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Abstract

Target 2035 is a global initiative that aims to develop a potent and 
selective pharmacological modulator, such as a chemical probe, for 
every human protein by 2035. Here, we describe the Target 2035 roadmap 
to develop computational methods to improve small-molecule hit 
discovery, which is a key bottleneck in the discovery of chemical probes. 
Large, publicly available datasets of high-quality protein–small-molecule 
binding data will be created using affinity-selection mass spectrometry 
and DNA-encoded chemical library screening. Positive and negative data 
will be made openly available, and the machine learning community 
will be challenged to use these data to build models and predict new, 
diverse small-molecule binders. Iterative cycles of prediction and 
testing will lead to improved models and more successful predictions. 
By 2030, Target 2035 will have identified experimentally verified hits 
for thousands of human proteins and advanced the development of 
open-access algorithms capable of predicting hits for proteins for which 
there are not yet any experimental data.

Sections

Introduction

Overview of project workflow

Access to diverse high-quality 
proteins

Protein–ligand open  
data generation

Annotation and verification  
of screening data

Data management and access

From pilots to implementation

Encouraging community 
contributions

Project structure  
and governance

A range of outcomes

A range of benefits  
to all participants

1Structural Genomics Consortium, University of Toronto and University Health Network, Toronto, Ontario, Canada. 
2Pfizer Research and Development, Cambridge, MA, USA. *A list of authors and their affiliations appears at the end 
of the paper.  e-mail: aled.edwards@utoronto.ca; dafydd.owen@pfizer.com

Target selection, 
protein assays

Data, hits and
chemical probes

Protein 
production
and assay 

development

Compound
procurement

and prediction
testing

Computational
chemistry and 
AI predictions

Data 
management
and access

Small molecule
and open data

strategy

Molecule 
screening, 

data cleanup and 
annotation

http://www.nature.com/natrevchem
https://doi.org/10.1038/s41570-025-00737-z
http://crossmark.crossref.org/dialog/?doi=10.1038/s41570-025-00737-z&domain=pdf
http://orcid.org/0000-0002-4782-6016
http://orcid.org/0000-0003-3106-7809
mailto:aled.edwards@utoronto.ca
mailto:dafydd.owen@pfizer.com


Nature Reviews Chemistry | Volume 9 | September 2025 | 634–645 635

Roadmap

roadmap to provide sufficient experimentally derived data to trans-
form hit finding into a computational endeavour. We also highlight 
how the Target 2035 open science initiative is structured to provide 
ample mechanisms for the greater experimental and computational 
academic and industry communities to contribute and benefit.

In our approach, there are conceptual parallels between our pro-
posed approach and the development of the AlphaFold programs for 
protein structure prediction. The successful application of ML to pro-
tein structure prediction was empowered by massive open data genera-
tion by the structural biology and genomics communities, longstanding 
stewardship of the data by the Protein Data Bank and GenBank teams21 
and an engaged structure prediction community, whose algorithms 
were benchmarked by the CASP team (Critical Assessment of Protein 
Structure Prediction)22 through open challenge competitions. This anal-
ogy has limits though. The immense space of intramolecular interac-
tions that is afforded by 20 amino acids and defines the protein-folding 
paradigm is relatively constrained when compared with the diversity of 
possible interactions between proteins and ~1060 drug-like molecules. 
Clearly, novel ML strategies will be necessary for a breakthrough in 
AI-driven drug design, and it is not possible a priori to predict the size 
and diversity of the protein–ligand datasets that will be required to 
enable such a breakthrough, or even if it will be possible in the near term. 
With this caveat, it is nevertheless apparent that high-quality, large-size 
protein–ligand datasets will be foundational to solving the problem.

Overview of project workflow
This 5-year project will generate high-quality, open datasets that include 
binding data for millions to billions of small molecules to more than 
2,000 diverse proteins. The data will include results from testing both 
experimentally derived and computationally predicted hit candidates 
using orthogonal biophysical and functional assays.

The project workflow is outlined in (Fig. 1) and is described in more 
detail below. In brief, the project will

	(1)	 Generate purified proteins both within the project and by invit-
ing community members to contribute purified proteins. All 
purified proteins would be subject to strict quality control.

	(2)	Generate binding data using affinity-selection mass spectrom-
etry (AS–MS) and DNA-encoded chemical library (DEL) screen-
ing, each of which measures the binding of small molecules to 
purified proteins directly. AS–MS and DEL screening are also 
performed in a standardized way, and the outputs have associ-
ated quality metrics. Candidate small-molecule binders will 
be tested in secondary screens using orthogonal, high-quality 
biophysical assays.

	(3)	Make annotated primary screening data openly available in an 
ML/AI-ready format via a project database called AIRCHECK 
(Artificial Intelligence-Ready CHEmiCal Knowledge base; https:// 
aircheck.ai/).

	(4)	Challenge the ML/AI and computational chemistry communi-
ties to make predictions based on the data and organize a series 
of benchmarking competitions to help advance the methods.

	(5)	Experimentally test community predictions using biophysical 
methods.

	(6)	Share assay data from predicted binders via AIRCHECK.
	(7)	Share reagents, protocols, binders and data without restrictions 

on use.

In addition, for as many confirmed binders as feasible, 
co-crystallization with the cognate target would be attempted, and 

Introduction
Chemical probes — potent, selective, cell-active small molecules target-
ing specific proteins — constitute some of the most impactful research 
tools in the life sciences arsenal, as evidenced by citations and impact 
on drug discovery1,2. The broader availability of chemical probes for 
all human proteins would greatly advance our understanding of the 
human proteome, as well as help prioritize potential new drug targets. 
In 2009, the Structural Genomics Consortium (SGC) launched a pro-
gramme to assemble and invent chemical probes for human proteins 
related to cell signalling, protein homeostasis and epigenetics. The 
programme successfully developed and collected new chemical probes 
for over 200 unique proteins from the academic and industrial com-
munities. The impact of these 200 chemical probes has been profound: 
more than 60,000 samples have been distributed to scientists around 
the world, they have collectively been cited at least 13,000 times as 
assessed by searching for the name of the probe in Google Scholar, 
and the discoveries they have enabled are being tested in more than 
85 clinical trials.

The obligatory first step in creating a chemical probe for a new pro-
tein (or a proximity pharmacology tool such as proteolysis-targeting 
chimeras (PROTACs))3 is to identify a validated, chemically tractable hit. 
For proteins that belong to precedented classes of drug targets, hits can 
often be identified quite readily, either by screening focused chemical 
libraries that are enriched in experimentally verified structural classes4 
or by making computational predictions based on pre-existing experi-
mental data5–10. By contrast, for lesser-studied proteins, hit-finding is 
more challenging and is often rate determining. Currently, hit finding is 
almost always initiated with an experimental screen of large and diverse 
chemical libraries followed by time- and cost-intensive hit verification 
and optimization. Although the available experimental hit-finding 
approaches have expanded greatly over the past 20 years, there has 
not been a dramatic improvement in their overall success rates or cost 
effectiveness11–13. This situation underscores the need for a radically 
different approach in the context of the Target 2035 initiative14.

Computational methods, particularly machine learning (ML) and 
artificial intelligence (AI) strategies have the most potential to develop 
cost-effective hit-finding methods for unprecedented targets15. How-
ever, the development of hit-finding algorithms is currently limited by 
the lack of suitable protein–ligand datasets in the public domain16,17: 
the existing chemical bioactivity datasets are either fragmented across 
databases such as ChEMBL and PubChem, or are not available to the 
public18, most have been compiled from non-standardized experimen-
tal protocols that introduce noise into training data19, the datasets are 
not always prepared for ML/AI analysis, and most lack high-quality data 
on inactive compounds20.

With data paucity identified as the greatest hurdle to the develop-
ment of hit-finding algorithms, our SGC/Target 2035 working group 
decided that the next phase of the Target 2035 initiative (2025–2030) 
should organize a programme that (1) systematically generates large 
experimental protein–small–molecule binding datasets and pro-
vides open access to the well-annotated data, and (2) works with the 
community to train, develop, refine, test and benchmark hit-finding 
algorithms, to start.

A scientific and operational plan for the initiative, including target 
selection, data generation and dissemination, benchmarking of ML/AI 
predictions, success criteria, governance, and funding was discussed 
in a face-to-face meeting in Frankfurt, Germany, in the autumn of 2023, 
and in London, UK, in the autumn of 2024. In this Roadmap, we consoli-
date the outputs from these meetings into an ambitious yet tractable 
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structure–activity relationships explored by testing structural ana-
logues of the confirmed binders, either purchased from vendors or 
synthesized by collaborating chemists. Ideally, all binders would be 
tested in functional assays when available.

The project will have two important outcomes. First, it will gen-
erate new small-molecule binders for prioritized proteins. Second, 
it will create a comprehensive, well-annotated dataset to advance 
computational methods. This second outcome will be achieved by 
prioritizing data quality, data consistency and data access, and design-
ing the experimental workflow and outputs in partnership with data 
scientists23.

Access to diverse high-quality proteins
To generate protein–small-molecule binding datasets of sufficient size 
and diversity, it will be critical to access and prosecute a structurally 
diverse set of purified, homogeneous and stable proteins. Given that 
it is not possible a priori to estimate the number of datasets that will 
be required to enable computational methods, for planning purposes, 
we have arbitrarily set a goal to screen a minimum of 2,000 different 
proteins over 5 years. For perspective, and to attest to the feasibility 
of the project, this is approximately the number of unique proteins 
purified within the SGC in the 5-year period between 2007 and 2012.

The selection of which proteins to screen will be guided by the 
requirement to maximize the structural and functional diversity of the 
protein targets, as well as by the desire of funders and participants to 
identify hits for protein targets of their immediate scientific interest. 
Initially, experimental tractability will be prioritized to establish and 
optimize project platforms, logistics, data workflows and procedures. 
Tractable targets constitute those that can be readily purified in suf-
ficient quantities, are known to have suitable biophysical properties, 

and for which orthogonal assays are either already available or can be 
readily developed (Fig. 2). The SGC and the wider protein and structural 
biology communities have successfully produced over a thousand 
human proteins (or domains thereof) in the past that meet these cri-
teria, and these proteins should be easily and rapidly accessible or able 
to be repurified. A graphical representation of ~400 proteins already 
purified at the SGC is included in Supplementary Fig. 1 and a snapshot 
of the protein database in Supplementary Table 1. As the project pro-
gresses, the number of never-before purified proteins and proteins 
that are more technically challenging to produce will be increased.

Protein production
To ensure protein quality and consistency, protein quality criteria have 
been established and implemented (an exemplar is shown in Supple-
mentary Fig. 2) and the majority of the proteins will be produced in a 
handful of geographically distributed protein purification hubs that 
share methodologies. These hubs will probably be organized around 
protein families and/or scientific themes. To attract a wider diversity of 
protein targets, experts in the community would be invited to contribute 
purified proteins that meet the diversity and quality criteria. The incen-
tives for community members to contribute proteins will be to access 
high-quality chemical screening capabilities and to be able to pursue 
any small-molecule hits identified in the screens, without precondition  
(https://public.thesgc.org/protein_registry/protein_intake.php).

Protein–ligand open data generation
All purified proteins that pass quality control will be screened for 
binders within large chemical libraries. Screens will be carried out 
in academic or industry hubs, selected for having track records in 
high-quality data generation. The distribution of proteins to and among 
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Fig. 1 | Data generation pipeline. The workflow for generating data and binders. 
(1) Purified proteins are produced in experimental hubs, by partners or by the 
community. (2) Proteins are screened in project screening laboratories, and data 
are experimentally annotated in partner laboratories or experimental hubs. 
(3) Quality-controlled (QC) screening data are deposited into the AIRCHECK 
database. (4) Computational experts in the project and the community build 

machine learning (ML)/artificial intelligence (AI) models and make predictions 
about new or improved binders. (5) Predicted compounds are procured and 
tested in experimental hubs. (6) The QC’d assay data, including hits and binding 
data, are deposited into the Artificial Intelligence-Ready CHEmiCal Knowledge 
base (AIRCHECK). (7) Hits and data are released to the community, freely 
available for further research and development.
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the screening hubs will be centrally coordinated to avoid duplication 
of effort.

A key strategic decision was to select the data-generating modali-
ties. Platform(s) that screen for direct binding of ligands to purified 
proteins would be implemented, for the following reasons:

	(1)	 Direct-binding assays eliminate the impractical requirement to 
develop bespoke functional assays for each protein, including 
the thousands of human proteins with no known activity. For 
proteins with known function, a functional assay might aid in 
the hit verification process, and in the further advancement of 
the chemical matter.

	(2)	A single preparation of purified protein can be used both for 
the primary binding screen used for hit identification as well as 
for the secondary orthogonal biophysical assays24 used for hit 
verification.

	(3)	Screening campaigns could begin immediately, using the many 
hundreds of human proteins that have been purified or can 
be readily purified in high quality and quantity, by the SGC, by 
industry, and by the wider protein and structural biology academic 
communities.

After considering many screening platforms, DEL25–28 and 
AS–MS29–31 were chosen. These two biophysical screening methods 
have been used successfully for a wide variety of proteins, have the 
potential to generate millions of high-quality data points per screen 
and have already demonstrated efficient hit-finding results in our hands 
for diverse proteins. In addition, data generated by these methods have 
a common experimental design and can be represented in a machine-
readable format and aggregated into increasingly large datasets. The 
large size and high dimensionality of these data also leverage respec-
tive analytical techniques that have been extensively developed by 
the ML/AI community32,33 and employed in cheminformatics for drug 
discovery applications34.

DEL screening
DEL screening is an affinity-mediated technique that has been used for 
more than two decades as a tool for identifying compounds that bind 
proteins35–38. In this technology, pools of compounds, each covalently 
attached to an oligonucleotide whose sequence encodes its synthetic 
history (and therefore the presumed compound identity), are incubated 
with the protein. Proteins are then captured using an affinity tag and 

associated library members are separated from non-binders by washing. 
The DNA encoding the retained library members is then amplified and 
sequenced, allowing the synthetic history of each compound and their 
enrichment over the background to be determined. Historically, enriched 
library compounds were resynthesized off the DNA and tested for bind-
ing or activity in an orthogonal assay. The technology allows for probing 
an enormous chemical library (>1 trillion members), but it has limitations: 
the presence of DNA induces many false positives, synthesizing the many 
potential binders off-DNA is time consuming and costly, and the chemical 
diversity of the library members is restricted by the requirement to use 
reactions that are compatible with the presence of DNA.

Some of these limitations can be overcome by integrating ML/AI 
with DEL screening. In this iteration of DEL screening data analysis, 
the datasets, comprising billions of data points and including both 
positive and (critically) negative binding data, are used to train ML 
algorithms and build models to predict the molecular features of a 
binder26,28,39. These algorithms are then used to search for active mol-
ecules within the billions of commercially available compounds or 
compound collections internal to organizations. The compounds are 
then acquired and tested for binding to the purified proteins using 
orthogonal binding and/or functional assays. This strategy offers sev-
eral potential advantages. First, it is faster and less expensive for most 
investigators to purchase molecules40 than to synthesize each of the 
enriched library compounds. Second, predictions are not restricted 
to the molecules in the DEL but can be made against the large, diverse, 
and more drug-like chemical space represented in pre-enumerated, 
synthetically accessible commercial libraries.

This conceptual DEL ML workflow was pioneered by McCloskey 
et al.26 using three precedented targets and the scalability and gener-
alizability of the approach have been subsequently confirmed27,28,41,42 
These encouraging results emboldened us to imagine a scaled-up 
process in which DEL screening datasets from hundreds to thousands 
of proteins, including detailed protocols and metadata, would be pro-
vided to the academic and industry communities without restriction 
in a standardized, ML-ready format43,44. By providing open access to 
these data (aircheck.ai), the ML/AI community would be enabled to 
make predictions that can be tested experimentally and to develop 
methods that can be benchmarked (Fig. 3). In the first datasets in 
AIRCHECK, the data include a 10:1 ratio of negative to positive training 
examples, and up to 1 million data points. Negative training examples 
were proportionally distributed to positive training examples on a 
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Fig. 2 | Target selection and prioritization. 
The protein pipeline will comprise proteins 
that have been produced previously by project 
participants, new proteins that are nominated 
by the funders, and proteins contributed by 
experts in the wider community. Among the 
proteins, the project will create a Target List 
that integrates structural and ligand-binding 
pocket diversity, funder interests and scientific 
priorities. Proteins produced previously will be 
prioritized at the outset to focus on logistics 
and to generate data, and never previously 
produced proteins will be added as the project 
progresses. PDB, Protein Data Bank; SGC, 
Structural Genomics Consortium.
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per-library basis. These data have already been used to build models 
that have successfully predicted new micromolar binders for the 
WDR91 protein45.

Initially, the DEL screens will be carried out in selected organiza-
tions that have a track record of success in applying ML to their DEL 
data43,44. Over time, any other company or academic that has robust 
DEL synthesis and screening infrastructure and that agrees to share 
relevant data openly and in a standardized, ML-ready format43,44 would 
be welcome to join the initiative.

AS–MS
AS–MS has emerged as a robust hit identification approach in the phar-
maceutical industry46. In this method, pools of mass-differentiated 
compounds, typically up to 2,000, are first incubated with the protein. 
The protein and small molecules are then resolved chromatographi-
cally, and compounds that co-elute with the protein are subjected 
to liquid chromatography–mass spectrometry and unambiguously 

identified by their exact masses. Compound binding is then verified 
using an orthogonal functional or binding assay(s). The current upper 
limit of detection for compounds in most AS–MS platforms is an affinity 
constant in the 1–15 micromolar range46.

With some notable exceptions47–50, AS–MS has not been widely 
adopted as a small-molecule screening platform in academia, in part 
due to the significant infrastructure that is required, but mostly 
because cost-effective use of the infrastructure requires a pipeline 
of purified proteins in multi-milligram quantities. Given the ability 
to access thousands of purified proteins in these quantities in this 
project, AS–MS was prioritized as a screening platform (Fig. 4). To 
optimize screening capacity and throughput, we have elected to 
implement an off-line AS–MS method that screens affinity-tagged 
proteins (his, GFP or biotin) against pools of compounds, and then 
resolves the protein/compound complexes from the non-binding 
compounds by binding the tagged protein to the corresponding 
magnetic affinity microbeads50. This pipeline was piloted by screening 
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a diverse set of 31 proteins against a small chemical library explic-
itly optimized for mass spectrometry screening, and binders were 
discovered for 11 proteins51.

The primary binding data and metadata from both DEL and 
AS–MS screens, as well as the results from secondary biophysical 
assays are now being placed into AIRCHECK without restriction on use. 
Raw mass spectrometry data will also be made available via Metabo-
lomics Workbench (https://www.metabolomicsworkbench.org/) or 
a similar vehicle.

Annotation and verification of screening data
With a priority to generate screening datasets for ML/AI applications, 
particular attention will be paid to data quality, data annotation and 
data availability — using learnings from the experiences of our industry 
partners and other public initiatives52. Data quality standards will be 
made openly available and implemented at three key levels: for the 
protein samples, for the DEL and AS–MS screening outputs, and for 
the hit annotation.

Proteins
Proteins entering screens must meet established experimental quality 
criteria and must also be accompanied by key metadata that might 
influence data interpretation and model building, such as purification 
conditions or the presence of metal ions.

Screening datasets
Primary AS–MS and DEL screening-derived datasets will be assessed for 
technical quality against a set of relevant parameters (Supplementary 
Fig. 3). For public DEL and AS–MS screens that pass quality checks, all 
the raw screening data will be placed into the public domain.

Secondary annotation of primary screening data
Both experimental screening platforms will generate false positive 
and false negative hits, and to maintain the quality of the datasets for 
ML/AI applications, true and false positives must be distinguished using 
orthogonal assays53. This is technically challenging because weaker bind-
ing compounds are often insoluble at the concentrations used for many 

Table 1 | Data management features

Attribute Description

The AIRCHECK database Houses Target 2035 screening datasets
Supports machine learning (ML)/artificial intelligence (AI) model development, evaluation and reusability
Follows FAIR principles (findable, accessible, interoperable, reusable)
Publishes and documents data and computer code for data processing, quality control and normalization
Ensures transparency and allows users to scrutinize data transformation and ML/AI models

Standardizing experimental data 
using controlled vocabulary

Links experimental protocols to assay data via electronic lab notebooks and laboratory information management systems
Uses commercial tools to allow uptake by the community
Shares database architecture and controlled vocabulary across labs
Facilitates integration of data (e.g., protein production, screening hit validation)

Robust versioning Automatically tracks and documents dataset changes
Uses data nutrition labels to visualize and summarize dataset characteristics and updates
Transforms datasets for integration into repositories, such as ChEMBL and PubChem

Reusability Provides comprehensive documentation, including experimental protocols and lab notebooks
Offers analysis code and output files from tutorials and workshops, and fully specified ML/AI models
Creates educational materials for users
Enables users to understand the data and previous analyses

Data release Releases generated and quality-controlled data immediately or at regular intervals (e.g., quarterly)
Aligns data releases with open benchmarking challenges to encourage use and re-use
Releases data in the context of chemical probe collaborations for added scientific value

Integrating diverse data Supports ingestion of data from diverse screening platforms (affinity-selection mass spectrometry, DNA-encoded chemical 
library ML)
Creates multimodal data objects integrating data for a single target from various platforms
Tracks processing pipelines and ensures full traceability of data generation (inspired by the ORCESTRA platform for 
genomics data70)

Equity and inclusion Ensures data and computational resources are free to access
Cloud implementation allows users with limited resources to run ML/AI methods using free research credits
Partners with cloud providers to facilitate resource use for users from low-income countries65

Develop the Artificial Intelligence-Ready CHEmiCal Knowledge base (AIRCHECK) web application following the Web 
Accessibility Initiative to maximize inclusion and diversity71

Data science Trains ML models using rigorously processed and curated data
Represents data in formats optimized for downstream applications
Uses random, chronological or other splitting mechanism to divide data into training, validation and test sets
Continuously tests and updates models with new data
Enhances predictive accuracy and monitors ‘model drift’ over time
Uses active learning to drive design–make–test–analyse cycles
Evaluates prediction uncertainty to inform decision-making and reinforce model reliability
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biophysical or functional assays54,55, which readily leads to artefacts in any 
single assay. As a result, many candidate binders may have to be tested 
in several different assays to gain sufficient confidence in their veracity.

Given the technical challenges in analysing weakly binding com-
pounds, it will be critical to agree on how much effort the project should 
invest in determining if a screening hit is a true binder and to commu-
nicate the limitations of each of the assays54,55 and the resulting data 
to the modelling community. The strategic decision is how to balance 
annotating the largest number of true positives in the dataset, which 
is optimal for model building and also provides practical and valuable 
insight into the ligandability of a protein, with investing considerable 
resources in characterizing weakly binding compounds, which reduces 
the number of proteins that can be screened. The CACHE competition 
has created a document that explains how to interpret the biophysical 
binding assays and how to identify potential artefacts56. Constant and 
close discussion between experimentalists and data scientists in the 
project will minimize misinterpretation or over-interpretation of the 
screening and hit-characterization data.

For this project, a generous threshold in nominating hits from 
the initial screen would be implemented. A target affinity threshold of 
10 µM (KD value) would be set for the orthogonal assay, potentially with 
some target-specific leeway20. Ideally, all candidate hits arising from 
the first orthogonal assay would be tested in an additional assay. The 
outcome will be a robust and inclusive list of well-annotated positive 
binders with a KD of ≤10 µM.

Data consistency. To prioritize data consistency, secondary screening 
and data annotation will be centralized in well-equipped and expe-
rienced academic or commercial laboratories that follow standard 
operating procedures. Samples will be exchanged regularly among 
laboratories and tested to monitor and eliminate any inter-laboratory 
variability. These laboratories will have access to a range of orthogonal 
assay formats including some form of surface binding assay such as 
surface plasmon resonance57 or grating-coupled interferometry58, 
and other biophysical methods with reasonable throughput, such 
as spectral shift, microscale thermophoresis, NMR or thermal shift 

methodologies59–61. One of the complexities of the project is that for 
many of the novel proteins that will be screened, orthogonal assays 
will have to be built without the benefit of a positive control binder. If 
functional assays that confirm target modulation are readily available, 
they would add another layer of verification to the hit-confirmation 
process and provide invaluable insight into how to develop the ligand 
into a chemical probe.

Data management and access
To fully realize the value of the annotated protein–ligand datasets, data 
management approaches will be treated with equal diligence as the 
experimental methods. Accordingly, the project will adhere to the data 
management roadmap recently described by Edfeldt and colleagues23. 
This will include establishing a controlled vocabulary for experimental 
data, using automation and electronic laboratory notebooks whenever 
possible, centralizing the database architecture to facilitate data inte-
gration and providing comprehensive documentation. Raw data will 
be provided whenever possible and transparent and reproducible data 
processing will be performed, including choosing the most relevant 
data representation, defining the right training and test sets, and pro-
viding estimates of prediction uncertainty. The comprehensive data 
management plan and its attributes are outlined in Table 1.

Benchmarking with experimental feedback
The intention of providing large, consistent and high-quality datasets 
to the community is to enable the development of computational and 
ML/AI hit-finding and hit optimization methods. The models will be 
focused in the near term on predicting binders and optimization strat-
egies for proteins in the screening set and in the longer term to build 
foundation models of hit discovery and optimization.

To accelerate the development of these methods, the project will 
partner with organizations, including CASP, DREAM62 and CACHE15, that 
launch benchmarking challenges, including those in which predictions 
from the community will be tested experimentally and compared. 
Data used as input to challenges would be kept confidential while chal-
lenges are in progress, and a regular cadence of challenges and data 

Table 2 | Sample benchmarking challenges

Data Challenge Experimental validation

SMILES and/or fingerprint and enrichment metrics 
of DNA-encoded chemical library (DEL) screening 
hits and negatives from 4-10B compound library

Train machine learning (ML)/artificial intelligence (AI) 
models on DEL screening data and use them to predict 
actives from billions of commercial compounds

Procure and test predicted hits with two 
orthogonal assays

300k affinity-selection mass spectrometry (AS–MS) 
compound library (SMILES) and protein target

Predict true and false positives Compare predictions with screening results, 
annotated with orthogonal assays

AS–MS screening and orthogonal hit confirmation 
data for 80% of a 300k compound library

Challenge 1: predict confirmed hits for the remaining 20% 
hold-out set
Challenge 2: if successful, predict novel hits from 
commercial libraries

For challenge 1: unblind existing data from 
the hold-out set
For challenge 2: procure and test predicted 
hits with two orthogonal assays

300k AS–MS compound library (SMILES), protein 
target and annotated screening results (including 
orthogonal hit verification)

Challenge 1: use target-based and/or receptor-based 
virtual screening to predict experimental hits
Challenge 2: if successful, predict novel hits from 
commercial libraries

Challenge 1: unblind existing data
Challenge 2: procure and test predicted hits 
with two orthogonal assays

SMILES and/or fingerprint and enrichment metrics of 
DNA-encoded chemical library (DEL) screening hits 
and negatives from 4-10B compound libraries against 
hundreds of targets

Build a foundation model to predict hits from commercial 
libraries for targets absent from the training set

Procure and test predicted hits with two 
orthogonal assays

AS–MS screening and orthogonal confirmation data 
for 80% of >1,000 targets

Predict hits for homologous and/or unrelated targets Procure and test predicted hits with two 
orthogonal assays

http://www.nature.com/natrevchem


Nature Reviews Chemistry | Volume 9 | September 2025 | 634–645 641

Roadmap

release would be established. The value of benchmarking initiatives 
in computational biology was clearly established by CASP, which, for 
over 30 years, has driven and monitored progressive improvements 
in computational methods63,64.

Some of the proposed initial benchmarking challenges are listed 
in Table 2. As the project advances, other types of benchmarking chal-
lenges would probably be incorporated, including those that involve 
combining data from multiple platforms, not only from AS–MS and 
DEL screening but also from novel hit-finding screening platforms 
that may arise in the future. A combination of challenges that better 
represent a typical drug discovery screening pipeline may also have 
added value, including those that integrate some form of experimental 
or computational protein structural information. However, as even 
relatively simple challenges require significant logistics and the associ-
ated experimental costs are high, running more elaborate pipelines at 
the start of the project is probably too ambitious.

Participants will be encouraged to make their models open source 
and freely available to anyone for use directly from AIRCHECK. To 
encourage this, the costs of procuring compounds and testing them 
experimentally, partly or in full, would ideally be defrayed for qualified 
participants who make their ML/AI models publicly available and with 
permissive licenses.

From pilots to implementation
Pilot projects have laid foundational elements for this project. The 
capacities are now in place to

(1) produce more than 2,000 high-quality human proteins, most 
‘never previously liganded’; (2) screen these proteins against com-
pound libraries using AS–MS and DEL; (3) store and disseminate project 
data, with a robust data management plan and database architec-
ture; (4) annotate screening data and test predictions; and (5) solicit 
community contributions and participation.

In the first year of the project, the individual elements will be 
scaled and integrated to create a data generation plan that balances the 
shorter-term goal of identifying hits for high-priority proteins with the 
longer-term goal of generating data that will advance computational 
hit finding. The most likely screening cascade will involve screening 
each protein first by AS–MS against an exploratory (~15k) library whose 
composition will be made openly available. The rationale is that this 
screen is scalable, yields a direct binding readout, is the most cost 
effective and will most rapidly identify those proteins that are readily 
‘ligandable’. The exploratory screen will also flag proteins that have 
physiochemical properties that render them unsuitable for AS–MS 
or DEL and will not be screened further. For example, the exploratory 
screen would flag proteins that appear stable but that in fact have tran-
siently unfolded regions that may bind large numbers of compounds  
nonspecifically.

Stable and monodisperse proteins that do not yield hits from the 
AS–MS exploratory screen, or for which greater chemical diversity or 
large datasets are required, will be channelled into screens with larger 
chemical libraries, using both AS–MS and DEL. The proposed screen-
ing cascade will be reviewed periodically and adjusted to optimize the 
process or incorporate other screening approaches as needed.

Encouraging community contributions
Active participation of the wider scientific community will be essential 
to meet the project goals. Robust community engagement will be made 
feasible only by adopting open science principles within the project. 
For clarity, this means compounds, data and algorithms developed 
using project resources will be made available without restriction on 
use, and without intellectual property constraints. This open science 
position provides a clarity of purpose and short-circuits what could be 
prolonged and complex discussions over ownership of compounds and 
algorithms. In keeping with this position, there will also be no restric-
tions on subsequent research or commercial use of data, chemical 
structures and algorithms generated using project resources. With 
this as background, community contributions in the following areas 
are envisioned (Table 3).

Protein scientists
Structural biologists, and protein scientists more broadly, often have 
unique expertise in purifying proteins in their scientific areas of inter-
est. Community members would be encouraged to contribute their 
purified proteins to the screening process. For the project, this will 
expand the diversity of the protein–ligand datasets. For the contribut-
ing scientist, this could provide open access to hits that they can pursue 
without restriction in their own laboratories. Already >30 protein 
scientists have sent proteins to Toronto for AS–MS screening, includ-
ing from Brazil, the UK, Canada, Germany, Sweden and the USA, and 
binders for 8 of these community proteins have already been iden-
tified, verified by surface plasmon resonance, and shared with the 
contributor (for example, Wang et al.51). Tapping into this diverse com-
munity at a larger scale will bring enormous scientific benefit, but will 
also add logistical burdens, so the project will need to implement this  
process carefully.

Table 3 | Community contributions

Project stage Primary Actors Community Contribution 
Opportunities

Target selection Project participants, 
funders

Nominate targets

Protein production 
and assays

Experimental protein 
production hubs

Provide purified protein 
(academia, pharma, contract 
research organizations), 
protocols, tools, vectors

Screens Experimental 
screening hubs

Companies or academic labs 
provide access to screening 
technologies and libraries

Experimental 
testing of 
predictions

Experimental assay 
hubs

Specialized contract research 
organizations, pharma and 
academic labs conduct 
orthogonal assays to test 
predictions for selected targets

Data management Artificial 
Intelligence-Ready 
CHEmiCal 
Knowledge base 
(AIRCHECK), 
cloudservices 
providers

Cloud providers offer cloud 
credits, community deposit 
data

machine learning 
(ML)/artificial 
intelligence 
(AI) models and 
predictions

Project participants ML/AI community, academic 
labs, subject matter experts 
generate and share predictions 
and models

Hit optimization 
and chemical 
probe generation

Scientific community Structural Genomics 
Consortium, pharma and 
academic labs provide 
resources or donate 
high-quality probes
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Data generation
Project screening data would be generated initially using the AS–MS 
and DEL screening platforms in selected hubs. However, there are clear 
advantages to expanding the number of participating screening labo-
ratories, and the range of data generation technologies. Accordingly, 
new screening methodologies would be explored on a continual basis. 
To manage this process, a set of ~25 well-characterized, diverse and 
ligandable proteins that will have been screened comprehensively 
through all the initial platforms will serve as a technology test set for 
new screening hubs or technologies. The project board and its scien-
tific advisers will review all data and provide recommendations about 
adding new centres or technologies.

Engaging computational scientists worldwide
Each screen will generate multiple GB-scale datasets, which may 
need to be downloaded and manipulated. The use of cloud resources 
will ensure the scalability of the AIRCHECK platform while allowing 
users to easily access the data and the computational resources for 
ML/AI modelling. It also allows users to leverage education or research 
credits from large cloud providers to support more equitable, diverse 
and inclusive access (for example, Google Cloud program for higher 
education in Africa65). Scientists from resource-poor environments 
will be actively encouraged to participate. We will also facilitate the 
development of open-source algorithms by collaborating closely with 
a project-associated global network of computational scientists, called 
MAINFRAME66.

Chemists
The synthetic and medicinal chemistry communities will be encouraged 
(for example, through the SGC’s Open Chemistry Networks) to design 
and/or generate molecules related to the hits to improve the original 
binders. Testing these compounds within the project may generate 
preliminary structure–activity relationships and provide confidence 
that the binder can be advanced. Chemists will also be encouraged to 
contribute compounds that are theoretically accessible through their 

chemistries to the emerging virtual screening library of all compounds 
that are synthetically accessible67.

Training and networking
The project will be generating data explicitly to promote the develop-
ment of ML/AI algorithms and as such will be operating at the intersection 
of experimental, data and computational sciences. This will provide 

Table 4 | Metrics

Activity Metric

Protein 
production

Number of proteins purified
Structural and functional diversity of proteins screened
Number of purified proteins contributed to the project from 
the community
Geographic diversity of contributors

Screening Number of assays developed and verified
Reproducibility of assays
Number of screens completed
Amount of structured, machine-usable data generated
Novelty of binders
Number of new screening (data generation) technologies 
assessed

Benchmarking Number and diversity of participants engaging in challenges
Improvements in machine learning (ML) algorithms for 
binding and affinity prediction
Number of freely available improved ML algorithms for 
binding, selectivity and affinity prediction

General Extent of follow-on funding accrued to pursue or make use 
of confirmed hits
Publications
Number of new collaborators and new funders joining the 
project
Creation of an engaged open community of scientists within 
Target 2035

Public sector funder
representatives

Private sector funder 
representatives

Data generation

Screening, assays 
and data quality

Data management

Data annotation, 
management and access

Benchmarking

Computational
predictions and testing

Community engagement

Engage global 
scientific community

Management
• Administration 
• Fundraising
• Project management
• Logistics

Governing board
• General direction 
• Finance, management        
    and scientific oversight

Target selection

Target selection and 
protein production

Fig. 5 | Project governance. The project is designed as a public–private 
partnership. The governance structure is designed to ensure efficient operation, 
strategic alignment and excellence in research. It integrates inputs from both 

public and private sector funders to direct a multitiered management system 
composed of specialized committees.
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an excellent training environment for scientists seeking a working and 
operational knowledge of the various domains, and programmes for 
trainees will be established. Regular project meetings that prioritize 
scientific exchange between the various communities will be established.

Project structure and governance
The project will be structured as a pre-competitive, open science 
partnership in which compound assay data generated with project 
resources, including chemical structures of confirmed hits and 
algorithms, will be made available to the public under a license that 
requires attribution but that places no restriction on subsequent use. 
As stated previously, the rationale is pragmatic and evidence-based: 
pragmatic, in that it would be almost impossible to imagine a seamless 
cross-sectoral, cross-disciplinary and multinational collaboration that 
could operate under an agreement that allowed for the protection of 
potential intellectual property; and evidence- based, in that the devel-
opment of ML/AI algorithms, in whatever field, advances most rapidly 
when provided with open data and with a mechanism to benchmark 
progress transparently68.

The project needs to involve scientists from both public and pri-
vate sectors to access the wide range of skill sets and expertise that 
will be required. It will also involve funding from both public and pri-
vate sectors to achieve the requisite scale (Fig. 5). The major funders 
from the public and private sectors will form a governing board that 
oversees all project activities, including financial, scientific and man-
agement. The governing board will also oversee risk management, 
including any potential security risks associated with the data and 
the algorithms developed in the project. The governance board will 
be mandated to balance the needs of private sector funders with those 
of the public sector and its funding bodies, and also to provide a fair 

and time-limited mechanism for project or community contributors 
to pursue selected scientific questions. The governance structure 
that is currently used by the SGC is suitable because it has been used 
successfully to govern mission-oriented public–private partnerships 
of this complexity and scale69.

A range of outcomes
The long-term aim of this project is to develop efficient computational 
hit-finding algorithms that can be used to generate freely available, 
small-molecule binders initially for thousands of proteins, and eventu-
ally for all relevant human proteins. However, over the course of the 
project, intermediate outcomes of considerable value will be generated, 
and these outcomes should be used as metrics to track and manage the 
project. Some of the key metrics are listed in Table 4.

A range of benefits to all participants
Open-access public–private partnerships are structures to carry out 
projects that require skills distributed among a wide range of academic 
and industry scientists, that tackle problems that span the boundary 
of public and private interests, and that might otherwise be crippled 
by intellectual property negotiations. However, in return for ceding 
their potential intellectual property rights to the public good, funders 
and participants must feel that they gain more than they lose, directly 
or indirectly. Table 5 lists some of the benefits that this project will 
generate for participants.
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