped OLEDs. Angew. Chem. Int. Ed. 134, e202213157 (2022).

    Article  Google Scholar 

  38. Lei, B. et al. Medium-ring strategy enables multiple resonance emitters with twisted geometry and fast spin-flip to suppress efficiency roll-off. Angew. Chem. Int. Ed. 135, e202218405 (2023).

    Article  Google Scholar 

  39. Yoshina, R. et al. Inner-bond-cleavage approach to figure-eight macrocycles from planar aromatic hydrocarbons. J. Am. Chem. Soc. 146, 29383–29390 (2024). This work establishes a catalytic enantioselective method for the synthesis of inherently chiral ten-membered ring compounds via an inner-bond cleavage strategy and demonstrates their remarkable potential for applications in the field of optoelectronic materials.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Takaishi, K., Hinoide, S., Matsumoto, T. & Ema, T. Axially chiral peri-xanthenoxanthenes as a circularly polarized luminophore. J. Am. Chem. Soc. 141, 11852–11857 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Tian, J. et al. Fast, real-time, in situ monitoring of solar ultraviolet radiation using sunlight-driven photoresponsive liquid crystals. Adv. Opt. Mater. 6, 1701337 (2018).

    Article  Google Scholar 

  42. Liu, L., Fang, W.-H. & Martinez, T. J. A nitrogen out-of-plane (noop) mechanism for imine-based light-driven molecular motors. J. Am. Chem. Soc. 145, 6888–6898 (2023).

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, Y. et al. A chemically driven rotary molecular motor based on reversible lactone formation with perfect unidirectionality. Chem 6, 2420–2429 (2020).

    Article  CAS  Google Scholar 

  44. Kassem, S. et al. Artificial molecular motors. Chem. Soc. Rev. 46, 2592–2621 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Greb, L. & Lehn, J.-M. Light-driven molecular motors: imines as four-step or two-step unidirectional rotors. J. Am. Chem. Soc. 136, 13114–13117 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Carmona, J. A., Rodríguez-Franco, C., Fernández, R., Hornillos, V. & Lassaletta, J. M. Atroposelective transformation of axially chiral (hetero) biaryls. From desymmetrization to modern resolution strategies. Chem. Soc. Rev. 50, 2968–2983 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Zeng, X.-P., Cao, Z.-Y., Wang, Y.-H., Zhou, F. & Zhou, J. Catalytic enantioselective desymmetrization reactions to all-carbon quaternary stereocenters. Chem. Rev. 116, 7330–7396 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Huang, M., Pan, T., Jiang, X. & Luo, S. Catalytic deracemization reactions. J. Am. Chem. Soc. 145, 10917–10929 (2023).

    Article  CAS  PubMed  Google Scholar 

  49. Buhse, T. et al. Spontaneous deracemizations. Chem. Rev. 121, 2147–2229 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Yus, M., Nájera, C., Foubelo, F. & Sansano, J. M. Metal-catalyzed enantioconvergent transformations. Chem. Rev. 123, 11817–11893 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bhat, V., Welin, E. R., Guo, X. & Stoltz, B. M. Advances in stereoconvergent catalysis from 2005 to 2015: transition-metal-mediated stereoablative reactions, dynamic kinetic resolutions, and dynamic kinetic asymmetric transformations. Chem. Rev. 117, 4528–4561 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xu, B., Wang, Q., Fang, C., Zhang, Z.-M. & Zhang, J. Recent advances in Pd-catalyzed asymmetric cyclization reactions. Chem. Soc. Rev. 53, 883–971 (2024).

    Article  CAS  PubMed  Google Scholar 

  53. Wang, N., Wu, Z., Wang, J., Ullah, N. & Lu, Y. Recent applications of asymmetric organocatalytic annulation reactions in natural product synthesis. Chem. Soc. Rev. 50, 9766–9793 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Xing, Y. & Wang, N.-X. Organocatalytic and metal-mediated asymmetric [3+2] cycloaddition reactions. Coord. Chem. Rev. 256, 938–952 (2012).

    Article  CAS  Google Scholar 

  55. Kalinin, S. & Sapegin, A. Ring expansion reactions through intramolecular transamidation. Eur. J. Org. Chem. 26, e202300754 (2023).

    Article  CAS  Google Scholar 

  56. Clarke, A. K. & Unsworth, W. P. A happy medium: the synthesis of medicinally important medium-sized rings via ring expansion. Chem. Sci. 11, 2876–2881 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kotwal, N., Tamanna & Chauhan, P. Catalytic asymmetric synthesis of medium-sized bridged biaryls. Chem. Commun. 58, 11031–11044 (2022).

    Article  CAS  Google Scholar 

  58. Bringmann, G., Gulder, T., Gulder, T. A. M. & Breuning, M. Atroposelective total synthesis of axially chiral biaryl natural products. Chem. Rev. 111, 563–639 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Bringmann, G. et al. Atroposelective synthesis of axially chiral biaryl compounds. Angew. Chem. Int. Ed. 44, 5384–5427 (2005).

    Article  CAS  Google Scholar 

  60. Ogasawara, M., Okada, A., Nakajima, K. & Takahashi, T. Palladium-catalyzed synthesis of endocyclic allenes and their application in stereoselective [2+2] cycloaddition with ketenes. Org. Lett. 11, 177–180 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Soriano, E. & Fernández, I. Allenes and computational chemistry: from bonding situations to reaction mechanisms. Chem. Soc. Rev. 43, 3041–3105 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Liu, J. et al. Post-synthetic modifications of metal-organic cages. Nat. Rev. Chem. 6, 339–356 (2022).

    Article  PubMed  Google Scholar 

  63. Segura, J. L., Royuela, S. & Mar Ramos, M. Post-synthetic modification of covalent organic frameworks. Chem. Soc. Rev. 48, 3903–3945 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Guo, Y., Liu, M.-M., Zhu, X., Zhu, L. & He, C. Catalytic asymmetric synthesis of silicon-stereogenic dihydrodibenzosilines: silicon central-to-axial chirality relay. Angew. Chem. Int. Ed. 60, 13887–13891 (2021).

    Article  CAS  Google Scholar 

  65. Antonov, L. Tautomerism: Methods and Theories (Wiley, 2013).

  66. Ohkuma, T. & Arai, N. Advancement in catalytic asymmetric hydrogenation of ketones and imines, and development of asymmetric isomerization of allylic alcohols. Chem. Rec. 16, 2801–2819 (2016).

    Article  Google Scholar 

  67. Wu, Y. & Deng, L. Asymmetric synthesis of trifluoromethylated amines via catalytic enantioselective isomerization of imines. J. Am. Chem. Soc. 134, 14334–14337 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fu, N., Zhang, L., Li, J., Luo, S. & Cheng, J.-P. Chiral primary amine catalyzed enantioselective protonation via an enamine intermediate. Angew. Chem. Int. Ed. 50, 11451–11455 (2011).

    Article  CAS  Google Scholar 

  69. Liu, J. et al. Catalytic enantioselective tautomerization of metastable enamines. Org. Lett. 20, 244–247 (2018).

    Article  CAS  PubMed  Google Scholar 

  70. Hu, W. et al. Synthesis of 7-arylthiomethyl dibenzo[b,d]azepines through imidoylative Heck cyclization and CPA-catalyzed thio-Michael addition/enantioselective protonation. Org. Lett. 24, 3642–3646 (2022).

    Article  CAS  PubMed  Google Scholar 

  71. Zhang, S., Chen, F., He, Y.-M. & Fan, Q.-H. Asymmetric hydrogenation of dibenzo[c,e]azepine derivatives with chiral cationic ruthenium diamine catalysts. Org. Lett. 21, 5538–5541 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Yang, T., Guo, X., Yin, Q. & Zhang, X. Intramolecular asymmetric reductive amination: synthesis of enantioenriched dibenz[c,e]azepines. Chem. Sci. 10, 2473–2477 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Li, J. & Shi, Y. Progress on transition metal catalyzed asymmetric hydroesterification, hydrocarboxylation, and hydroamidation reactions of olefins. Chem. Soc. Rev. 51, 6757–6773 (2022).

    Article  CAS  PubMed  Google Scholar 

  74. Egorov, I. N. et al. Direct asymmetric addition of heteroatom nucleophiles to imines. Adv. Synth. Catal. 364, 2092–2112 (2022).

    Article  CAS  Google Scholar 

  75. Kennemur, J. L., Maji, R., Scharf, M. J. & List, B. Catalytic asymmetric hydroalkoxylation of C-C multiple bonds. Chem. Rev. 121, 14649–14681 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hopmann, K. H. & Bayer, A. On the mechanism of iridium-catalyzed asymmetric hydrogenation of imines and alkenes: a theoretical study. Organometallics 30, 2483–2497 (2011).

    Article  CAS  Google Scholar 

  77. Zhao, Z.-B., Shi, L., Meng, F.-J., Li, Y. & Zhou, Y.-G. Synthesis of chiral seven-membered cyclic sulfonamides through palladium-catalyzed arylation of cyclic imines. Org. Chem. Front. 6, 1572–1576 (2019).

    Article  CAS  Google Scholar 

  78. Zhao, Z.-B., Shi, L., Li, Y., Meng, F.-J. & Zhou, Y.-G. Facile synthesis of chiral ε-sultams via an organocatalytic aza-Friedel-Crafts reaction. Org. Biomol. Chem. 17, 6364–6368 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Zhang, S. et al. Highly enantioselective synthesis of phosphorus-containing ϵ-benzosultams by bifunctional phosphonium salt-promoted hydrophosphonylation. Chem. Eur. J. 27, 11285–11290 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Fang, Y. et al. Axially chiral bridged biaryls by Ni-catalyzed kinetic asymmetric C-O bond cleavage. ACS Catal. 14, 8176–8183 (2024).

    Article  CAS  Google Scholar 

  81. Wei, Z. et al. Bridged biaryl atropisomers by organocatalyzed kinetic asymmetric alcoholysis. Org. Lett. 26, 7110–7115 (2024).

    Article  CAS  PubMed  Google Scholar 

  82. Chen, P.-H., Billett, B. A., Tsukamoto, T. & Dong, G. “Cut and sew” transformations via transition-metal-catalyzed carbon–carbon bond activation. ACS Catal. 7, 1340–1360 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Xue, X. & Gu, Z. Synthesis of bridged biaryl atropisomers via sequential Cu- and Pd-catalyzed asymmetric ring opening and cyclization. Org. Lett. 21, 3942–3945 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Tao, L.-F., Huang, F., Zhao, X., Qian, L. & Liao, J.-Y. Atroposelective synthesis of eight-membered lactam-bridged n-arylindoles via stepwise cut-and-sew strategy. Cell Rep. Phys. Sci. 4, 101697 (2023).

    Article  CAS  Google Scholar 

  85. Jia, S. et al. Atroposelective construction of nine-membered carbonate-bridged biaryls. Angew. Chem. Int. Ed. 134, e202206501 (2022). This work describes the synthesis of axially chiral nine-membered ring compounds via an organocatalytic ring expansion strategy.

    Article  Google Scholar 

  86. Qin, W., Liu, Y. & Yan, H. Enantioselective synthesis of atropisomers via vinylidene ortho-quinone methides (VQMs). Acc. Chem. Res. 55, 2780–2795 (2022).

    Article  CAS  PubMed  Google Scholar 

  87. Molander, G. A. Diverse methods for medium ring synthesis. Acc. Chem. Res. 31, 603–609 (1998).

    Article  CAS  Google Scholar 

  88. Illuminati, G. & Mandolini, L. Ring closure reactions of bifunctional chain molecules. Acc. Chem. Res. 14, 95–102 (1981).

    Article  CAS  Google Scholar 

  89. Zhang, D. & Wang, Q. Palladium catalyzed asymmetric Suzuki–Miyaura coupling reactions to axially chiral biaryl compounds: chiral ligands and recent advances. Coord. Chem. Rev. 286, 1–16 (2015).

    Article  CAS  Google Scholar 

  90. Wencel-Delord, J., Panossian, A., Leroux, F. R. & Colobert, F. Recent advances and new concepts for the synthesis of axially stereoenriched biaryls. Chem. Soc. Rev. 44, 3418–3430 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Yamaguchi, K., Yamaguchi, J., Studer, A. & Itami, K. Hindered biaryls by C-H coupling: bisoxazoline-Pd catalysis leading to enantioselective C-H coupling. Chem. Sci. 3, 2165–2169 (2012).

    Article  CAS  Google Scholar 

  92. Kozlowski, M. C., Morgan, B. J. & Linton, E. C. Total synthesis of chiral biaryl natural products by asymmetric biaryl coupling. Chem. Soc. Rev. 38, 3193–3207 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Saget, T. & Cramer, N. Enantioselective C-H arylation strategy for functionalized dibenzazepinones with quaternary stereocenters. Angew. Chem. Int. Ed. 52, 7865–7868 (2013). This study represents the successful synthesis of biaryl-type axial MSRs via an enantioselective C–H arylation strategy.

    Article  CAS  Google Scholar 

  94. Newton, C. G., Braconi, E., Kuziola, J., Wodrich, M. D. & Cramer, N. Axially chiral dibenzazepinones by a palladium(0)-catalyzed atropo-enantioselective C-H arylation. Angew. Chem. Int. Ed. 57, 11040–11044 (2018).

    Article  CAS  Google Scholar 

  95. Kumar, A., Sasai, H. & Takizawa, S. Atroposelective synthesis of C-C axially chiral compounds via mono- and dinuclear vanadium catalysis. Acc. Chem. Res. 55, 2949–2965 (2022).

    Article  CAS  PubMed  Google Scholar 

  96. Bansal, S., Shabade, A. B. & Punji, B. Advances in C(sp2)-H/C(sp2)-H oxidative coupling of (hetero)arenes using 3d transition metal catalysts. Adv. Synth. Catal. 363, 1998–2022 (2021).

    Article  CAS  Google Scholar 

  97. Yeung, C. S. & Dong, V. M. Catalytic dehydrogenative cross-coupling: forming carbon–carbon bonds by oxidizing two carbon-hydrogen bonds. Chem. Rev. 111, 1215–1292 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Wang, S.-H. et al. Atroposelective synthesis of biaxial bridged eight-membered terphenyls via a Co/SPDO-catalyzed aerobic oxidative coupling/desymmetrization of phenols. Nat. Commun. 15, 4591 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bellotti, P., Koy, M., Hopkinson, M. N. & Glorius, F. Recent advances in the chemistry and applications of N-heterocyclic carbenes. Nat. Rev. Chem. 5, 711–725 (2021).

    Article  CAS  PubMed  Google Scholar 

  100. Lu, S. et al. Diastereo- and atroposelective synthesis of bridged biaryls bearing an eight-membered lactone through an organocatalytic cascade. J. Am. Chem. Soc. 141, 17062–17067 (2019). This work demonstrates NHC-catalysed intramolecular nucleophilic substitution for synthesizing axially chiral benzofuran-fused eight-membered lactones.

    Article  CAS  PubMed  Google Scholar 

  101. Yang, X. et al. Atroposelective access to 1,3-oxazepine-containing bridged biaryls via carbene-catalyzed desymmetrization of imines. Angew. Chem. Int. Ed. 62, e202211977 (2023).

    Article  CAS  Google Scholar 

  102. Zhang, Y., Liu, Y.-Q., Hu, L. A., Zhang, X. & Yin, Q. Asymmetric reductive amination/ring-closing cascade: direct synthesis of enantioenriched biaryl-bridged NH lactams. Org. Lett. 22, 6479–6483 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. Song, J. et al. Highly efficient and enantioselective synthesis of chiral lactones via Ir-catalysed asymmetric hydrogenation of ketoesters. Chem. Commun. 58, 8408–8411 (2022).

    Article  CAS  Google Scholar 

  104. Lee, H.-J. & Maruoka, K. Asymmetric phase-transfer catalysis. Nat. Rev. Chem. 8, 851–869 (2024).

    Article  CAS  PubMed  Google Scholar 

  105. Tian, S.-K. et al. Asymmetric organic catalysis with modified cinchona alkaloids. Acc. Chem. Res. 37, 621–631 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Song, C. E. Cinchona Alkaloids in Synthesis and Catalysis (Wiley, 2009).

  107. Du, J.-Y., Balan, T., Claridge, T. D. W. & Smith, M. D. Counterion-mediated enantioconvergent synthesis of axially chiral medium rings. J. Am. Chem. Soc. 144, 14790–14797 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kotwal, N., Tamanna, Changotra, A. & Chauhan, P. Organocatalytic asymmetric synthesis of carbo- and oxacyclic seven-membered bridged biaryls via nucleophile-dependent switchable domino processes. Org. Lett. 25, 7523–7528 (2023).

    Article  CAS  PubMed  Google Scholar 

  109. Rodríguez-Salamanca, P. et al. Asymmetric synthesis of dibenzo[b,d]azepines by Cu-catalyzed reductive or borylative cyclization. Chem. Sci. 12, 15291–15297 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Hu, H. et al. Palladium-catalyzed enantioselective 7-exo-trig carbopalladation/carbonylation: cascade reactions to achieve atropisomeric dibenzo[b,d]azepin-6-ones. Org. Lett. 23, 3636–3640 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. McLeod, D. et al. Expanding the frontiers of higher-order cycloadditions. Acc. Chem. Res. 52, 3488–3501 (2019).

    Article  CAS  PubMed  Google Scholar 

  112. Shi, B. et al. Synthesis of chiral endocyclic allenes by palladium-catalyzed asymmetric annulation followed by Cope rearrangement. Angew. Chem. Int. Ed. 134, e202117215 (2022).

    Article  Google Scholar 

  113. Shi, B. et al. Synthesis of chiral endocyclic allenes and alkynes via Pd-catalyzed asymmetric higher-order dipolar cycloaddition. J. Am. Chem. Soc. 146, 26622–26629 (2024). This work demonstrates the synthesis of allene-type axially chiral ten-membered ring compounds via Pd-catalysed asymmetric higher-order dipolar cycloaddition.

    Article  CAS  PubMed  Google Scholar 

  114. Tang, M. & Yang, X. Catalytic enantioselective synthesis of inherently chiral molecules: recent advances. Eur. J. Org. Chem. 26, e202300738 (2023).

    Article  CAS  Google Scholar 

  115. Böhmer, V., Kraft, D. & Tabatabai, M. Inherently chiral calixarenes. J. Incl. Phenom. Mol. Recognit. Chem. 19, 17–39 (1994).

    Article  Google Scholar 

  116. Dalla Cort, A., Mandolini, L., Pasquini, C. & Schiaffino, L. “Inherent chirality” and curvature. N. J. Chem. 28, 1198–1199 (2004).

    Article  CAS  Google Scholar 

  117. Rajca, A., Wang, H., Bolshov, P. & Rajca, S. A Greek cross dodecaphenylene: sparteine-mediated asymmetric synthesis of chiral D2-symmetric π-conjugated tetra-o-phenylenes. Tetrahedron 57, 3725–3735 (2001).

    Article  CAS  Google Scholar 

  118. Roglans, A., Pla-Quintana, A. & Solà, M. Mechanistic studies of transition-metal-catalyzed [2+2+2] cycloaddition reactions. Chem. Rev. 121, 1894–1979 (2021).

    Article  CAS  PubMed  Google Scholar 

  119. Lledó, A., Pla-Quintana, A. & Roglans, A. Allenes, versatile unsaturated motifs in transition-metal-catalysed [2+2+2] cycloaddition reactions. Chem. Soc. Rev. 45, 2010–2023 (2016).

    Article  PubMed  Google Scholar 

  120. Domínguez, G. & Pérez-Castells, J. Recent advances in [2+2+2] cycloaddition reactions. Chem. Soc. Rev. 40, 3430–3444 (2011).

    Article  PubMed  Google Scholar 

  121. Shibata, T., Chiba, T., Hirashima, H., Ueno, Y. & Endo, K. Catalytic enantioselective synthesis of chiral tetraphenylenes: consecutive inter- and intramolecular cycloadditions of two triynes. Angew. Chem. Int. Ed. 48, 8066–8069 (2009). This work represents the successful realization of the highly enantioselective synthesis of inherently chiral MSRs through [2 + 2 + 2] cycloaddition strategy.

    Article  CAS  Google Scholar 

  122. Tahara, Y.-K. et al. Catalytic and enantioselective synthesis of chiral multisubstituted tribenzothiepins by intermolecular cycloadditions. Angew. Chem. Int. Ed. 55, 4552–4556 (2016).

    Article  CAS  Google Scholar 

  123. Mitake, A., Fusamae, T., Kanyiva, K. S. & Shibata, T. Enantioselective synthesis of sulfur-containing medium-ring heterocycles with axial chiralities by catalytic intramolecular [2+2+2] cycloaddition. Eur. J. Org. Chem. 2017, 7266–7270 (2017).

    Article  CAS  Google Scholar 

  124. Luo, Y. et al. A new saddle-shaped aza analog of tetraphenylene: atroposelective synthesis and application as a chiral acylating reagent. CCS Chem. 4, 2897–2905 (2022).

    Article  CAS  Google Scholar 

  125. Luo, Y. et al. Inherently chiral 6,7-diphenyldibenzo[e,g][1,4]diazocine: enantioselective synthesis and application as a ligand platform. CCS Chem. 5, 982–993 (2023). This work establishes a catalytic enantioselective method for the synthesis of simplified inherently chiral diazocine and demonstrates their remarkable potential for applications in the field of asymmetric catalysis.

    Article  CAS  Google Scholar 

  126. Zhou, J., Tang, M. & Yang, X. Catalytic asymmetric synthesis of inherently chiral saddle-shaped dibenzo[b,f][1,5]diazocines. Chin. J. Chem. 42, 1953–1959 (2024).

    Article  CAS  Google Scholar 

  127. Huang, S. et al. Organocatalytic enantioselective construction of chiral azepine skeleton bearing multiple-stereogenic elements. Angew. Chem. Int. Ed. 60, 21486–21493 (2021).

    Article  CAS  Google Scholar 

  128. Tampellini, N., Mercado, B. Q. & Miller, S. J. Enantiocontrolled cyclization to form chiral 7- and 8-membered rings unified by the same catalyst operating with different mechanisms. J. Am. Chem. Soc. 147, 4624–4630 (2025).

    Article  CAS  PubMed  Google Scholar 

  129. Xu, D. et al. Catalytic asymmetric synthesis of inherently chiral eight-membered o-heterocycles through cross-[4+4] cycloaddition of quinone methides. Angew. Chem. Int. Ed. 64, e202416873 (2025). This work represents the synthesis of dioxo-containing inherently chiral eight-membered ring compounds through a VQM-mediated [4+4] cycloaddition strategy.

    Article  CAS  Google Scholar 

  130. Shi, S.-Q. et al. Enantioselective synthesis of saddle-shaped eight-membered lactones with inherent chirality via organocatalytic high-order annulation. Nat. Commun. 15, 8474 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Jones, A. M. et al. Asymmetric catalytic oxidative cleavage of polycyclic systems: the synthesis of atropisomeric diazonanes and diazecanes. Chem. Eur. J. 17, 5714–5718 (2011).

    Article  CAS  PubMed  Google Scholar 

  132. Zhang, D., Zhou, J., Qin, T. & Yang, X. Asymmetric synthesis of saddle-shaped eight-membered azaheterocycles via (dynamic) kinetic resolution. Chem Catal. 4, 100827 (2024).

    CAS  Google Scholar 

  133. Guan, C.-Y. et al. Catalytic asymmetric synthesis of planar-chiral dianthranilides via (dynamic) kinetic resolution. Nat. Commun. 15, 4580 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhang, H. et al. Palladium-catalyzed asymmetric carbene coupling en route to inherently chiral heptagon-containing polyarenes. Nat. Commun. 15, 3353 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wang, X. et al. Enantioselective synthesis of inherently chiral 9-benzylidene-9H-tribenzo[a,c,e][7]annulene and its application as a ligand platform. Chem Catal. 4, 100904 (2024).

    CAS  Google Scholar 

  136. Li, J.-H. et al. Organocatalytic enantioselective synthesis of seven-membered ring with inherent chirality. Angew. Chem. Int. Ed. 63, e202319289 (2024).

    Article  CAS  Google Scholar 

  137. Cahn, R. S., Ingold, C. K. & Prelog, V. The specification of asymmetric configuration in organic chemistry. Experientia 12, 81–94 (1956).

    Article  CAS  Google Scholar 

  138. Gao, D.-W., Gu, Q., Zheng, C. & You, S.-L. Synthesis of planar chiral ferrocenes via transition-metal-catalyzed direct C-H bond functionalization. Acc. Chem. Res. 50, 351–365 (2017).

    Article  CAS  PubMed  Google Scholar 

  139. Zhu, K., Yang, L., Yang, Y., Wu, Y. & Zhang, F. Recent advances toward the catalytic enantioselective synthesis of planar chiral cyclophanes. Chin. Chem. Lett. https://doi.org/10.1016/j.cclet.2024.110678 (2024).

    Article  Google Scholar 

  140. Hassan, Z., Spuling, E., Knoll, D. M., Lahann, J. & Bräse, S. Planar chiral [2.2]paracyclophanes: from synthetic curiosity to applications in asymmetric synthesis and materials. Chem. Soc. Rev. 47, 6947–6963 (2018).

    Article  CAS  PubMed  Google Scholar 

  141. Blomquist, A. T., Liu, L. H. & Bohrer, J. C. Many-membered carbon rings. VI. Unsaturated nine-membered cyclic hydrocarbons. J. Am. Chem. Soc. 74, 3643–3647 (1952).

    Article  CAS  Google Scholar 

  142. Tomooka, K., Komine, N., Fujiki, D., Nakai, T. & Yanagitsuru, S.-I. Planar chiral cyclic ether: asymmetric resolution and chirality transformation. J. Am. Chem. Soc. 127, 12182–12183 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Tomooka, K., Ezawa, T., Inoue, H., Uehara, K. & Igawa, K. Dynamic chirality of (E)-5-cyclononen-1-one and its enolate. J. Am. Chem. Soc. 133, 1754–1756 (2011). This work represents the first application of enzymatic catalysis in the asymmetric synthesis of planar chiral medium-sized ring compounds.

    Article  CAS  PubMed  Google Scholar 

  144. Onneken, C. et al. Light-enabled deracemization of cyclopropanes by Al-salen photocatalysis. Nature 621, 753–759 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Huang, M., Zhang, L., Pan, T. & Luo, S. Deracemization through photochemical E/Z isomerization of enamines. Science 375, 869–874 (2022).

    Article  CAS  PubMed  Google Scholar 

  146. Shin, N. Y., Ryss, J. M., Zhang, X., Miller, S. J. & Knowles, R. R. Light-driven deracemization enabled by excited-state electron transfer. Science 366, 364–369 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hölzl-Hobmeier, A. et al. Catalytic deracemization of chiral allenes by sensitized excitation with visible light. Nature 564, 240–243 (2018).

    Article  PubMed  Google Scholar 

  148. Maeda, R. et al. Planar-to-planar chirality transfer in the excited state. Enantiodifferentiating photoisomerization of cyclooctenes sensitized by planar-chiral paracyclophane. J. Am. Chem. Soc. 133, 10379–10381 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. Tomooka, K., Uehara, K., Nishikawa, R., Suzuki, M. & Igawa, K. Enantioselective synthesis of planar chiral organonitrogen cycles. J. Am. Chem. Soc. 132, 9232–9233 (2010).

    Article  CAS  PubMed  Google Scholar 

  150. Igawa, K. et al. Catalytic enantioselective synthesis of planar-chiral cyclic amides based on a Pd-catalyzed asymmetric allylic substitution reaction. J. Am. Chem. Soc. 137, 7294–7297 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Zhou, Z.-X. et al. Modular synthesis of planar-chiral cyclononenes via trans-retentive trapping of π-allyl-Pd dipoles. J. Am. Chem. Soc. 147, 3223–3232 (2025). This work highlights the cycloaddition strategies in the synthesis of planar chiral MSRs and underscores the important bioorthogonal applications.

    Article  CAS  PubMed  Google Scholar 

  152. Bachrach, S. M. Tetraphenylene ring flip revisited. J. Org. Chem. 74, 3609–3611 (2009).

    Article  CAS  PubMed  Google Scholar 

  153. Zhang, Z. & Dai, L. Construction of axially chiral molecules enabled by photoinduced enantioselective reactions. Chem. Sci. 15, 12636–12643 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Song, L., Cai, L., Gong, L. & Van der Eycken, E. V. Photoinduced copper-catalyzed enantioselective coupling reactions. Chem. Soc. Rev. 52, 2358–2376 (2023).

    Article  CAS  PubMed  Google Scholar 

  155. Romero, N. A. & Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 116, 10075–10166 (2016).

    Article  CAS  PubMed  Google Scholar 

  156. Jiang, X. et al. Asymmetric electrosynthesis: emerging catalytic strategies and mechanistic insights. Green Chem. 27, 915–945 (2025).

    Article  CAS  Google Scholar 

  157. Huang, C., Xiong, P., Lai, X.-L. & Xu, H.-C. Photoelectrochemical asymmetric catalysis. Nat. Catal. 7, 1250–1254 (2024).

    Article  CAS  Google Scholar 

  158. Rein, J., Zacate, S. B., Mao, K. & Lin, S. A tutorial on asymmetric electrocatalysis. Chem. Soc. Rev. 52, 8106–8125 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Gagnon, C. et al. Biocatalytic synthesis of planar chiral macrocycles. Science 367, 917–921 (2020).

    Article  CAS  PubMed  Google Scholar 

  160. Chen, K., Huang, X., Kan, S. B. J., Zhang, R. K. & Arnold, F. H. Enzymatic construction of highly strained carbocycles. Science 360, 71–75 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Pinus, S., Genzling, J., Burai-Patrascu, M. & Moitessier, N. Computational methods for asymmetric catalysis. Nat. Catal. 7, 1272–1287 (2024).

    Article  Google Scholar 

  162. Zahrt, A. F., Athavale, S. V. & Denmark, S. E. Quantitative structure-selectivity relationships in enantioselective catalysis: past, present, and future. Chem. Rev. 120, 1620–1689 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the China Postdoctoral Science Foundation (grant number 2023M733212), Henan Provincial Science and Technology Research and Development Program Joint Fund (Advantageous Discipline Cultivation Category) Project (242301420049), the Ministry of Science and Technology of the People’s Republic of China, and the Open Research Fund of State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University. We deeply appreciate the invaluable guidance and support provided by G. Yin from Wuhan University during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.J., Y.H. and Y. Li contributed to the literature search and the preparation of figures. S.J. conceived and wrote the project under the guidance of Y. Lan. All authors contributed to editing the manuscript before submission.

Corresponding authors

Correspondence to Shiqi Jia  (贾师琦) or Yu Lan  (蓝宇).

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Jeanne Crassous, Martin Smith, Osamu Kitagawa and Yonggui Robin Chi for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, S., Hao, Y., Li, Y. et al. Chiral medium-sized rings beyond central chirality. Nat Rev Chem 9, 617–633 (2025). https://doi.org/10.1038/s41570-025-00735-1

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41570-025-00735-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing