Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding the degradation complexity of ultrahigh-energy lithium metal batteries

Subjects

Abstract

The combination of Li-rich layered oxide cathodes and lithium metal anodes enables lithium metal batteries (LMBs) to achieve specific energies exceeding 600 Wh kg−1, which is a crucial threshold requiring the activation of anionic oxygen-redox of cathode. The specific energy is attained owing to oxygen-redox reactions at the cathode and reversible Li plating–stripping at the anode, but these processes also induce distinct failure mechanisms. Structural destabilization at the cathode and anodic dendrite growth cause cell-level failures that impact the lifespan of LMBs more profoundly than material degradation alone. Moreover, the presence of lithium metal anodes obscures the detection of active Li loss, often leading to misinterpretations related to capacity fading and cycle life. This Review examines the progress in realizing 600 Wh kg−1 LMBs and understanding their lifespan failure mechanisms. We discuss the challenges in accurately assessing the lifespan and Li loss pathways of LMBs, and we elucidate the fundamental chemistry mechanisms driving both material-level and cell-level failures. In particular, the electrochemical implications of cell parameters, cell assembly and operating conditions on the lifespan are highlighted. We also outline the gaps in knowledge and advanced techniques required to decipher detailed failure modes for LMBs with oxygen-redox reactions and Li plating–stripping.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Research status of Ah-level LMBs.
Fig. 2: Lifespan failure stages of LMBs.
Fig. 3: Material-level degradation aspects (labelled 1–14) and corresponding cell-level impacts (labelled A–N) of the lifespan failure of lithium metal batteries.
Fig. 4: The electrochemical implications of cell parameters on lifespan failure of LMBs.
Fig. 5: Knowledge gaps and advanced characterization techniques required to elucidate the detailed failure pathways of lithium metal batteries with specific energies beyond 600 Wh kg−1.

Similar content being viewed by others

References

  1. Li, Q., Yu, X., Li, H. & Chen, L. The road towards high-energy-density batteries. Innov. Energy 1, 100005 (2024).

    Article  Google Scholar 

  2. Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 1–16 (2016).

    Article  Google Scholar 

  3. Shi, Z. et al. Self-regulatory lean-electrolyte flow for building 600 Wh kg−1-level rechargeable lithium batteries. Adv. Mater. 37, 2419377 (2025).

    Article  CAS  Google Scholar 

  4. Qiu, B. et al. Negative thermal expansion and oxygen-redox electrochemistry. Nature 640, 941–946 (2025).

    Article  CAS  PubMed  Google Scholar 

  5. Fang, C., Wang, X. & Meng, Y. S. Key issues hindering a practical lithium-metal anode. Trends Chem. 1, 152–158 (2019).

    Article  CAS  Google Scholar 

  6. Zhang, M. et al. Pushing the limit of 3d transition metal-based layered oxides that use both cation and anion redox for energy storage. Nat. Rev. Mater. 7, 522–540 (2022).

    Article  Google Scholar 

  7. Qiu, B., Qiao, Y., Li, B. & Liu, Z. Next-generation cathode materials for ultrahigh-energy batteries. Next Mater. 1, 100034 (2023).

    Article  Google Scholar 

  8. Rinkel, B. L., Hall, D. S., Temprano, I. & Grey, C. P. Electrolyte oxidation pathways in lithium-ion batteries. J. Am. Chem. Soc. 142, 15058–15074 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. He, X. et al. The passivity of lithium electrodes in liquid electrolytes for secondary batteries. Nat. Rev. Mater. 6, 1036–1052 (2021).

    Article  CAS  Google Scholar 

  10. Hobold, G. M. et al. Moving beyond 99.9% coulombic efficiency for lithium anodes in liquid electrolytes. Nat. Energy 6, 951–960 (2021).

    Article  CAS  Google Scholar 

  11. Yang, Y. et al. High-efficiency lithium-metal anode enabled by liquefied gas electrolytes. Joule 3, 1986–2000 (2019). This work reports an average CELi of 99.9%.

    Article  CAS  Google Scholar 

  12. Yang, W., Chen, A., He, P. & Zhou, H. Advancing lithium metal electrode beyond 99.9% coulombic efficiency via super-saturated electrolyte with compressed solvation structure. Nat. Commun. 16, 1–12 (2025).

    Google Scholar 

  13. Liu, J. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019). This perspective highlights the need to integrate key material and cell design principles in LMB research and evaluation.

    Article  CAS  Google Scholar 

  14. Hatzell, K. et al. Aligning lithium metal battery research and development across academia and industry. Joule 8, 1550–1555 (2024). This commentary highlights the need to align LMB academic research with practical industrial development.

    Article  CAS  Google Scholar 

  15. Zhang, K. et al. A high-performance lithium metal battery with ion-selective nanofluidic transport in a conjugated microporous polymer protective layer. Adv. Mater. 33, 2006323 (2021).

    Article  CAS  Google Scholar 

  16. Zhao, P. et al. Constructing self-adapting electrostatic interface on lithium metal anode for stable 400 Wh kg−1 pouch cells. Adv. Energy Mater. 12, 2200568 (2022).

    Article  CAS  Google Scholar 

  17. Wang, Z. et al. High-performance localized high-concentration electrolytes by diluent design for long-cycling lithium metal batteries. Chin. Chem. Lett. 35, 108570 (2024).

    Article  CAS  Google Scholar 

  18. Zhang, Q. K. et al. Reforming the uniformity of solid electrolyte interphase by nanoscale structure regulation for stable lithium metal batteries. Angew. Chem. Int. Ed. 135, e202306889 (2023).

    Article  Google Scholar 

  19. Wang, Z. et al. Highly soluble organic nitrate additives for practical lithium metal batteries. Carbon Energy 5, e283 (2023).

    Article  CAS  Google Scholar 

  20. Zhang, Y. et al. Enabling 420 Wh kg−1 stable lithium-metal pouch cells by lanthanum doping. Adv. Mater. 35, 2211032 (2023).

    Article  CAS  Google Scholar 

  21. Zhang, Q.-K. et al. Homogeneous and mechanically stable solid–electrolyte interphase enabled by trioxane-modulated electrolytes for lithium metal batteries. Nat. Energy 8, 725–735 (2023).

    Article  CAS  Google Scholar 

  22. Zhang, S. et al. Oscillatory solvation chemistry for a 500 Wh kg−1 Li-metal pouch cell. Nat. Energy 9, 1285–1296 (2024).

    Article  CAS  Google Scholar 

  23. Guo, J. C. et al. A self-reconfigured, dual-layered artificial interphase toward high-current-density quasi-solid-state lithium metal batteries. Adv. Mater. 35, 2300350 (2023).

    Article  CAS  Google Scholar 

  24. Ma, Q. et al. Formulating the electrolyte towards high-energy and safe rechargeable lithium–metal batteries. Angew. Chem. Int. Ed. 60, 16554–16560 (2021).

    Article  CAS  Google Scholar 

  25. Deng, W. et al. Competitive solvation-induced concurrent protection on the anode and cathode toward a 400 Wh kg–1 lithium metal battery. ACS Energy Lett. 6, 115–123 (2020).

    Article  Google Scholar 

  26. Qiao, R. et al. Non-fluorinated electrolytes with micelle-like solvation for ultra-high energy density lithium metal batteries. Chem 11, 102306 (2024).

    Article  Google Scholar 

  27. Tang, T. et al. Long-lifespan 522 Wh kg−1 lithium metal pouch cell enabled by compound additives engineering. Angew. Chem. Int. Ed. 64, e202417471 (2025).

    Article  CAS  Google Scholar 

  28. Jie, Y. et al. Towards long-life 500 Wh kg−1 lithium metal pouch cells via compact ion-pair aggregate electrolytes. Nat. Energy 9, 987–998 (2024).

    Article  CAS  Google Scholar 

  29. Su, H. et al. Achieving practical high-energy-density lithium-metal batteries by a dual-anion regulated electrolyte. Adv. Mater. 35, 2301171 (2023).

    Article  CAS  Google Scholar 

  30. Ji, H. et al. Liquid–liquid interfacial tension stabilized Li-metal batteries. Nature 643, 1255–1262 (2025).

    Article  CAS  PubMed  Google Scholar 

  31. Wei, Z. et al. Eliminating oxygen releasing of Li-rich layered cathodes by tuning the distribution of superlattice domain. Mater. Today Energy 27, 101039 (2022).

    Article  CAS  Google Scholar 

  32. Luo, P. et al. Understanding and mitigating acidic species in all-fluorinated electrolytes for a stable 572 Wh kg−1 lithium metal battery (LMB). Energy Storage Mater. 78, 104234 (2025).

    Article  Google Scholar 

  33. Liu, X. et al. 570 Wh kg−1-grade lithium metal pouch cell with 4.9 V highly Li+ conductive armor-like cathode electrolyte interphase via partially fluorinated electrolyte engineering. Adv. Mater. 36, 2401505 (2024).

    Article  CAS  Google Scholar 

  34. Huang, H. et al. Delocalized electrolyte design enables 600 Wh kg−1 lithium metal pouch cells. Nature 644, 660–667 (2025).

    Article  CAS  PubMed  Google Scholar 

  35. He, Y. et al. Optimizing Li plating behavior via controlling areal capacity of a cathode for cycling stability on 600 Wh kg–1 lithium-metal batteries. ACS Appl. Mater. Interfaces 16, 33475–33484 (2024).

    Article  CAS  PubMed  Google Scholar 

  36. Li, Q., Yang, Y., Yu, X. & Li, H. A 700 Whkg−1 rechargeable pouch type lithium battery. Chin. Phys. Lett. 40, 048201 (2023). This work reports the 700Whkg−1LMB prototype by using LMA and LLOs.

    Article  CAS  Google Scholar 

  37. He, M. et al. Industry needs for practical lithium-metal battery designs in electric vehicles. Nat. Energy 9, 1199–1205 (2024).

    Article  Google Scholar 

  38. Menkin, S. et al. Insights into soft short circuit-based degradation of lithium metal batteries. Faraday Discuss. 248, 277–297 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Deng, W. et al. Quantification of reversible and irreversible lithium in practical lithium-metal batteries. Nat. Energy 7, 1031–1041 (2022). This work reports the method for quantifying CELi in Ah-level LMBs.

    Article  CAS  Google Scholar 

  40. Wood, K. N. et al. Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Cent. Sci. 2, 790–801 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen, K. H. et al. Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. J. Mater. Chem. A 5, 11671–11681 (2017). This work highlights the presence and impact of the dead Li layer on the degradation pathways of LMBs.

    Article  CAS  Google Scholar 

  42. Lu, D. et al. Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Adv. Energy Mater. 5, 1400993 (2015).

    Article  Google Scholar 

  43. Xiang, Y. X. et al. Quantitatively analyzing the failure processes of rechargeable Li metal batteries. Sci. Adv. 7, eabj3423 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zeng, L. et al. Voltage decay of Li-rich layered oxides: mechanism, modification strategies, and perspectives. Adv. Funct. Mater. 33, 2213260 (2023).

    Article  CAS  Google Scholar 

  45. House, R. A. et al. First-cycle voltage hysteresis in Li-rich 3d cathodes associated with molecular O2 trapped in the bulk. Nat. Energy 5, 777–785 (2020).

    Article  CAS  Google Scholar 

  46. Xu, B., Fell, C. R., Chi, M. & Meng, Y. S. Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: a joint experimental and theoretical study. Energy Environ. Sci. 4, 2223–2233 (2011).

    Article  CAS  Google Scholar 

  47. Yan, P. et al. Injection of oxygen vacancies in the bulk lattice of layered cathodes. Nat. Nanotechnol. 14, 602–608 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Li, X. et al. Dependence of initial capacity irreversibility on oxygen framework chemistry in Li-rich layered cathode oxides. Energy Environ. Mater. 7, e12722 (2024).

    Article  CAS  Google Scholar 

  49. Liu, T. et al. Origin of structural degradation in Li-rich layered oxide cathode. Nature 606, 305–312 (2022). This work highlights the role of lattice strain or displacement in driving voltage decay and oxygen loss in LLOs.

    Article  CAS  PubMed  Google Scholar 

  50. Croy, J. R., Balasubramanian, M., Gallagher, K. G. & Burrell, A. K. Review of the US Department of Energy’s “deep dive” effort to understand voltage fade in Li- and Mn-rich cathodes. Acc. Chem. Res. 48, 2813–2821 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Eum, D. et al. Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nat. Mater. 19, 419–427 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, E. et al. Al/Ti synergistic doping enhanced cycle stability of Li-rich layered oxides. Adv. Funct. Mater. 32, 2201744 (2022).

    Article  CAS  Google Scholar 

  53. Qing, R. P. et al. Enhancing the kinetics of Li-rich cathode materials through the pinning effects of gradient surface Na+ doping. Adv. Energy Mater. 6, 1501914 (2016).

    Article  Google Scholar 

  54. Li, Q. et al. K+-doped Li1.2Mn0.54Co0.13Ni0.13O2: a novel cathode material with an enhanced cycling stability for lithium-ion batteries. ACS Appl. Mater. Interfaces 6, 10330–10341 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Wang, M., Chen, L., Liu, M., Chen, Y. & Gu, Y. Enhanced electrochemical performance of La-doped Li-rich layered cathode material. J. Alloys Compd. 848, 156620 (2020).

    Article  CAS  Google Scholar 

  56. Gao, Y., Wang, X., Ma, J., Wang, Z. & Chen, L. Selecting substituent elements for Li-rich Mn-based cathode materials by density functional theory (DFT) calculations. Chem. Mater. 27, 3456–3461 (2015).

    Article  CAS  Google Scholar 

  57. Wang, M. et al. Enhanced electrochemical performances of cerium-doped Li-Rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials. J. Alloys Compd. 861, 158000 (2021).

    Article  CAS  Google Scholar 

  58. Peng, Z. et al. Enhanced electrochemical performance of layered Li-rich cathode materials for lithium ion batteries via aluminum and boron dual-doping. Ceram. Int. 45, 4184–4192 (2019).

    Article  CAS  Google Scholar 

  59. Seaby, T., Lin, T.-E., Hu, Y.-X., Yuan, Q.-H. & Wang, L.-Z. An analysis of F-doping in Li-rich cathodes. Rare Met. 41, 1771–1796 (2022).

    Article  CAS  Google Scholar 

  60. Yan, H., Li, B., Yu, Z., Chu, W. & Xia, D. First-principles study: tuning the redox behavior of lithium-rich layered oxides by chlorine doping. J. Phys. Chem. C 121, 7155–7163 (2017).

    Article  CAS  Google Scholar 

  61. Nayak, P. K. et al. Al doping for mitigating the capacity fading and voltage decay of layered Li and Mn-rich cathodes for Li-ion batteries. Adv. Energy Mater. 6, 1502398 (2016).

    Article  Google Scholar 

  62. Dahiya, P., Ghanty, C., Sahoo, K., Basu, S. & Majumder, S. Suppression of voltage decay and improvement in electrochemical performance by zirconium doping in Li-rich cathode materials for Li-ion batteries. J. Electrochem. Soc. 165, A3114 (2018).

    Article  CAS  Google Scholar 

  63. Feng, Z. et al. Adjusting oxygen redox reaction and structural stability of Li- and Mn-rich cathodes by Zr-Ti dual-doping. ACS Appl. Mater. Interfaces 14, 5308–5317 (2022).

    Article  CAS  PubMed  Google Scholar 

  64. Yang, P. et al. A gradient doping strategy toward superior electrochemical performance for Li-rich Mn-based cathode materials. Small 19, 2207797 (2023).

    Article  CAS  Google Scholar 

  65. Lu, C. et al. Enhanced electrochemical performance of Li-rich Li1.2Mn0.52Co0.08Ni0.2O2 cathode materials for Li-ion batteries by vanadium doping. Electrochim. Acta 209, 448–455 (2016).

    Article  CAS  Google Scholar 

  66. Meng, J. et al. Modulating crystal and interfacial properties by W-gradient doping for highly stable and long life Li-rich layered cathodes. Adv. Funct. Mater. 32, 2113013 (2022).

    Article  CAS  Google Scholar 

  67. Yang, J. et al. Encouraging voltage stability upon long cycling of Li-rich Mn-based cathode materials by Ta–Mo dual doping. ACS Appl. Mater. Interfaces 13, 25981–25992 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Eum, D. et al. Electrochemomechanical failure in layered oxide cathodes caused by rotational stacking faults. Nat. Mater. 23, 1093–1099 (2024).

    Article  CAS  PubMed  Google Scholar 

  69. Zheng, J. & Archer, L. A. Crystallographically textured electrodes for rechargeable batteries: symmetry, fabrication, and characterization. Chem. Rev. 122, 14440–14470 (2022).

    Article  CAS  PubMed  Google Scholar 

  70. Celeste, A. et al. On the elusive crystallography of lithium-rich layered oxides: novel structural models. Small Methods 8, 2301466 (2024).

    Article  CAS  Google Scholar 

  71. Yin, C. et al. Structural insights into composition design of Li-rich layered cathode materials for high-energy rechargeable battery. Mater. Today 51, 15–26 (2021).

    Article  CAS  Google Scholar 

  72. Zeng, L. et al. Quenching-induced lattice modifications endowing Li-rich layered cathodes with ultralow voltage decay and long life. Energy Environ. Sci. 18, 284–299 (2025).

    Article  CAS  Google Scholar 

  73. Csernica, P. M. et al. Persistent and partially mobile oxygen vacancies in Li-rich layered oxides. Nat. Energy 6, 642–652 (2021).

    Article  CAS  Google Scholar 

  74. Wandt, J., Freiberg, A. T., Ogrodnik, A. & Gasteiger, H. A. Singlet oxygen evolution from layered transition metal oxide cathode materials and its implications for lithium-ion batteries. Mater. Today 21, 825–833 (2018).

    Article  CAS  Google Scholar 

  75. Marie, J.-J. et al. Trapped O2 and the origin of voltage fade in layered Li-rich cathodes. Nat. Mater. 23, 818–825 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lee, S., Su, L., Mesnier, A., Cui, Z. & Manthiram, A. Cracking vs. surface reactivity in high-nickel cathodes for lithium-ion batteries. Joule 7, 2430–2444 (2023).

    Article  CAS  Google Scholar 

  77. Zhu, Z. et al. Gradient Li-rich oxide cathode particles immunized against oxygen release by a molten salt treatment. Nat. Energy 4, 1049–1058 (2019).

    Article  CAS  Google Scholar 

  78. Qiu, B. et al. Gas–solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries. Nat. Commun. 7, 12108 (2016). This work reports a method for constructing surface oxygen vacancy on LLOs for practical application.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Li, A. et al. Enhancing cycling stability in Li-rich layered oxides by atomic layer deposition of LiNbO3 nanolayers. Solid State Ion 417, 116727 (2024).

    Article  CAS  Google Scholar 

  80. Jung, R., Metzger, M., Maglia, F., Stinner, C. & Gasteiger, H. A. Chemical versus electrochemical electrolyte oxidation on NMC111, NMC622, NMC811, LNMO, and conductive carbon. J. Phys. Chem. Lett. 8, 4820–4825 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Li, Y. et al. A novel 3D Li/Li9Al4/Li-Mg alloy anode for superior lithium metal batteries. Adv. Funct. Mater. 33, 2213905 (2023).

    Article  CAS  Google Scholar 

  82. Gao, P. et al. Optimization of magnesium-doped lithium metal anode for high performance lithium metal batteries through modeling and experiment. Angew. Chem. Int. Ed. 60, 16506–16513 (2021).

    Article  CAS  Google Scholar 

  83. Lu, Y. et al. The carrier transition from Li atoms to Li vacancies in solid-state lithium alloy anodes. Sci. Adv. 7, eabi5520 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang, X. et al. Glassy Li metal anode for high-performance rechargeable Li batteries. Nat. Mater. 19, 1339–1345 (2020).

    Article  CAS  PubMed  Google Scholar 

  85. Pei, A., Zheng, G., Shi, F., Li, Y. & Cui, Y. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 17, 1132–1139 (2017).

    Article  CAS  PubMed  Google Scholar 

  86. Yan, K. et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 1–8 (2016).

    Article  Google Scholar 

  87. Deng, W., Zhou, X., Fang, Q. & Liu, Z. Microscale lithium metal stored inside cellular graphene scaffold toward advanced metallic lithium anodes. Adv. Energy Mater. 8, 1703152 (2018).

    Article  Google Scholar 

  88. Chazalviel, J.-N. Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys. Rev. A 42, 7355 (1990).

    Article  CAS  PubMed  Google Scholar 

  89. Bai, P., Li, J., Brushett, F. R. & Bazant, M. Z. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221–3229 (2016).

    Article  CAS  Google Scholar 

  90. Wang, S. H. et al. Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels. Adv. Mater. 29, 1703729 (2017).

    Article  Google Scholar 

  91. Alexander, G. V., Shi, C., O’Neill, J. & Wachsman, E. D. Extreme lithium-metal cycling enabled by a mixed ion- and electron-conducting garnet three-dimensional architecture. Nat. Mater. 22, 1136–1143 (2023).

    Article  CAS  PubMed  Google Scholar 

  92. Hu, A. et al. An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ. Sci. 14, 4115–4124 (2021).

    Article  CAS  Google Scholar 

  93. Liu, Y. et al. Electro-chemo-mechanical modeling of artificial solid electrolyte interphase to enable uniform electrodeposition of lithium metal anodes. Adv. Energy Mater. 12, 2103589 (2022).

    Article  CAS  Google Scholar 

  94. Han, Z. et al. A protective layer for lithium metal anode: why and how. Small Methods 5, 2001035 (2021).

    Article  CAS  Google Scholar 

  95. Santhosha, A., Medenbach, L., Buchheim, J. R. & Adelhelm, P. The indium−lithium electrode in solid-state lithium-ion batteries: phase formation, redox potentials, and interface stability. Batt. Supercaps 4, 1654–1654 (2021).

    Article  Google Scholar 

  96. Sayavong, P. et al. Dissolution of the solid electrolyte interphase and its effects on lithium metal anode cyclability. J. Am. Chem. Soc. 145, 12342–12350 (2023).

    Article  CAS  PubMed  Google Scholar 

  97. Lin, D. et al. Fast galvanic lithium corrosion involving a Kirkendall-type mechanism. Nat. Chem. 11, 382–389 (2019).

    Article  CAS  PubMed  Google Scholar 

  98. Wang, H. et al. Application-driven design of non-aqueous electrolyte solutions through quantification of interfacial reactions in lithium metal batteries. Nat. Nanotechnol. 20, 1034–1042 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rynearson, L. et al. Speciation of transition metal dissolution in electrolyte from common cathode materials. Angew. Chem. Int. Ed. 136, e202317109 (2024).

    Article  Google Scholar 

  100. Sim, R., Su, L., Dolocan, A. & Manthiram, A. Delineating the impact of transition-metal crossover on solid-electrolyte interphase formation with ion mass spectrometry. Adv. Mater. 36, 2311573 (2024).

    Article  CAS  Google Scholar 

  101. Xu, H. et al. Impacts of dissolved Ni2+ on the solid electrolyte interphase on a graphite anode. Angew. Chem. Int. Ed. 134, e202202894 (2022).

    Article  Google Scholar 

  102. Jin, C. et al. Inhibiting and rejuvenating dead lithium in battery materials. Nat. Rev. Chem. 9, 553–568 (2025).

    Article  CAS  PubMed  Google Scholar 

  103. Werres, M. et al. Origin of heterogeneous stripping of lithium in liquid electrolytes. ACS Nano 17, 10218–10228 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang, C. et al. Tension-induced cavitation in Li-metal stripping. Adv. Mater. 35, 2209091 (2023).

    Article  CAS  Google Scholar 

  105. Sanchez, A. J. et al. Plan-view operando video microscopy of Li metal anodes: identifying the coupled relationships among nucleation, morphology, and reversibility. ACS Energy Lett. 5, 994–1004 (2020).

    Article  CAS  Google Scholar 

  106. Liu, H. et al. Plating/stripping behavior of actual lithium metal anode. Adv. Energy Mater. 9, 1902254 (2019).

    Article  CAS  Google Scholar 

  107. Niu, C. et al. Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries. Nat. Energy 6, 723–732 (2021).

    Article  CAS  Google Scholar 

  108. Liu, X. et al. Advances in multi-scale design and fabrication processes for thick electrodes in lithium-ion batteries. Energy Rev. 3, 100066 (2024).

    Article  CAS  Google Scholar 

  109. Kuang, Y., Chen, C., Kirsch, D. & Hu, L. Thick electrode batteries: principles, opportunities, and challenges. Adv. Energy Mater. 9, 1901457 (2019).

    Article  Google Scholar 

  110. Jiao, S. et al. Behavior of lithium metal anodes under various capacity utilization and high current density in lithium metal batteries. Joule 2, 110–124 (2018).

    Article  CAS  Google Scholar 

  111. Cai, X. et al. Characterization and quantification of multi-field coupling in lithium-ion batteries under mechanical constraints. J. Energy Chem. 95, 364–379 (2024).

    Article  CAS  Google Scholar 

  112. Monroe, C. & Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396 (2005).

    Article  CAS  Google Scholar 

  113. Xu, C., Ahmad, Z., Aryanfar, A., Viswanathan, V. & Greer, J. R. Enhanced strength and temperature dependence of mechanical properties of Li at small scales and its implications for Li metal anodes. Proc. Natl Acad. Sci. USA 114, 57–61 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Zhang, W. et al. Design principles of functional polymer separators for high-energy, metal-based batteries. Small 14, 1703001 (2018).

    Article  Google Scholar 

  115. Seo, J. et al. Recent progress of advanced functional separators in lithium metal batteries. Small 20, 2312132 (2024).

    Article  CAS  Google Scholar 

  116. Fang, C. C. et al. Pressure-tailored lithium deposition and dissolution in lithium metal batteries. Nat. Energy 6, 987–994 (2021).

    Article  CAS  Google Scholar 

  117. Liu, D. et al. Controlled large-area lithium deposition to reduce swelling of high-energy lithium metal pouch cells in liquid electrolytes. Nat. Energy 9, 559–569 (2024).

    Article  Google Scholar 

  118. Masias, A., Felten, N., Garcia-Mendez, R., Wolfenstine, J. & Sakamoto, J. Elastic, plastic, and creep mechanical properties of lithium metal. J. Mater. Sci. 54, 2585–2600 (2019). This work characterizes the elastic and plastic mechanical properties and creep behaviour of Li metal.

    Article  CAS  Google Scholar 

  119. Huang, Y. et al. Mechanism of lithium plating and stripping in lithium-ion batteries induced by overhang failure defects. Cell Rep. Phys. Sci. 5, 102299 (2024).

    Article  CAS  Google Scholar 

  120. Krauskopf, T., Mogwitz, B., Rosenbach, C., Zeier, W. G. & Janek, J. Diffusion limitation of lithium metal and Li–Mg alloy anodes on LLZO type solid electrolytes as a function of temperature and pressure. Adv. Energy Mater. 9, 1902568 (2019).

    Article  CAS  Google Scholar 

  121. Lei, Y. et al. Surface modification of Li-rich Mn-based layered oxide cathodes: challenges, materials, methods, and characterization. Adv. Energy Mater. 10, 2002506 (2020).

    Article  CAS  Google Scholar 

  122. Wu, J. et al. From fundamental understanding to engineering design of high-performance thick electrodes for scalable energy-storage systems. Adv. Mater. 33, 2101275 (2021).

    Article  CAS  Google Scholar 

  123. Park, N.-Y. et al. Degradation mechanism of Ni-rich cathode materials: focusing on particle interior. ACS Energy Lett. 7, 2362–2369 (2022).

    Article  CAS  Google Scholar 

  124. Ji, W., Qu, H., Zhang, X., Zheng, D. & Qu, D. Electrode architecture design to promote charge-transport kinetics in high-loading and high-energy lithium-based batteries. Small Methods 5, 2100518 (2021).

    Article  CAS  Google Scholar 

  125. Dienemann, L. L., Saigal, A. & Zimmerman, M. A. Creep and anisotropy of free-standing lithium metal foils in an industrial dry room. J. Electrochem. Energy 18, 040908 (2021).

    CAS  Google Scholar 

  126. Zhang, K. et al. Unveiling the influence of formation voltage on Li-rich layered oxide cathode. Angew. Chem. Int. Ed. 64, e202515719 (2025).

    Article  CAS  Google Scholar 

  127. Zhang, S. et al. The lasting impact of formation cycling on the Li-ion kinetics between SEI and the Li-metal anode and its correlation with efficiency. Sci. Adv. 10, eadj8889 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhou, M. et al. Correlating the potential-holding formation protocol of solid–electrolyte interphases with improving calendar aging on lithium metal anode. ACS Energy Lett. 8, 4702–4710 (2023).

    Article  CAS  Google Scholar 

  129. Chang, W. et al. Relating chemo-mechanical hysteresis and formation protocols for anode-free lithium metal batteries. J. Electrochem. Soc. 171, 040506 (2024).

    Article  CAS  Google Scholar 

  130. Liu, Z. et al. Revealing the degradation pathways of layered Li-rich oxide cathodes. Nat. Nanotechnol. 19, 1821–1830 (2024).

    Article  CAS  PubMed  Google Scholar 

  131. Li, L. et al. Self-heating-induced healing of lithium dendrites. Science 359, 1513–1516 (2018).

    Article  CAS  PubMed  Google Scholar 

  132. Li, Q., Tan, S., Li, L., Lu, Y. & He, Y. Understanding the molecular mechanism of pulse current charging for stable lithium-metal batteries. Sci. Adv. 3, e1701246 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Zhang, Y. et al. Unveiling the impacts of charge/discharge rate on the cycling performance of Li-metal batteries. ACS Energy Lett. 10, 872–880 (2025).

    Article  CAS  Google Scholar 

  134. Kim, S. et al. Calendar life of lithium metal batteries: accelerated aging and failure analysis. Energy Storage Mater. 65, 103147 (2024).

    Article  Google Scholar 

  135. Wood, S. M. et al. Predicting calendar aging in lithium metal secondary batteries: the impacts of solid electrolyte interphase composition and stability. Adv. Energy Mater. 8, 1801427 (2018).

    Article  Google Scholar 

  136. Boyle, D. T. et al. Corrosion of lithium metal anodes during calendar ageing and its microscopic origins. Nat. Energy 6, 487–494 (2021).

    Article  CAS  Google Scholar 

  137. Li, N. et al. Understanding and quantifying capacity loss in storage aging of Ah-level Li metal pouch cells. InfoMat 5, e12402 (2023).

    Article  CAS  Google Scholar 

  138. Assat, G. & Tarascon, J.-M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 3, 373–386 (2018).

    Article  CAS  Google Scholar 

  139. Luo, K. et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 8, 684–691 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Seo, D.-H. et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem. 8, 692–697 (2016).

    Article  CAS  PubMed  Google Scholar 

  141. Eum, D. et al. Coupling structural evolution and oxygen-redox electrochemistry in layered transition metal oxides. Nat. Mater. 21, 664–672 (2022).

    Article  CAS  PubMed  Google Scholar 

  142. Qiu, B. et al. Metastability and reversibility of anionic redox-based cathode for high-energy rechargeable batteries. Cell Rep. Phys. Sci. 1, 100028 (2020).

    Article  Google Scholar 

  143. Kang, S., Lee, S., Lee, H. & Kang, Y.-M. Manipulating disorder within cathodes of alkali-ion batteries. Nat. Rev. Chem. 8, 587–604 (2024).

    Article  CAS  PubMed  Google Scholar 

  144. Zhang, M. et al. High pressure effect on structural and electrochemical properties of anionic redox-based lithium transition metal oxides. Matter 4, 164–181 (2021).

    Article  CAS  Google Scholar 

  145. Zuo, W. et al. Li-rich cathodes for rechargeable Li-based batteries: reaction mechanisms and advanced characterization techniques. Energy Environ. Sci. 13, 4450–4497 (2020).

    Article  CAS  Google Scholar 

  146. Jeong, H.-T. & Kim, W. J. Deformation mechanism maps of pure lithium: their application in determining stack pressure for all-solid-state lithium-ion batteries. ACS Energy Lett. 9, 3237–3251 (2024).

    Article  CAS  Google Scholar 

  147. Chang, W., Xu, T. & Steingart, D. Chemo-mechanical effects of stack pressure and temperature on anode-free lithium metal batteries. J. Electrochem. Soc. 169, 090530 (2022).

    Article  CAS  Google Scholar 

  148. Kasnatscheew, J. et al. Determining oxidative stability of battery electrolytes: validity of common electrochemical stability window (ESW) data and alternative strategies. Phys. Chem. Chem. Phys. 19, 16078–16086 (2017).

    Article  CAS  PubMed  Google Scholar 

  149. Zhou, M. Y. et al. Quantifying the apparent electron transfer number of electrolyte decomposition reactions in anode-free batteries. Joule 6, 2122–2137 (2022).

    Article  CAS  Google Scholar 

  150. Gu, Y. et al. Resolving nanostructure and chemistry of solid-electrolyte interphase on lithium anodes by depth-sensitive plasmon-enhanced Raman spectroscopy. Nat. Commun. 14, 3536 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wang, J. et al. Visualizing and regulating dynamic evolution of interfacial electrolyte configuration during de-solvation process on lithium-metal anode. Angew. Chem. Int. Ed. 63, e202400254 (2024).

    Article  CAS  Google Scholar 

  152. Glasbeek, M. & Zhang, H. Femtosecond studies of solvation and intramolecular configurational dynamics of fluorophores in liquid solution. Chem. Rev. 104, 1929–1954 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Litman, Y., Chiang, K.-Y., Seki, T., Nagata, Y. & Bonn, M. Surface stratification determines the interfacial water structure of simple electrolyte solutions. Nat. Chem. 16, 644–650 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Yao, N., Chen, X., Fu, Z.-H. & Zhang, Q. Applying classical, ab initio, and machine-learning molecular dynamics simulations to the liquid electrolyte for rechargeable batteries. Chem. Rev. 122, 10970–11021 (2022).

    Article  CAS  PubMed  Google Scholar 

  155. Zheng, Z. et al. Quantitatively detecting and characterizing metallic lithium in lithium-based batteries. Energy Environ. Sci. 17, 9051–9092 (2024).

    Article  CAS  Google Scholar 

  156. Fang, C. C. et al. Quantifying inactive lithium in lithium metal batteries. Nature 572, 511–515 (2019). This work introduces the concept of chemical titration-based quantification for inactive Li in LMB.

    Article  CAS  PubMed  Google Scholar 

  157. Tao, M. M. et al. Quantifying the evolution of inactive Li/lithium hydride and their correlations in rechargeable anode-free Li batteries. Nano Lett. 22, 6775–6781 (2022).

    Article  CAS  PubMed  Google Scholar 

  158. Hobold, G. M., Wang, C., Steinberg, K., Li, Y. & Gallant, B. M. High lithium oxide prevalence in the lithium solid–electrolyte interphase for high coulombic efficiency. Nat. Energy 9, 580–591 (2024).

    Article  CAS  Google Scholar 

  159. Fan, X. & Wang, C. High-voltage liquid electrolytes for Li batteries: progress and perspectives. Chem. Soc. Rev. 50, 10486–10566 (2021).

    Article  CAS  PubMed  Google Scholar 

  160. Meng, Y. S., Srinivasan, V. & Xu, K. Designing better electrolytes. Science 378, eabq3750 (2022).

    Article  CAS  PubMed  Google Scholar 

  161. Zhang, H. et al. Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives. Angew. Chem. Int. Ed. 57, 15002–15027 (2018).

    Article  CAS  Google Scholar 

  162. Xia, Y. et al. Designing an asymmetric ether-like lithium salt to enable fast-cycling high-energy lithium metal batteries. Nat. Energy 8, 934–945 (2023).

    Article  CAS  Google Scholar 

  163. Lu, B. et al. Key parameters in determining the reactivity of lithium metal battery. ACS Energy Lett. 8, 3230–3238 (2023).

    Article  CAS  Google Scholar 

  164. Puthusseri, D., Parmananda, M., Mukherjee, P. P. & Pol, V. G. Probing the thermal safety of Li metal batteries. J. Electrochem. Soc. 167, 120513 (2020).

    Article  CAS  Google Scholar 

  165. Jiang, F.-N. et al. Thermal safety of dendritic lithium against non-aqueous electrolyte in pouch-type lithium metal batteries. J. Energy Chem. 72, 158–165 (2022).

    Article  CAS  Google Scholar 

  166. Zhang, X. et al. Deciphering the thermal failure mechanism of anode-free lithium metal pouch batteries. Adv. Energy Mater. 13, 2203648 (2023).

    Article  CAS  Google Scholar 

  167. Xu, X. Q. et al. Dendrite-accelerated thermal runaway mechanisms of lithium metal pouch batteries. SusMat 2, 435–444 (2022).

    Article  CAS  Google Scholar 

  168. Cui, X. et al. Safety hazards of lithium metal batteries: from the perspective of lithium dendrites and thermal runaway. Energy Fuels 39, 7665–7690 (2025).

    Article  CAS  Google Scholar 

  169. Zhou, Q. et al. A temperature-responsive electrolyte endowing superior safety characteristic of lithium metal batteries. Adv. Energy Mater. 10, 1903441 (2020).

    Article  CAS  Google Scholar 

  170. Xie, J. & Lu, Y. C. Designing nonflammable liquid electrolytes for safe Li-ion batteries. Adv. Mater. 37, 2312451 (2025).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (22479158, 52272253, 52472266), the External Cooperation Program of Chinese Academy of Sciences (grant no. 181GJHZ2024126MI), the R&D Project of Jiangsu Province (BKBG2024021), Guangdong Basic and Applied Basic Research Foundation (2024A1515011548), Shenzhen Science and Technology Program (KJZD20240903100707011 and JCYJ20240813155846060), the Natural Science Foundation of Ningbo (2024QL041), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (2022299). Y.S.M. acknowledges the support from the University of Chicago international programme.

Author information

Authors and Affiliations

Authors

Contributions

W.D., B.Q., Y.T., Z.L. and Y.S.M. contemplated the topic and structure of this Review. W.D., B.Q. and Y.S.M. contributed to the writing and editing of all sections of the manuscript. All authors contributed to the discussion of content and edited the manuscript.

Corresponding authors

Correspondence to Bao Qiu  (邱报), Yongbing Tang  (唐永炳), Zhaoping Liu  (刘兆平) or Ying Shirley Meng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks Stefan Freunberger, who co-reviewed with Po-Hua Su; Kyu-Young Park; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Molecular Universe of SES AI: https://www.ses.ai

QuantumScape’s FlexFrame: https://www.quantumscape.com/blog/introducing-flexframe/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, W., Qiu, B., Chen, J. et al. Understanding the degradation complexity of ultrahigh-energy lithium metal batteries. Nat Rev Chem (2026). https://doi.org/10.1038/s41570-026-00801-2

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41570-026-00801-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing