Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Intratumoural administration and tumour tissue targeting of cancer immunotherapies

Abstract

Immune-checkpoint inhibitors and chimeric antigen receptor (CAR) T cells are revolutionizing oncology and haematology practice. With these and other immunotherapies, however, systemic biodistribution raises safety issues, potentially requiring the use of suboptimal doses or even precluding their clinical development. Delivering or attracting immune cells or immunomodulatory factors directly to the tumour and/or draining lymph nodes might overcome these problems. Hence, intratumoural delivery and tumour tissue-targeted compounds are attractive options to increase the in situ bioavailability and, thus, the efficacy of immunotherapies. In mouse models, intratumoural administration of immunostimulatory monoclonal antibodies, pattern recognition receptor agonists, genetically engineered viruses, bacteria, cytokines or immune cells can exert powerful effects not only against the injected tumours but also often against uninjected lesions (abscopal or anenestic effects). Alternatively, or additionally, biotechnology strategies are being used to achieve higher functional concentrations of immune mediators in tumour tissues, either by targeting locally overexpressed moieties or engineering ‘unmaskable’ agents to be activated by elements enriched within tumour tissues. Clinical trials evaluating these strategies are ongoing, but their development faces issues relating to the administration methodology, pharmacokinetic parameters, pharmacodynamic end points, and immunobiological and clinical response assessments. Herein, we discuss these approaches in the context of their historical development and describe the current landscape of intratumoural or tumour tissue-targeted immunotherapies.

Key points

  • Repeated intratumoural injections with agents designed to enhance antitumour immune responses constitutes a feasible strategy to reduce the risk of systemic toxicities and achieve higher local bioactive drug concentrations.

  • Spearheaded by the oncolytic virus talimogene laheparepvec, the first intratumoural immunotherapy approved by the FDA and EMA, and supported by a strong preclinical rationale, many intratumoural immunotherapies are now being developed in clinical trials.

  • These immunotherapies include microorganisms (viruses or bacteria) and synthetic compounds mimicking infectious agents (such as pattern recognition receptor agonists), as well as immunomodulatory monoclonal antibodies, cytokines and chimeric proteins.

  • Higher locoregional concentrations of immunotherapy agents can also be achieved through molecular engineering, for example, to target them towards moieties that are enriched in the tumour microenvironment.

  • Increased specificity in tumour targeting can also be attained through the development of prodrug forms of immunotherapies that become functional only after entering tumour tissue (pro-immunodrugs).

  • Procedural, pharmaceutical, regulatory and analytical challenges require multidisciplinary expert consensus and systematic research to maximize the potential of these modes of administration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strengths, weaknesses, opportunities and threats of intratumoural delivery of immunotherapies.
Fig. 2: Current landscape of active clinical trials of intratumoural immunotherapies.
Fig. 3: Boosting the intratumoural cancer immunity cycle.
Fig. 4: Targeted approaches to immunotherapy against solid tumours.

Similar content being viewed by others

References

  1. Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Guedan, S., Ruella, M. & June, C. H. Emerging cellular therapies for cancer. Annu. Rev. Immunol. 37, 145–171 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cuesta, A. M., Sainz-Pastor, N., Bonet, J., Oliva, B. & Alvarez-Vallina, L. Multivalent antibodies: when design surpasses evolution. Trends Biotechnol. 28, 355–362 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Melero, I., Rouzaut, A., Motz, G. T. & Coukos, G. T-cell and NK-cell infiltration into solid tumors: a key limiting factor for efficacious cancer immunotherapy. Cancer Discov. 4, 522–526 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Postow, M. A., Sidlow, R. & Hellmann, M. D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med. 378, 158–168 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Leonard, J. P. et al. Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-gamma production. Blood 90, 2541–2548 (1997).

    CAS  PubMed  Google Scholar 

  8. Ascierto, P. A. et al. Overall survival at 5 years of follow-up in a phase III trial comparing ipilimumab 10 mg/kg with 3 mg/kg in patients with advanced melanoma. J. Immunother. Cancer 8, e000391 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang, Y. L., Peng, H. H., Su, S. Y. & Lin, C. T. Combined immunotherapy (OK-432, IL-2) with chemotherapy decrease the recurrence rate in advanced ovarian cancer. Reprod. Sci. 26, 244–249 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Marabelle, A., Tselikas, L., de Baere, T. & Houot, R. Intratumoral immunotherapy: using the tumor as the remedy. Ann. Oncol. 28, xii33–xii43 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Margolin, K. et al. Phase I trial of ALT-803, a novel recombinant IL15 complex, in patients with advanced solid tumors. Clin. Cancer Res. 24, 5552–5561 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Barlesi, F. et al. Phase Ib study of selicrelumab (CD40 agonist) in combination with atezolizumab (anti-PD-L1) in patients with advanced solid tumors [abstract 291]. J. Immunother. Cancer 8 (Suppl. 3), A178 (2020).

    Google Scholar 

  13. Chandrasekaran, S. & King, M. R. Microenvironment of tumor-draining lymph nodes: opportunities for liposome-based targeted therapy. Int. J. Mol. Sci. 15, 20209–20239 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Petitprez, F. et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature 577, 556–560 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Helmink, B. A. et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577, 549–555 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vormehr, M., Tureci, O. & Sahin, U. Harnessing tumor mutations for truly individualized cancer vaccines. Annu. Rev. Med. 70, 395–407 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Linette, G. P. et al. Immunological ignorance is an enabling feature of the oligo-clonal T cell response to melanoma neoantigens. Proc. Natl Acad. Sci. USA 116, 23662–23670 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Harrington, K., Freeman, D. J., Kelly, B., Harper, J. & Soria, J. C. Optimizing oncolytic virotherapy in cancer treatment. Nat. Rev. Drug Discov. 18, 689–706 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Coley, W. B. The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. Clin. Orthop. Relat. Res. 262, 3–11 (1991).

    Article  Google Scholar 

  20. Nauts, H. C., Swift, W. E. & Coley, B. L. The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, M.D., reviewed in the light of modern research. Cancer Res. 6, 205–216 (1946).

    CAS  PubMed  Google Scholar 

  21. Tsung, K. & Norton, J. A. Lessons from Coley’s toxin. Surg. Oncol. 15, 25–28 (2006).

    Article  PubMed  Google Scholar 

  22. Hoption Cann, S. A., van Netten, J. P. & van Netten, C. Dr William Coley and tumour regression: a place in history or in the future. Postgrad. Med. J. 79, 672–680 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Morales, A., Eidinger, D. & Bruce, A. W. Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J. Urol. 116, 180–183 (1976).

    Article  CAS  PubMed  Google Scholar 

  24. Mori, K., Lamm, D. L. & Crawford, E. D. A trial of bacillus Calmette-Guérin versus adriamycin in superficial bladder cancer: a South-West Oncology Group Study. Urol. Int. 41, 254–259 (1986).

    Article  CAS  PubMed  Google Scholar 

  25. Mostafid, A. H., Palou Redorta, J., Sylvester, R. & Witjes, J. A. Therapeutic options in high-risk non-muscle-invasive bladder cancer during the current worldwide shortage of bacille Calmette-Guérin. Eur. Urol. 67, 359–360 (2015).

    Article  PubMed  Google Scholar 

  26. van Puffelen, J. H. et al. Trained immunity as a molecular mechanism for BCG immunotherapy in bladder cancer. Nat. Rev. Urol. 17, 513–525 (2020).

    Article  PubMed  Google Scholar 

  27. Yang, J. et al. Insights into local tumor microenvironment immune factors associated with regression of cutaneous melanoma metastases by Mycobacterium bovis bacille Calmette-Guérin. Front. Oncol. 7, 61 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Svejda, J., Mechl, Z., Sopkova, B. & Foukal, T. Histologic changes in the human skin melanoma after intratumorous treatment with BCG. Neoplasma 26, 215–221 (1979).

    CAS  PubMed  Google Scholar 

  29. Agarwala, S. S., Neuberg, D., Park, Y. & Kirkwood, J. M. Mature results of a phase III randomized trial of bacillus Calmette-Guerin (BCG) versus observation and BCG plus dacarbazine versus BCG in the adjuvant therapy of American Joint Committee on Cancer Stage I-III melanoma (E1673): a trial of the Eastern Oncology Group. Cancer 100, 1692–1698 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Fisher, R. I. et al. Adjuvant immunotherapy or chemotherapy for malignant melanoma. Preliminary report of the National Cancer Institute randomized clinical trial. Surg. Clin. North Am. 61, 1267–1277 (1981).

    Article  CAS  PubMed  Google Scholar 

  31. Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Iwasaki, A. & Medzhitov, R. Control of adaptive immunity by the innate immune system. Nat. Immunol. 16, 343–353 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Matzinger, P. An innate sense of danger. Ann. NY Acad. Sci. 961, 341–342 (2002).

    Article  PubMed  Google Scholar 

  34. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Kandimalla, E. R. et al. Immunomodulatory oligonucleotides containing a cytosine-phosphate-2′-deoxy-7-deazaguanosine motif as potent toll-like receptor 9 agonists. Proc. Natl Acad. Sci. USA 102, 6925–6930 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wooldridge, J. E. & Weiner, G. J. CpG DNA and cancer immunotherapy: orchestrating the antitumor immune response. Curr. Opin. Oncol. 15, 440–445 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Krieg, A. M. Development of TLR9 agonists for cancer therapy. J. Clin. Invest. 117, 1184–1194 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Manegold, C. et al. Randomized phase II trial of a toll-like receptor 9 agonist oligodeoxynucleotide, PF-3512676, in combination with first-line taxane plus platinum chemotherapy for advanced-stage non-small-cell lung cancer. J. Clin. Oncol. 26, 3979–3986 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Hirsh, V. et al. Randomized phase III trial of paclitaxel/carboplatin with or without PF-3512676 (Toll-like receptor 9 agonist) as first-line treatment for advanced non-small-cell lung cancer. J. Clin. Oncol. 29, 2667–2674 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Belani, C. P. et al. Phase 2 trial of erlotinib with or without PF-3512676 (CPG 7909, a Toll-like receptor 9 agonist) in patients with advanced recurrent EGFR-positive non-small cell lung cancer. Cancer Biol. Ther. 14, 557–563 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brody, J. D. et al. In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study. J. Clin. Oncol. 28, 4324–4332 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kim, Y. H. et al. In situ vaccination against mycosis fungoides by intratumoral injection of a TLR9 agonist combined with radiation: a phase 1/2 study. Blood 119, 355–363 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Frank, M. J. et al. In situ vaccination with a TLR9 agonist and local low-dose radiation induces systemic responses in untreated indolent lymphoma. Cancer Discov. 8, 1258–1269 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ribas, A. et al. SD-101 in combination with pembrolizumab in advanced melanoma: results of a phase Ib, multicenter study. Cancer Discov. 8, 1250–1257 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li, J. et al. Lymphoma immunotherapy with CpG oligodeoxynucleotides requires TLR9 either in the host or in the tumor itself. J. Immunol. 179, 2493–2500 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Haymaker, C. et al. Final results from ILLUMINATE-204, a phase I/II trial of intratumoral tilsotolimod in combination with ipilimumab in PD-1 inhibitor refractory advanced melanoma [abstract 1083MO]. Ann. Oncol. 31 (Suppl. 4), S736 (2020).

    Article  Google Scholar 

  47. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Weighardt, H. et al. Identification of a TLR4- and TRIF-dependent activation program of dendritic cells. Eur. J. Immunol. 34, 558–564 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Apetoh, L. et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 13, 1050–1059 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Persing, D. H. et al. Taking toll: lipid A mimetics as adjuvants and immunomodulators. Trends Microbiol. 10, S32–S37 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Chicoine, M. R., Won, E. K. & Zahner, M. C. Intratumoral injection of lipopolysaccharide causes regression of subcutaneously implanted mouse glioblastoma multiforme. Neurosurgery 48, 607–614; discussion 614–5 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Bhatia, S. et al. Intratumoral G100, a TLR4 agonist, induces antitumor immune responses and tumor regression in patients with Merkel cell carcinoma. Clin. Cancer Res. 25, 1185–1195 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Flowers, C. et al. Intratumoral G100 induces systemic immunity and abscopal tumor regression in patients with follicular lymphoma: results of a phase 1/2 study examining G100 alone and in combination with pembrolizumab [abstract]. Blood 130 (Suppl. 1), 2771 (2017).

    Google Scholar 

  54. Flowers, C. R. et al. Long term follow-up of a phase 2 study examining intratumoral G100 alone and in combination with pembrolizumab in patients with follicular lymphoma [abstract]. Blood 132 (Suppl. 1), 2892 (2018).

    Article  Google Scholar 

  55. Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Nemes, M. M., Tytell, A. A., Lampson, G. P., Field, A. K. & Hilleman, M. R. Inducers of interferon and host resistance. VI. Antiviral efficacy of poly I:C in animal models. Proc. Soc. Exp. Biol. Med. 132, 776–783 (1969).

    Article  CAS  PubMed  Google Scholar 

  57. Schulz, O. et al. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 433, 887–892 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Degre, M. & Elgjo, K. Methylcholanthrene-induced skin carcinogenesis modified by treatment with polyinosinic:polycytidylic acid (poly I:C). Acta Pathol. Microbiol. Scand. A 79, 687–688 (1971).

    CAS  PubMed  Google Scholar 

  59. Fujimura, T., Nakagawa, S., Ohtani, T., Ito, Y. & Aiba, S. Inhibitory effect of the polyinosinic-polycytidylic acid/cationic liposome on the progression of murine B16F10 melanoma. Eur. J. Immunol. 36, 3371–3380 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Salazar, A. M., Erlich, R. B., Mark, A., Bhardwaj, N. & Herberman, R. B. Therapeutic in situ autovaccination against solid cancers with intratumoral poly-ICLC: case report, hypothesis, and clinical trial. Cancer Immunol. Res. 2, 720–724 (2014).

    Article  PubMed  Google Scholar 

  61. Rodriguez-Ruiz, M. E. et al. Combined immunotherapy encompassing intratumoral poly-ICLC, dendritic-cell vaccination and radiotherapy in advanced cancer patients. Ann. Oncol. 29, 1312–1319 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Caskey, M. et al. Synthetic double-stranded RNA induces innate immune responses similar to a live viral vaccine in humans. J. Exp. Med. 208, 2357–2366 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Okada, H. et al. Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with α-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J. Clin. Oncol. 29, 330–336 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Aznar, M. A. et al. Immunotherapeutic effects of intratumoral nanoplexed poly I:C. J. Immunother. Cancer 7, 116 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Tormo, D. et al. Targeted activation of innate immunity for therapeutic induction of autophagy and apoptosis in melanoma cells. Cancer Cell 16, 103–114 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kalbasi, A. et al. Uncoupling interferon signaling and antigen presentation to overcome immunotherapy resistance due to JAK1 loss in melanoma. Sci. Transl Med. 12, eabb0152 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Marquez-Rodas, I. et al. Intratumoral nanoplexed poly I:C BO-112 in combination with systemic anti-PD-1 for patients with anti-PD-1-refractory tumors. Sci. Transl Med. 12, eabb0391 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Barral, P. M. et al. Functions of the cytoplasmic RNA sensors RIG-I and MDA-5: key regulators of innate immunity. Pharmacol. Ther. 124, 219–234 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Diebold, S. S. et al. Viral infection switches non-plasmacytoid dendritic cells into high interferon producers. Nature 424, 324–328 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Ishizuka, J. J. et al. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature 565, 43–48 (2019).

    Article  CAS  PubMed  Google Scholar 

  71. Liu, H. et al. Tumor-derived IFN triggers chronic pathway agonism and sensitivity to ADAR loss. Nat. Med. 25, 95–102 (2019).

    Article  CAS  PubMed  Google Scholar 

  72. Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S. & Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529–1531 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Kariko, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Hemmi, H. et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol. 3, 196–200 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Sidky, Y. A. et al. Inhibition of murine tumor growth by an interferon-inducing imidazoquinolinamine. Cancer Res. 52, 3528–3533 (1992).

    CAS  PubMed  Google Scholar 

  76. Syed, T. A., Ahmadpour, O. A., Ahmad, S. A. & Ahmad, S. H. Management of female genital warts with an analog of imiquimod 2% in cream: a randomized, double-blind, placebo-controlled study. J. Dermatol. 25, 429–433 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Stary, G. et al. Tumoricidal activity of TLR7/8-activated inflammatory dendritic cells. J. Exp. Med. 204, 1441–1451 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. van Seters, M. et al. Treatment of vulvar intraepithelial neoplasia with topical imiquimod. N. Engl. J. Med. 358, 1465–1473 (2008).

    Article  PubMed  Google Scholar 

  79. Adams, S. et al. Topical TLR7 agonist imiquimod can induce immune-mediated rejection of skin metastases in patients with breast cancer. Clin. Cancer Res. 18, 6748–6757 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rook, A. H. et al. Topical resiquimod can induce disease regression and enhance T-cell effector functions in cutaneous T-cell lymphoma. Blood 126, 1452–1461 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chen, Q., Sun, L. & Chen, Z. J. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat. Immunol. 17, 1142–1149 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Yang, Y. G., Lindahl, T. & Barnes, D. E. Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. Cell 131, 873–886 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Fuertes, M. B. et al. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8α+ dendritic cells. J. Exp. Med. 208, 2005–2016 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Woo, S. R. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41, 830–842 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Vanpouille-Box, C. et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat. Commun. 8, 15618 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Corrales, L. et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 11, 1018–1030 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lara, P. N. Jr. et al. Randomized phase III placebo-controlled trial of carboplatin and paclitaxel with or without the vascular disrupting agent vadimezan (ASA404) in advanced non-small-cell lung cancer. J. Clin. Oncol. 29, 2965–2971 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Harrington, K. J. et al. Preliminary results of the first-in-human (FIH) study of MK-1454, an agonist of stimulator of interferon genes (STING), as monotherapy or in combination with pembrolizumab (pembro) in patients with advanced solid tumors or lymphomas [abstract LBA15]. Ann. Oncol. 29 (Suppl. 8), viii712 (2018).

    Article  Google Scholar 

  89. Meric-Bernstam, F. et al. Phase Ib study of MIW815 (ADU-S100) in combination with spartalizumab (PDR001) in patients (pts) with advanced/metastatic solid tumors or lymphomas [abstract]. J. Clin. Oncol. 37 (Suppl. 15), 2507 (2019).

    Article  Google Scholar 

  90. Flood, B. A., Higgs, E. F., Li, S., Luke, J. J. & Gajewski, T. F. STING pathway agonism as a cancer therapeutic. Immunol. Rev. 290, 24–38 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Giguere, C. M. et al. Treatment of lymphangiomas with OK-432 (Picibanil) sclerotherapy: a prospective multi-institutional trial. Arch. Otolaryngol. Head. Neck Surg. 128, 1137–1144 (2002).

    Article  PubMed  Google Scholar 

  92. Aluffi Valletti, P. et al. A single-center experience in the management of head and neck lymphangiomas. Oral. Maxillofac. Surg. 24, 109–115 (2020).

    Article  PubMed  Google Scholar 

  93. Kasahara, K. et al. Randomized phase II trial of OK-432 in patients with malignant pleural effusion due to non-small cell lung cancer. Anticancer Res. 26, 1495–1499 (2006).

    CAS  PubMed  Google Scholar 

  94. Yamaguchi, Y. et al. Locoregional immunotherapy of malignant effusion from colorectal cancer using the streptococcal preparation OK-432 plus interleukin-2: induction of autologous tumor-reactive CD4+ Th1 killer lymphocytes. Br. J. Cancer 89, 1876–1884 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hirayama, M. et al. Overcoming regulatory T-cell suppression by a lyophilized preparation of Streptococcus pyogenes. Eur. J. Immunol. 43, 989–1000 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Andtbacka, R. H. I. et al. Final analyses of OPTiM: a randomized phase III trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in unresectable stage III-IV melanoma. J. Immunother. Cancer 7, 145 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Andtbacka, R. H. et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J. Clin. Oncol. 33, 2780–2788 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Hamid, O. et al. Five-year survival outcomes for patients with advanced melanoma treated with pembrolizumab in KEYNOTE-001. Ann. Oncol. 30, 582–588 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Andtbacka, R. H. et al. Patterns of clinical response with talimogene laherparepvec (T-VEC) in patients with melanoma treated in the OPTiM phase III clinical trial. Ann. Surg. Oncol. 23, 4169–4177 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Dillman, R. O. An update on GM-CSF and its potential role in melanoma management. Melanoma Manag. 7, MMT49 (2020).

    Article  Google Scholar 

  101. Puzanov, I. et al. Talimogene laherparepvec in combination with ipilimumab in previously untreated, unresectable stage IIIB-IV melanoma. J. Clin. Oncol. 34, 2619–2626 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ribas, A. et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell 170, 1109–1119.e10 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Middleton, M. et al. An open-label, multicenter, phase 1/2 clinical trial of Rp1, an enhanced potency oncolytic Hsv, combined with nivolumab: updated results from the skin cancer cohorts [abstract 422]. J. Immunother. Cancer 8 (Suppl. 3), A257 (2020).

    Google Scholar 

  104. Heo, J. et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat. Med. 19, 329–336 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kim, M. K. et al. Oncolytic and immunotherapeutic vaccinia induces antibody-mediated complement-dependent cancer cell lysis in humans. Sci. Transl Med. 5, 185ra63 (2013).

    Article  PubMed  CAS  Google Scholar 

  106. Transgene. Transgene provides an update after the interim futility analysis of the PHOCUS study of Pexa-Vec in liver cancer. Transgene https://www.transgene.fr/en/news/#pressreleases (2019).

  107. Zamarin, D. et al. Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci. Transl Med. 6, 226ra32 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Curti, B. D. et al. Activity of a novel immunotherapy combination of intralesional Coxsackievirus A21 and systemic ipilimumab in advanced melanoma patients previously treated with anti-PD1 blockade therapy [abstract]. J. Clin. Oncol. 35 (Suppl. 15), 3014 (2017).

    Article  Google Scholar 

  109. Lang, F. F. et al. Phase I study of DNX-2401 (Delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent malignant glioma. J. Clin. Oncol. 36, 1419–1427 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rosa, K. Japanese approval sought for oncolytic virus teserpaturev for malignanat glioma. OncLive https://www.onclive.com/view/japanese-approval-sought-for-oncolytic-virus-teserpaturev-for-malignant-glioma (2021).

  111. Nakao, S. et al. Intratumoral expression of IL-7 and IL-12 using an oncolytic virus increases systemic sensitivity to immune checkpoint blockade. Sci. Transl Med. 12, eaax7992 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. Kepp, O., Marabelle, A., Zitvogel, L. & Kroemer, G. Oncolysis without viruses – inducing systemic anticancer immune responses with local therapies. Nat. Rev. Clin. Oncol. 17, 49–64 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. Swift, L., Zhang, C., Trippett, T. & Narendran, A. Potent in vitro and xenograft antitumor activity of a novel agent, PV-10, against relapsed and refractory neuroblastoma. Onco Targets Ther. 12, 1293–1307 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Toomey, P. et al. Intralesional injection of rose bengal induces a systemic tumor-specific immune response in murine models of melanoma and breast cancer. PLoS ONE 8, e68561 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Read, T. A. et al. Intralesional PV-10 for the treatment of in-transit melanoma metastases – Results of a prospective, non-randomized, single center study. J. Surg. Oncol. 117, 579–587 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Foote, M. et al. Results of a phase II, open-label, non-comparative study of intralesional PV-10 followed by radiotherapy for the treatment of in-transit or metastatic melanoma. J. Surg. Oncol. 115, 891–897 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Liu, H. et al. T cell mediated immunity after combination therapy with intralesional PV-10 and blockade of the PD-1/PD-L1 pathway in a murine melanoma model. PLoS ONE 13, e0196033 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. De Ridder, T. R. et al. Randomized controlled clinical study evaluating the efficacy and safety of intratumoral treatment of canine mast cell tumors with tigilanol tiglate (EBC-46). J. Vet. Intern. Med. 35, 415–429 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Panizza, B. J. et al. Phase I dose-escalation study to determine the safety, tolerability, preliminary efficacy and pharmacokinetics of an intratumoral injection of tigilanol tiglate (EBC-46). EBioMedicine 50, 433–441 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Boyle, G. M. et al. Intra-lesional injection of the novel PKC activator EBC-46 rapidly ablates tumors in mouse models. PLoS ONE 9, e108887 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Zanin-Zhorov, A., Dustin, M. L. & Blazar, B. R. PKC-theta function at the immunological synapse: prospects for therapeutic targeting. Trends Immunol. 32, 358–363 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Anel, A. et al. Protein kinase C-θ (PKC-θ) in natural killer cell function and anti-tumor immunity. Front. Immunol. 3, 187 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zanin-Zhorov, A. et al. Protein kinase C-θ mediates negative feedback on regulatory T cell function. Science 328, 372–376 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kong, K. F. et al. Protein kinase C-η controls CTLA-4-mediated regulatory T cell function. Nat. Immunol. 15, 465–472 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Tornesello, A. L., Borrelli, A., Buonaguro, L., Buonaguro, F. M. & Tornesello, M. L. Antimicrobial peptides as anticancer agents: functional properties and biological activities. Molecules 25, 2850 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  126. Zhou, H. et al. The oncolytic peptide LTX-315 triggers immunogenic cell death. Cell Death Dis. 7, e2134 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhou, H. et al. The oncolytic peptide LTX-315 kills cancer cells through Bax/Bak-regulated mitochondrial membrane permeabilization. Oncotarget 6, 26599–26614 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Baurain, J. F. et al. A phase I study of the oncolytic peptide LTX-315 generates de novo T-cell responses and clinical benefit in patients with advanced sarcoma [abstract]. Cancer Res. 79 (Suppl. 13), CT010 (2019).

    Article  Google Scholar 

  129. Dubrot, J. et al. Intratumoral injection of interferon-α and systemic delivery of agonist anti-CD137 monoclonal antibodies synergize for immunotherapy. Int. J. Cancer 128, 105–118 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Vom Berg, J. et al. Intratumoral IL-12 combined with CTLA-4 blockade elicits T cell-mediated glioma rejection. J. Exp. Med. 210, 2803–2811 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Negrier, S. et al. Recombinant human interleukin-2, recombinant human interferon alfa-2a, or both in metastatic renal-cell carcinoma. N. Engl. J. Med. 338, 1272–1278 (1998).

    Article  CAS  PubMed  Google Scholar 

  132. Berraondo, P. et al. Cytokines in clinical cancer immunotherapy. Br. J. Cancer 120, 6–15 (2019).

    Article  CAS  PubMed  Google Scholar 

  133. Wrangle, J. M. et al. ALT-803, an IL-15 superagonist, in combination with nivolumab in patients with metastatic non-small cell lung cancer: a non-randomised, open-label, phase 1b trial. Lancet Oncol. 19, 694–704 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Diab, A. et al. Bempegaldesleukin (NKTR-214) plus nivolumab in patients with advanced solid tumors: phase I dose-escalation study of safety, efficacy, and immune activation (PIVOT-02). Cancer Discov. 10, 1158–1173 (2020).

    Article  CAS  PubMed  Google Scholar 

  135. Lotze, M. T. et al. High-dose recombinant interleukin 2 in the treatment of patients with disseminated cancer. Responses, treatment-related morbidity, and histologic findings. JAMA 256, 3117–3124 (1986).

    Article  CAS  PubMed  Google Scholar 

  136. Jackaman, C. et al. IL-2 intratumoral immunotherapy enhances CD8+ T cells that mediate destruction of tumor cells and tumor-associated vasculature: a novel mechanism for IL-2. J. Immunol. 171, 5051–5063 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Gutwald, J. G., Groth, W. & Mahrle, G. Peritumoral injections of interleukin 2 induce tumour regression in metastatic malignant melanoma. Br. J. Dermatol. 130, 541–542 (1994).

    Article  CAS  PubMed  Google Scholar 

  138. Weide, B. et al. Survival after intratumoral interleukin-2 treatment of 72 melanoma patients and response upon the first chemotherapy during follow-up. Cancer Immunol. Immunother. 60, 487–493 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Charych, D. H. et al. NKTR-214, an engineered cytokine with biased IL2 receptor binding, increased tumor exposure, and marked efficacy in mouse tumor models. Clin. Cancer Res. 22, 680–690 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Bentebibel, S. E. et al. A first-in-human study and biomarker analysis of NKTR-214, a novel IL2Rβγ-biased cytokine, in patients with advanced or metastatic solid tumors. Cancer Discov. 9, 711–721 (2019).

    Article  CAS  PubMed  Google Scholar 

  141. Mauldin, I. S. et al. Intratumoral interferon-gamma increases chemokine production but fails to increase T cell infiltration of human melanoma metastases. Cancer Immunol. Immunother. 65, 1189–1199 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Grob, J. J. et al. Large keratoacanthomas treated with intralesional interferon alfa-2a. J. Am. Acad. Dermatol. 29, 237–241 (1993).

    Article  CAS  PubMed  Google Scholar 

  143. Thestrup-Pedersen, K., Jacobsen, I. E. & Frentz, G. Intralesional interferon-alpha 2b treatment of basal cell carcinoma. Acta Derm. Venereol. 70, 512–514 (1990).

    CAS  PubMed  Google Scholar 

  144. McDonald, R. R. & Georgouras, K. Treatment of basal cell carcinoma with intralesional interferon alpha: a case report and literature review. Australas. J. Dermatol. 33, 81–86 (1992).

    Article  CAS  PubMed  Google Scholar 

  145. Hanlon, A., Kim, J. & Leffell, D. J. Intralesional interferon alfa-2b for refractory, recurrent squamous cell carcinoma of the face. J. Am. Acad. Dermatol. 69, 1070–1072 (2013).

    Article  PubMed  Google Scholar 

  146. Buechner, S. A. et al. Regression of basal cell carcinoma by intralesional interferon-alpha treatment is mediated by CD95 (Apo-1/Fas)-CD95 ligand-induced suicide. J. Clin. Invest. 100, 2691–2696 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Spaapen, R. M. et al. Therapeutic activity of high-dose intratumoral IFN-beta requires direct effect on the tumor vasculature. J. Immunol. 193, 4254–4260 (2014).

    Article  CAS  PubMed  Google Scholar 

  148. Santana Carrero, R. M. et al. IL-15 is a component of the inflammatory milieu in the tumor microenvironment promoting antitumor responses. Proc. Natl Acad. Sci. USA 116, 599–608 (2019).

    Article  CAS  PubMed  Google Scholar 

  149. Ugen, K. E. et al. Regression of subcutaneous B16 melanoma tumors after intratumoral delivery of an IL-15-expressing plasmid followed by in vivo electroporation. Cancer Gene Ther. 13, 969–974 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hu, Q. et al. Discovery of a novel IL-15 based protein with improved developability and efficacy for cancer immunotherapy. Sci. Rep. 8, 7675 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Bajetta, E. et al. Pilot study of subcutaneous recombinant human interleukin 12 in metastatic melanoma. Clin. Cancer Res. 4, 75–85 (1998).

    CAS  PubMed  Google Scholar 

  152. Motzer, R. J. et al. Phase I trial of subcutaneous recombinant human interleukin-12 in patients with advanced renal cell carcinoma. Clin. Cancer Res. 4, 1183–1191 (1998).

    CAS  PubMed  Google Scholar 

  153. Gollob, J. A. et al. Phase I trial of twice-weekly intravenous interleukin 12 in patients with metastatic renal cell cancer or malignant melanoma: ability to maintain IFN-gamma induction is associated with clinical response. Clin. Cancer Res. 6, 1678–1692 (2000).

    CAS  PubMed  Google Scholar 

  154. Atkins, M. B. et al. Phase I evaluation of intravenous recombinant human interleukin 12 in patients with advanced malignancies. Clin. Cancer Res. 3, 409–417 (1997).

    CAS  PubMed  Google Scholar 

  155. Algazi, A. et al. Intratumoral delivery of tavokinogene telseplasmid yields systemic immune responses in metastatic melanoma patients. Ann. Oncol. 31, 532–540 (2020).

    Article  CAS  PubMed  Google Scholar 

  156. Algazi, A. P. et al. Phase II trial of IL-12 plasmid transfection and PD-1 blockade in immunologically quiescent melanoma. Clin. Cancer Res. 26, 2827–2837 (2020).

    Article  CAS  PubMed  Google Scholar 

  157. Greaney, S. K. et al. Intratumoral plasmid IL12 electroporation therapy in patients with advanced melanoma induces systemic and intratumoral T-cell responses. Cancer Immunol. Res. 8, 246–254 (2020).

    Article  CAS  PubMed  Google Scholar 

  158. Bhatia, S. et al. Intratumoral delivery of plasmid IL12 via electroporation leads to regression of injected and noninjected tumors in Merkel cell carcinoma. Clin. Cancer Res. 26, 598–607 (2020).

    Article  CAS  PubMed  Google Scholar 

  159. Hewitt, S. L. et al. Intratumoral interleukin-12 mRNA therapy promotes TH1 transformation of the tumor microenvironment. Clin. Cancer Res. 26, 6284–6298 (2020).

    Article  CAS  PubMed  Google Scholar 

  160. Hamid, O. et al. Preliminary safety, antitumor activity and pharmacodynamics results of HIT-IT MEDI1191 (mRNA IL-12) in patients with advanced solid tumours and superficial lesions. Ann. Oncol. 32, S9–S13 (2021).

    Article  Google Scholar 

  161. Li, Y. Z. et al. Multifunctional oncolytic nanoparticles deliver self-replicating IL-12 RNA to eliminate established tumors and prime systemic immunity. Nat. Cancer 1, 882– 893 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Kanca, H. et al. Intratumoral recombinant human interferon alpha-2a and vincristine combination therapy in canine transmissible venereal tumour. Vet. Med. Sci. 4, 364–372 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Vaquero, J. & Martinez, R. Intratumoral immunotherapy with interferon-alpha and interleukin-2 in glioblastoma. Neuroreport 3, 981–983 (1992).

    Article  CAS  PubMed  Google Scholar 

  164. Momin, N. et al. Anchoring of intratumorally administered cytokines to collagen safely potentiates systemic cancer immunotherapy. Sci. Transl Med. 11, eaaw2614 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Wagenaar, T. R. et al. Combinatorial treatment with intratumoral cytokine mRNAs results in high frequency of tumor rejection and development of anti-tumor immunity across a range of preclinical cancer models [abstract]. Cancer Res. 78 (Suppl. 13), LB130 (2018).

    Article  Google Scholar 

  166. Hewitt, S. L. et al. Durable anticancer immunity from intratumoral administration of IL-23, IL-36γ, and OX40L mRNAs. Sci. Transl Med. 11, eaat9143 (2019).

    Article  CAS  PubMed  Google Scholar 

  167. Jimeno, A. et al. A phase 1/2, open-label, multicenter, dose escalation and efficacy study of mRNA-2416, a lipid nanoparticle encapsulated mRNA encoding human OX40L, for intratumoral injection alone or in combination with durvalumab for patients with advanced malignancies [abstract]. Cancer Res. 80 (Suppl. 16), CT032 (2020).

    Article  Google Scholar 

  168. Brahmer, J. R. et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 28, 3167–3175 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Herbst, R. S. et al. A study of MPDL3280A, an engineered PD-L1 antibody in patients with locally advanced or metastatic tumors [abstract]. J. Clin. Oncol. 31 (Suppl. 15), 3000 (2013).

    Article  Google Scholar 

  170. Francis, D. M. et al. Blockade of immune checkpoints in lymph nodes through locoregional delivery augments cancer immunotherapy. Sci. Transl Med. 12, eaay3575 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Ascierto, P. A. et al. Ipilimumab 10 mg/kg versus ipilimumab 3 mg/kg in patients with unresectable or metastatic melanoma: a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 18, 611–622 (2017).

    Article  CAS  PubMed  Google Scholar 

  172. Sharma, P. et al. Nivolumab alone and with ipilimumab in previously treated metastatic urothelial carcinoma: Checkmate 032 Nivolumab 1 mg/kg Plus Ipilimumab 3 mg/kg expansion cohort results. J. Clin. Oncol. 37, 1608–1616 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Marabelle, A., Kohrt, H. & Levy, R. Intratumoral anti-CTLA-4 therapy: enhancing efficacy while avoiding toxicity. Clin. Cancer Res. 19, 5261–5263 (2013).

    Article  CAS  PubMed  Google Scholar 

  174. van Hooren, L. et al. Local checkpoint inhibition of CTLA-4 as a monotherapy or in combination with anti-PD1 prevents the growth of murine bladder cancer. Eur. J. Immunol. 47, 385–393 (2017).

    Article  PubMed  CAS  Google Scholar 

  175. Fransen, M. F., van der Sluis, T. C., Ossendorp, F., Arens, R. & Melief, C. J. Controlled local delivery of CTLA-4 blocking antibody induces CD8+ T-cell-dependent tumor eradication and decreases risk of toxic side effects. Clin. Cancer Res. 19, 5381–5389 (2013).

    Article  CAS  PubMed  Google Scholar 

  176. Sandin, L. C. et al. Local CTLA4 blockade effectively restrains experimental pancreatic adenocarcinoma growth in vivo. Oncoimmunology 3, e27614 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Simmons, A. D. et al. Local secretion of anti-CTLA-4 enhances the therapeutic efficacy of a cancer immunotherapy with reduced evidence of systemic autoimmunity. Cancer Immunol. Immunother. 57, 1263–1270 (2008).

    Article  CAS  PubMed  Google Scholar 

  178. Marabelle, A. et al. Depleting tumor-specific Tregs at a single site eradicates disseminated tumors. J. Clin. Invest. 123, 2447–2463 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Ray, A. et al. A phase I study of intratumoral ipilimumab and interleukin-2 in patients with advanced melanoma. Oncotarget 7, 64390–64399 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Schwarze, J. K. et al. A phase I clinical trial on intratumoral and intracavitary administration of ipilimumab and nivolumab in patients with recurrent glioblastoma. J. Clin. Oncol. 38, 2534–2534 (2020).

    Article  Google Scholar 

  181. Hamid, O. et al. First in human (FIH) study of an OX40 agonist monoclonal antibody (mAb) PF-04518600 (PF-8600) in adult patients (pts) with select advanced solid tumors: PRELIMINARY safety and pharmacokinetic (PK)/pharmacodynamic results [abstract]. J. Clin. Oncol. 34 (Suppl. 15), 3079 (2016).

    Article  Google Scholar 

  182. Hansen, A. R. et al. A first-in-human phase I dose escalation study of the OX40 agonist MOXR0916 in patients with refractory solid tumors. Cancer Research 76 (Suppl. 14), CT097 (2016).

    Article  Google Scholar 

  183. Bulliard, Y. et al. OX40 engagement depletes intratumoral Tregs via activating FcγRs, leading to antitumor efficacy. Immunol. Cell Biol. 92, 475–480 (2014).

    Article  CAS  PubMed  Google Scholar 

  184. Bulliard, Y. et al. Activating Fc gamma receptors contribute to the antitumor activities of immunoregulatory receptor-targeting antibodies. J. Exp. Med. 210, 1685–1693 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Suntharalingam, G. et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Engl. J. Med. 355, 1018–1028 (2006).

    Article  CAS  PubMed  Google Scholar 

  186. Sagiv-Barfi, I. et al. Eradication of spontaneous malignancy by local immunotherapy. Sci. Transl Med. 10, eaan4488 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Vonderheide, R. H. et al. Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody. J. Clin. Oncol. 25, 876–883 (2007).

    Article  CAS  PubMed  Google Scholar 

  188. Kwong, B., Gai, S. A., Elkhader, J., Wittrup, K. D. & Irvine, D. J. Localized immunotherapy via liposome-anchored anti-CD137+IL-2 prevents lethal toxicity and elicits local and systemic antitumor immunity. Cancer Res. 73, 1547–1558 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Dai, M., Yip, Y. Y., Hellstrom, I. & Hellstrom, K. E. Curing mice with large tumors by locally delivering combinations of immunomodulatory antibodies. Clin. Cancer Res. 21, 1127–1138 (2015).

    Article  CAS  PubMed  Google Scholar 

  190. Sandin, L. C. et al. Locally delivered CD40 agonist antibody accumulates in secondary lymphoid organs and eradicates experimental disseminated bladder cancer. Cancer Immunol. Res. 2, 80–90 (2014).

    Article  CAS  PubMed  Google Scholar 

  191. Jackaman, C. & Nelson, D. J. Intratumoral interleukin-2/agonist CD40 antibody drives CD4+-independent resolution of treated-tumors and CD4+-dependent systemic and memory responses. Cancer Immunol. Immunother. 61, 549–560 (2012).

    Article  CAS  PubMed  Google Scholar 

  192. Van De Voort, T. J., Felder, M. A., Yang, R. K., Sondel, P. M. & Rakhmilevich, A. L. Intratumoral delivery of low doses of anti-CD40 mAb combined with monophosphoryl lipid a induces local and systemic antitumor effects in immunocompetent and T cell-deficient mice. J. Immunother. 36, 29–40 (2013).

    Article  CAS  Google Scholar 

  193. van Mierlo, G. J. et al. CD40 stimulation leads to effective therapy of CD40 tumors through induction of strong systemic cytotoxic T lymphocyte immunity. Proc. Natl Acad. Sci. USA 99, 5561–5566 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Tselikas, L. et al. Pickering emulsions with ethiodized oil and nanoparticles for slow release of intratumoral anti-CTLA4 immune checkpoint antibodies. J. Immunother. Cancer 8, e000579 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Ishihara, J. et al. Matrix-binding checkpoint immunotherapies enhance antitumor efficacy and reduce adverse events. Sci. Transl Med. 9, eaan0401 (2017).

    Article  PubMed  CAS  Google Scholar 

  196. Bol, K. F., Schreibelt, G., Gerritsen, W. R., de Vries, I. J. & Figdor, C. G. Dendritic cell-based immunotherapy: state of the art and beyond. Clin. Cancer Res. 22, 1897–1906 (2016).

    Article  CAS  PubMed  Google Scholar 

  197. Melero, I., Vile, R. G. & Colombo, M. P. Feeding dendritic cells with tumor antigens: self-service buffet or a la carte? Gene Ther. 7, 1167–1170 (2000).

    Article  CAS  PubMed  Google Scholar 

  198. Mazzolini, G. et al. Intratumoral injection of dendritic cells engineered to secrete interleukin-12 by recombinant adenovirus in patients with metastatic gastrointestinal carcinomas. J. Clin. Oncol. 23, 999–1010 (2005).

    Article  CAS  PubMed  Google Scholar 

  199. Huarte, E. et al. Intratumoural administration of dendritic cells: hostile environment and help by gene therapy. Expert Opin. Biol. Ther. 5, 7–22 (2005).

    Article  CAS  PubMed  Google Scholar 

  200. Karlsson-Parra, A. et al. Ilixadencel – an allogeneic cell-based anticancer immune primer for intratumoral administration. Pharm. Res. 35, 156 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Rizell, M. et al. Phase 1 trial with the cell-based immune primer ilixadencel, alone, and combined with sorafenib, in advanced hepatocellular carcinoma. Front. Oncol. 9, 19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Frobom, R. et al. Phase I trial evaluating safety and efficacy of intratumorally administered inflammatory allogeneic dendritic cells (ilixadencel) in advanced gastrointestinal stromal tumors. Cancer Immunol. Immunother. 69, 2393–2401 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Etxeberria, I. et al. Intratumor adoptive transfer of IL-12 mRNA transiently engineered antitumor CD8+ T cells. Cancer Cell 36, 613–629.e7 (2019).

    Article  CAS  PubMed  Google Scholar 

  204. Minute, L. et al. Cellular cytotoxicity is a form of immunogenic cell death. J. Immunother. Cancer 8, e000325 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Dillman, R. O. et al. Intralesional lymphokine-activated killer cells as adjuvant therapy for primary glioblastoma. J. Immunother. 32, 914–919 (2009).

    Article  PubMed  Google Scholar 

  206. June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. CAR T cell immunotherapy for human cancer. Science 359, 1361–1365 (2018).

    Article  CAS  PubMed  Google Scholar 

  207. Brown, C. E. et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N. Engl. J. Med. 375, 2561–2569 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Brown, C. E. et al. Bioactivity and safety of IL13Rα2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin. Cancer Res. 21, 4062–4072 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Etxeberria, I. et al. Engineering bionic T cells: signal 1, signal 2, signal 3, reprogramming and the removal of inhibitory mechanisms. Cell Mol. Immunol. 17, 576–586 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Adusumilli, P. S. et al. Regional delivery of mesothelin-targeted CAR T cells for pleural cancers: safety and preliminary efficacy in combination with anti-PD-1 agent [abstract]. J. Clin. Oncol. 37 (Suppl. 15), 2511 (2019).

    Article  Google Scholar 

  211. Papa, S. et al. A phase I trial of T4 CAR T-cell immunotherapy in head and neck squamous cancer (HNSCC) [abstract]. J. Clin. Oncol. 36 (Suppl. 15), 3046 (2018).

    Article  Google Scholar 

  212. Katz, S. C. et al. HITM-SURE: Hepatic immunotherapy for metastases phase Ib anti-CEA CAR-T study utilizing pressure enabled drug delivery. J. Immunother. Cancer 8, e001097 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Goebeler, M. E. & Bargou, R. C. T cell-engaging therapies – BiTEs and beyond. Nat. Rev. Clin. Oncol. 17, 418–434 (2020).

    Article  PubMed  Google Scholar 

  214. Topp, M. S. et al. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J. Clin. Oncol. 29, 2493–2498 (2011).

    Article  CAS  PubMed  Google Scholar 

  215. Linke, R., Klein, A. & Seimetz, D. Catumaxomab: clinical development and future directions. mAbs 2, 129–136 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Heiss, M. M. et al. The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: results of a prospective randomized phase II/III trial. Int. J. Cancer 127, 2209–2221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Burges, A. et al. Effective relief of malignant ascites in patients with advanced ovarian cancer by a trifunctional anti-EpCAM × anti-CD3 antibody: a phase I/II study. Clin. Cancer Res. 13, 3899–3905 (2007).

    Article  CAS  PubMed  Google Scholar 

  218. Bacac, M., Klein, C. & Umana, P. CEA TCB: a novel head-to-tail 2:1 T cell bispecific antibody for treatment of CEA-positive solid tumors. Oncoimmunology 5, e1203498 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Damato, B. E., Dukes, J., Goodall, H. & Carvajal, R. D. Tebentafusp: T cell redirection for the treatment of metastatic uveal melanoma. Cancers 11, 971 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  220. Wong, B., Arron, J. & Choi, Y. T cell receptor signals enhance susceptibility to Fas-mediated apoptosis. J. Exp. Med. 186, 1939–1944 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Claus, C. et al. Tumor-targeted 4-1BB agonists for combination with T cell bispecific antibodies as off-the-shelf therapy. Sci. Transl Med. 11, eaav5989 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Lakins, M. A. et al. FS222, a CD137/PD-L1 tetravalent bispecific antibody, exhibits low toxicity and antitumor activity in colorectal cancer models. Clin. Cancer Res. 26, 4154–4167 (2020).

    Article  CAS  PubMed  Google Scholar 

  223. Voeller, J. et al. Combined innate and adaptive immunotherapy overcomes resistance of immunologically cold syngeneic murine neuroblastoma to checkpoint inhibition. J. Immunother. Cancer 7, 344 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Navid, F. et al. Phase I trial of a novel anti-GD2 monoclonal antibody, Hu14.18K322A, designed to decrease toxicity in children with refractory or recurrent neuroblastoma. J. Clin. Oncol. 32, 1445–1452 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Federico, S. M. et al. A pilot trial of humanized anti-GD2 monoclonal antibody (hu14.18K322A) with chemotherapy and natural killer cells in children with recurrent/refractory neuroblastoma. Clin. Cancer Res. 23, 6441–6449 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Shusterman, S. et al. Antitumor activity of hu14.18-IL2 in patients with relapsed/refractory neuroblastoma: a Children’s Oncology Group (COG) phase II study. J. Clin. Oncol. 28, 4969–4975 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Yu, A. L. et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N. Engl. J. Med. 363, 1324–1334 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Johannsen, M. et al. The tumour-targeting human L19-IL2 immunocytokine: preclinical safety studies, phase I clinical trial in patients with solid tumours and expansion into patients with advanced renal cell carcinoma. Eur. J. Cancer 46, 2926–2935 (2010).

    Article  CAS  PubMed  Google Scholar 

  229. Danielli, R. et al. Intralesional administration of L19-IL2/L19-TNF in stage III or stage IVM1a melanoma patients: results of a phase II study. Cancer Immunol. Immunother. 64, 999–1009 (2015).

    Article  CAS  PubMed  Google Scholar 

  230. Heaton, K. M., Ju, G. & Grimm, E. A. Human interleukin 2 analogues that preferentially bind the intermediate-affinity interleukin 2 receptor lead to reduced secondary cytokine secretion: implications for the use of these interleukin 2 analogues in cancer immunotherapy. Cancer Res. 53, 2597–2602 (1993).

    CAS  PubMed  Google Scholar 

  231. Klein, C. et al. Cergutuzumab amunaleukin (CEA-IL2v), a CEA-targeted IL-2 variant-based immunocytokine for combination cancer immunotherapy: overcoming limitations of aldesleukin and conventional IL-2-based immunocytokines. Oncoimmunology 6, e1277306 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  232. Soerensen, M. M. et al. Safety, PK/PD, and anti-tumor activity of RO6874281, an engineered variant of interleukin-2 (IL-2v) targeted to tumor-associated fibroblasts via binding to fibroblast activation protein (FAP). J. Clin. Oncol. 36, e15155 (2018).

    Article  Google Scholar 

  233. Fedele, V. & Melisi, D. Permissive state of EMT: the role of immune cell compartment. Front. Oncol. 10, 587 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Strauss, J. et al. Phase I evaluation of M7824, a bifunctional fusion protein targeting TGF-β and PD-L1, in patients with human papillomavirus (HPV)-associated malignancies [abstract]. Cancer Res. 79 (Suppl. 13), CT075 (2019).

    Article  Google Scholar 

  235. Fallon, J. et al. The immunocytokine NHS-IL12 as a potential cancer therapeutic. Oncotarget 5, 1869–1884 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Teijeira, A. et al. CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity. Immunity 52, 856–871.e8 (2020).

    Article  CAS  PubMed  Google Scholar 

  237. Strauss, J. et al. First-in-human phase I trial of a tumor-targeted cytokine (NHS-IL12) in subjects with metastatic solid tumors. Clin. Cancer Res. 25, 99–109 (2019).

    Article  CAS  PubMed  Google Scholar 

  238. Autio, K. A., Boni, V., Humphrey, R. W. & Naing, A. Probody therapeutics: an emerging class of therapies designed to enhance on-target effects with reduced off-tumor toxicity for use in immuno-oncology. Clin. Cancer Res. 26, 984–989 (2020).

    Article  CAS  PubMed  Google Scholar 

  239. Kamata-Sakurai, M. et al. Antibody to CD137 activated by extracellular adenosine triphosphate is tumor selective and broadly effective in vivo without systemic immune activation. Cancer Discov. 11, 158–175 (2021).

    Article  CAS  PubMed  Google Scholar 

  240. Aznar, M. A. et al. Intratumoral delivery of immunotherapy–act locally, think globally. J. Immunol. 198, 31–39 (2017).

    Article  CAS  PubMed  Google Scholar 

  241. Hong, W. X. et al. Intratumoral immunotherapy for early-stage solid tumors. Clin. Cancer Res. 26, 3091–3099 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Melero, I. P. et al. Repurposing infectious disease vaccines for intratumoral immunotherapy. J. Immunother. Cancer 8, e000443 (2020).

    Article  PubMed  Google Scholar 

  243. Newman, J. H. et al. Intratumoral injection of the seasonal flu shot converts immunologically cold tumors to hot and serves as an immunotherapy for cancer. Proc. Natl Acad. Sci. USA 117, 1119–1128 (2020).

    Article  CAS  PubMed  Google Scholar 

  244. Shekarian, T. et al. Repurposing rotavirus vaccines for intratumoral immunotherapy can overcome resistance to immune checkpoint blockade. Sci. Transl Med. 11, eaat5025 (2019).

    Article  CAS  PubMed  Google Scholar 

  245. Aznar, M. A. et al. Repurposing the yellow fever vaccine for intratumoral immunotherapy. EMBO Mol. Med. 12, e10375 (2020).

    Article  CAS  PubMed  Google Scholar 

  246. Galluzzi, L., Buque, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97–111 (2017).

    Article  CAS  PubMed  Google Scholar 

  247. Kroemer, G., Galluzzi, L., Kepp, O. & Zitvogel, L. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 31, 51–72 (2013).

    Article  CAS  PubMed  Google Scholar 

  248. Pol, J. et al. Trial Watch: immunogenic cell death inducers for anticancer chemotherapy. Oncoimmunology 4, e1008866 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  249. Burtness, B. et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet 394, 1915–1928 (2019).

    Article  CAS  PubMed  Google Scholar 

  250. Gandhi, L. et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N. Engl. J. Med. 378, 2078–2092 (2018).

    Article  CAS  PubMed  Google Scholar 

  251. Halmos, B. et al. A matching-adjusted indirect comparison of pembrolizumab+chemotherapy vs. nivolumab+ipilimumab as first-line therapies in patients with PD-L1 TPS ≥1% metastatic NSCLC. Cancers 12, 3648 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  252. He, X. et al. Upfront dose-reduced chemotherapy synergizes with immunotherapy to optimize chemoimmunotherapy in squamous cell lung carcinoma. J. Immunother. Cancer 8, e000807 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  253. Swami, U. et al. Exceptional responses with sequential metronomic temozolomide after pembrolizumab failure in patients with metastatic melanoma. Melanoma Res. 29, 643–647 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Pfirschke, C. et al. Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy. Immunity 44, 343–354 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Casares, N. et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J. Exp. Med. 202, 1691–1701 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Oratz, R. et al. Intratumoral cisplatin/adrenaline injectable gel for the treatment of patients with cutaneous and soft tissue metastases of malignant melanoma. Melanoma Res. 13, 59–66 (2003).

    Article  CAS  PubMed  Google Scholar 

  257. Vogl, T. J. et al. CT-guided intratumoural administration of cisplatin/epinephrine gel for treatment of malignant liver tumours. Br. J. Cancer 86, 524–529 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Khan, F., Anker, C. J., Garrison, G. & Kinsey, C. M. Endobronchial ultrasound-guided transbronchial needle injection for local control of recurrent non-small cell lung cancer. Ann. Am. Thorac. Soc. 12, 101–104 (2015).

    Article  PubMed  Google Scholar 

  259. Mori, V., Roy, G. S., Bates, J. H. T. & Kinsey, C. M. Cisplatin pharmacodynamics following endobronchial ultrasound-guided transbronchial needle injection into lung tumors. Sci. Rep. 9, 6819 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  260. Hohenforst-Schmidt, W. et al. Intratumoral chemotherapy for lung cancer: re-challenge current targeted therapies. Drug Des. Devel Ther. 7, 571–583 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  261. Marabelle, A. et al. Starting the fight in the tumor: expert recommendations for the development of human intratumoral immunotherapy (HIT-IT). Ann. Oncol. 29, 2163–2174 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Goldmacher, G. V. et al. Response criteria for intratumoral immunotherapy in solid tumors: itRECIST. J. Clin. Oncol. 38, 2667–2676 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  263. Champiat, S. et al. Intratumoral immunotherapy: from trial design to clinical practice. Clin. Cancer Res. 27, 665–679 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the patients, the patients’ families and colleagues who have participated in the authors’ preclinical and clinical research projects on intratumoural immunotherapy and have contributed to the development of the authors’ expertise in that field. The authors thank in particular T. de Baere, L. Tselikas, S. Ammari, S. Farhane and C. Massard for their contribution to the implementation of intratumoural immunotherapy trials at Gustave Roussy. The authors also thank their colleagues at the University of Navarra, especially A. Benito, M. Rodriguez-Ruiz, M.F. Sanmamed, C. de Andrea, J.L. Perez-Gracia, M. Ponz, L. Resano, I. Goicoechea and M. Egaña. The work of M.A. is funded by the Asociación Española contra el Cancer (AECC) Foundation, and the authors acknowledge continued financial support from the Spanish Ministry of Economy and Competitiveness (MINECO SAF2014-52361-R and SAF 2017-83267-C2-1R (AEI/FEDER,UE)), the Cancer Research Institute under the CRI-CLIP, the AECC Foundation under grant GCB15152947MELE, the Joint Translational Call for Proposals 2015 (JTC 2015) TRANSCAN-2 (code TRS715 2016-00000371), and the European Commission within the Horizon 2020 Programme (PROCROP - 718 635122).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Ignacio Melero or Aurelien Marabelle.

Ethics declarations

Competing interests

I.M. has received research grants from Alligator, Bioncotech, Bristol Myers Squibb (BMS), Leadartis, Pfizer and Roche; has received speaker’s bureau honoraria from MSD; and is a consultant or advisory board member for Alligator, AstraZeneca, Bayer, Bioncotech, BMS, F-Star, Genmab, Gossamer, Merck Serono, Numab, Pieris and Roche. E.C. is a consultant or advisory board member for AstraZeneca, Beigene, BMS, MSD and Roche. S.C. has received honoraria from Amgen, AstraZeneca, BMS, Janssen, Merck, MSD, Novartis and Roche; is an advisory board member for Amgen and AstraZeneca; has received funding for travel and conference attendance from AstraZeneca, MSD and Roche; and has received research grants from AstraZeneca, BMS, Boehringer Ingelheim, Janssen-Cilag, Merck, Novartis, Onxeo, Pfizer, Roche and Sanofi, and non-financial research support (investigational drugs) from AstraZeneca, Bayer, BMS, Boehringer Ingelheim, Medimmune, Merck, NH TherAGuiX, Onxeo, Pfizer and Roche. S.C. has been a principal investigator of academic or industry-sponsored clinical trials of intratumoural immunotherapies for Abbvie, AstraZeneca/Medimmune, BMS, Eisai/H3 Biomedicine, IDERA, Lytix Biopharma, MSD, Nanobiotix and Sanofi/BioNTech. A.M. has been a principal investigator of academic or industry-sponsored clinical trials of intratumoural immunotherapies from AstraZeneca, BMS, Eisai, IDERA, Lytix Biopharma, Merck/MSD, Roche and Transgene; is a member of the Data Safety and Monitoring Board of a trial of a intratumoural TLR3 agonist sponsored by Oncovir (NCT02423863); and has participated in scientific advisory boards or has provided consultancy services on the topic of intratumoural immunotherapies for Amgen, AstraZeneca, Banque Pour l’Investissement, Bayer, Eisai, eTheRNA, Lytix Biopharma, Medincell, MSD, Novartis, Oncosec, Pillar Partners, Rigontec and Sanofi/BioNTech. M.A. declares no competing interests.

Additional information

Peer review information

Nature Reviews Clinical Oncology thanks H. Kaufman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melero, I., Castanon, E., Alvarez, M. et al. Intratumoural administration and tumour tissue targeting of cancer immunotherapies. Nat Rev Clin Oncol 18, 558–576 (2021). https://doi.org/10.1038/s41571-021-00507-y

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41571-021-00507-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing