Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Oxygen-evolution reaction

Pursuing spatiotemporal coordination in electrocatalysis

Despite over half a century of development, catalysts still cannot mimic the efficiency of plants in producing oxygen. By considering spatiotemporal aspects in electrocatalyst design, researchers can transplant the concept of direct oxo–oxo coupling from natural metalloenzymes to heterogeneous catalyst surfaces, thus pushing oxygen-evolution activity beyond conventional limits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Introducing an inert atom as a temporal modulator to enable kinetically favourable O–O coupling on hetero-electrocatalyst surfaces.

References

  1. Johnson, N. et al. Realistic roles for hydrogen in the future energy transition. Nat. Rev. Clean Technol. 1, 351–371 (2025).

    Article  Google Scholar 

  2. Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011).

    Article  CAS  Google Scholar 

  3. Fatima, S. & Olshansky, L. Conformational control over proton-coupled electron transfer in metalloenzymes. Nat. Rev. Chem. 8, 762–775 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Greife, P. et al. The electron–proton bottleneck of photosynthetic oxygen evolution. Nature 617, 623–628 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liang, C. et al. Unravelling the effects of active site density and energetics on the water oxidation activity of iridium oxides. Nat. Catal. 7, 763–775 (2024).

    Article  CAS  Google Scholar 

  6. Nong, H. N. et al. Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 587, 408–413 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, H. et al. Atomic Ga triggers spatiotemporal coordination of oxygen radicals for efficient water oxidation on crystalline RuO2. Nat. Commun. 16, 3976 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu, X. et al. Bilayer electrified-membrane with pair-atom tin catalysts for near-complete conversion of low concentration nitrate to dinitrogen. Nat. Commun. 16, 1122 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hai, X. et al. Geminal-atom catalysis for cross-coupling. Nature 622, 754–760 (2023).

    Article  CAS  PubMed  Google Scholar 

  10. Yan, S. et al. High-power CO2-to-C2 electroreduction on Ga-spaced, square-like Cu sites. J. Am. Chem. Soc. 145, 26374–26382 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work received financial support from the King Abdullah University of Science and Technology (KAUST), the Center of Excellence for Renewable Energy and Storage Technologies under award number 5937 and the KAUST Supercomputing Laboratory under project k10175.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huabin Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Y., Huang, KW. & Zhang, H. Pursuing spatiotemporal coordination in electrocatalysis. Nat Rev Chem 9, 501–503 (2025). https://doi.org/10.1038/s41570-025-00741-3

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41570-025-00741-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing